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 10 

The most recent ice age was characterized by rapid and hemispherically 11 

asynchronous climate oscillations, whose origin remains unresolved. Variations in 12 

oceanic meridional heat transport may contribute to these repeated climate changes, 13 

which were most pronounced during the glacial interval twenty-five to sixty 14 

thousand years ago known as marine isotope stage 3 (MIS3). Here we examine a 15 

sequence of climate and ocean circulation proxies throughout MIS3 at high 16 

resolution in a deep North Atlantic sediment core, combining the kinematic tracer 17 

Pa/Th with the most widely applied deep water-mass tracer, δ13CBF. These 18 

indicators reveal that Atlantic overturning circulation was reduced during every 19 

cool northern stadial, with the greatest reductions during episodic iceberg 20 

discharges from the Hudson Strait, and that sharp northern warming followed 21 

reinvigorated overturning. These results provide direct evidence for the ocean's 22 

persistent, central role in abrupt glacial climate change.  23 

  24 



One Sentence Summary: Multiple proxies reveal that ocean circulation changes 25 

accompanied and preceded each millennial climate oscillation within marine isotope 26 

stage 3 (MIS 3) of the most recent ice age, 60ka to 25ka. 27 

 28 

Unlike the relatively stable preindustrial climate of the past ten thousand years, 29 

glacial climate was characterized by repeated millennial oscillations (1). These 30 

alternating cold stadial and warm interstadial events were most abrupt and pronounced on 31 

Greenland and across much of the northern hemisphere, with the most extreme regional 32 

conditions during several Heinrich (H) events (2), catastrophic iceberg discharges into the 33 

subpolar North Atlantic Ocean. These abrupt events not only had impact on global 34 

climate, but also are associated with widespread reorganizations of the planet’s 35 

ecosystems(3). Geochemical fingerprinting of the ice rafted detritus (IRD) associated 36 

with the most pronounced of these events consistently indicates a source in the Hudson 37 

Strait (HS) (4), so we abbreviate this subset of H events as HS events and their following 38 

cool periods as HS stadials. During northern stadials, ice cores show that Antarctica 39 

warmed, and each subsequent rapid northern hemisphere warming was followed shortly 40 

by cooling at high southern latitudes (5). Explanations for the rapidity and asynchrony of 41 

these climate changes require a mechanism for partitioning heat on a planetary scale, 42 

initiated either through reorganization of atmospheric structure (6) or the ocean’s 43 

thermohaline circulation, particularly the Atlantic meridional overturning circulation 44 

(AMOC) (7-10). Coupled climate models have successfully used each of these 45 

mechanisms to generate time series that replicate climate variability observed in 46 

paleoclimate archives (9, 11). Here we investigate the relationship between Northern 47 



Hemispheric climate as recorded in Greenland ice cores and marine sediments, along 48 

with isotopic deep-sea paleoproxies sensitive to changes in North Atlantic Deep Water 49 

(NADW) production and AMOC transport during MIS3. Throughout that time, when 50 

climate was neither as warm as today nor as cold as the last glacial maximum (LGM), ice 51 

sheets of intermediate size blanketed much of the northern hemisphere, and large 52 

millennial stadial - interstadial climate swings (6, 8) provide a wide dynamic range that 53 

allows examination of the ocean’s role in abrupt change.  54 

Sediment samples were taken from the long (35m) core KNR191-CDH19, 55 

recovered from the Bermuda Rise (33˚ 41.443’ N; 57˚ 34.559’ W, 4541m water depth) in 56 

the northwestern Atlantic Ocean (Fig. 1), near previous seafloor sampling at Integrated 57 

Ocean Drilling Program (IODP) site 1063, and coring sites KNR31 GPC-5, EN120 GGC-58 

1, MD95-2036, and others. Because this region of the deep North Atlantic is 59 

characterized by steep lateral gradients in tracers of NADW and Antarctic Bottom Water 60 

(AABW), the Bermuda Rise has been intensively used to explore the connection between 61 

changes in ocean circulation and climate (7, 12). In this study we measured the 62 

radioisotopes 231Pa and 230Th in bulk sediment, age-corrected to the time of deposition, 63 

along with stable carbon (δ13C) and oxygen (δ18O) isotope ratios in the microfossil shells 64 

of both epibenthic foraminifera (Cibicidoides wuellerstorfi and Nuttallides umbonifera) 65 

and planktonic foraminifera (Globergerinoides ruber) respectively, yielding inferences 66 

on relative residence times and the origin of deep water masses on centennial time scales.   67 

The isotopes 231Pa and 230Th are produced from the decay of 235U and 234U, 68 

respectively, dissolved in seawater. This activity of 231Pa and 230Th in excess of the 69 

amount supported by the decay of uranium within the crystal lattice of the sediment’s 70 



mineral grains is denoted by 231Pxs and 230Thxs. As the parent U isotopes have long 71 

residence times, U is well mixed throughout the ocean. This yields a 231Paxs/230Thxs 72 

(hereafter Pa/Th) production ratio (Pa/Th = 0.093) that is constant and uniformly 73 

distributed (13, 14). Both daughter isotopes are removed by adsorption onto settling 74 

particles, with Th more efficiently scavenged than Pa. The residence time of 231Paxs (τres 75 

~= 200yr) in seawater is thus greater than that of 230Thxs (τres ~= 30yr), allowing 231Paxs to 76 

be redistributed laterally by changes in basin-scale circulation before deposition (7, 14-77 

16), with the additional potential influence of removal due to changes in particle rain 78 

associated with biological productivity (17). Settling particles (18) and surface sediments 79 

throughout the basin reveal a deficit in 231Paxs burial that is consistent with large-scale 80 

export by the deep circulation (Fig. 1 and supplemental discussion).  81 

The downcore Pa/Th in core CDH-19 ranges from ~0.05 to slightly above the 82 

production ratio of 0.093, with a series of well-defined variations throughout MIS 3 83 

(Fig.2). In sediments deposited during Greenland interstadial intervals(1), Pa/Th ratios 84 

average 0.0609+/-0.0074 (2σ), substantially below the production ratio (Fig. 2), and only 85 

10% higher than the mean value (Pa/Th = 0.055) of the Holocene, a time of relatively 86 

vigorous AMOC (7). Because 230Thxs is buried in near balance with its production (19), 87 

the relatively low Pa/Th indicates a substantial lateral export of 231Paxs, consistent with 88 

relatively vigorous AMOC during interstadials, although the vertical integration through 89 

the water column of this deficit does not distinguish whether this export occurred at deep 90 

or intermediate levels. Epibenthic δ13C (δ13CBF) data allow discrimination between these 91 

two possibilities, and display increased values during each interstadial, implying a greater 92 

contribution of the isotopically more positive North Atlantic end member (Fig 2). During 93 



these intervals, this positive isotopic signal suggests a deeper overturning cell was 94 

established, rather than a shallower, yet vigorous one.  This confirms a previous 95 

suggestion of intervals of relatively strong AMOC within the most recent ice age (20, 21), 96 

although neither Pa/Th nor δ13CBF adjusted for whole ocean inventory changes (22) reach 97 

early Holocene values. 98 

Pa/Th increases within each Greenland stadial interval, for a mean duration of 99 

0.531 +/- 0.303ka to a Pa/Th value of 0.0797+/-0.0154, indicating decreased lateral 100 

export of 231Paxs and consistent with a shallower or reduced overturning cell in the North 101 

Atlantic. During these stadials, δ13CBF decreases substantially to negative values (-0.2‰ 102 

to -0.5‰), suggesting greater influence of the glacial equivalent of modern Antarctic 103 

Bottom Water (AABW), an isotopic result consistent with reduced AMOC from a 104 

coupled climate model (10). Although the northern and southern water mass end 105 

members are not well known throughout the most recent glaciation, deep waters in the 106 

Atlantic during the LGM ranged from less than -0.5‰ in the south to more than 1.5‰ in 107 

the north (22). If these values prevailed throughout MIS 3, then the low benthic δ13CBF 108 

indicates a dominant stadial influence of southern waters, and substantial northward 109 

retreat or shoaling of the AABW/NADW mixing zone, which is consistent with the deep 110 

water mass configuration that has previously been reconstructed for the LGM (22, 23), 111 

although not for millennial-scale stadial intervals within the glaciation. 112 

The mean Pa/Th of both stadials and interstadials is consistent with export of 113 

231Paxs from the subtropical North Atlantic during all of MIS3. During peak interstadials, 114 

when low Pa/Th indicates the local burial of approximately half of 231Paxs production, the 115 

remaining half would have been exported. In contrast, the substantial decrease in the 116 



lateral export of 231Paxs evident in higher Pa/Th, along with lower benthic δ13CBF during 117 

each stadial interval, points to repeated reductions in AMOC and its attendant northward 118 

heat transport throughout MIS3. The contrast between apparent deep, vigorous 119 

overturning during interstadials, with shallower(24), weaker overturning during stadials, 120 

is most pronounced in conjunction with all HS stadials (Fig. 2), when catastrophic 121 

discharge of melting icebergs from Canada flooded the subpolar North Atlantic (4). 122 

Sediments deposited during HS stadials are characterized by a mean duration of 123 

1.65 +/- 0.545ka and an average Pa/Th of 0.095 +/- 0.016, which is indistinguishable 124 

from the production ratio. These results therefore indicate no net export of 231Paxs from 125 

the subtropical North Atlantic during these events sourced from the Hudson Strait. This 126 

balance between seawater radiometric production and underlying sedimentary burial 127 

would be expected under conditions with a substantial reduction in AMOC or other 128 

lateral transport, and might imply a near cessation of 231Paxs export through deep 129 

circulation. Although variable scavenging may also contribute to sedimentary Pa/Th, 130 

values throughout MIS 3 bear only a weak relationship with bulk and opal fluxes (r2=0.19, 131 

S2), which therefore constitute secondary influences. 132 

These new results reveal that AMOC variations were associated with every MIS 3 133 

stadial-interstadial oscillation, with the largest reductions during HS stadials. The well-134 

resolved interval 35-50 ka provides a good example (Fig. 3). This iconic interval contains 135 

H4, H5, and the intervening series of oscillations that have served as a basis for 136 

conceptual and computer models seeking to explain such variability (8-11, 25, 26). A 137 

previous Pa/Th record (20) covering this interval captured much of the overall amplitude, 138 

and the new data resolve each stadial increase in Pa/Th, indicating that only HS4 and 139 



HS5 reach the production ratio of 0.093. Because the interstadial values are similar to 140 

each other, the subsequent abrupt increases in AMOC and regional warming are also the 141 

greatest, and occur within the century-scale response time of Pa/Th. Throughout the 142 

records, the Pa/Th and δ13CBF bear a striking similarity to model output forced by 143 

freshwater anomalies (11). 144 

Combined with previous investigations (7, 27), these new results confirm that all 145 

HS events of the past 60kyr were associated with a dramatic increase in Pa/Th, and are 146 

evidence for major reduction in AMOC in association with the largest IRD events (28). 147 

In contrast, H3, the sole Heinrich event stadial that fails to reach the production ratio 148 

(peak Pa/Th = 0.079), displays smaller IRD fluxes across the subpolar Atlantic (28) with 149 

provenance inconsistent with a Hudson Strait source (4). This muted result for H3 is 150 

consistent with evidence from the Florida Straits (29) showing a smaller reduction at that 151 

time in the northward flow of near-surface waters that feed the overturning circulation. 152 

As with all stadials, the HS events are characterized by lower δ13CBF, suggesting 153 

diminished influence of NADW and proportionately greater AABW on Bermuda Rise. 154 

Combined Pa/Th and δ13CBF results therefore indicate a persistent pattern of stadial 155 

weakening and interstadial strengthening, with a repeatedly largest reduction in AMOC 156 

associated with all HS events. Although these observations are consistent with a number 157 

of numerical model simulations (11, 26) as well as conceptual models for the 158 

mechanisms of abrupt change, they have previously been difficult to document and fully 159 

resolve. 160 

Recent data from the Western Antarctic ice sheet provide compelling evidence for 161 

a robust lead of Greenland climate over Antarctica (5). That analysis revealed a N. 162 



Hemisphere lead of 208 +/-96 years, indicating that the interhemispheric teleconnection 163 

propagates from north to south on timescales consistent with basin-scale ocean 164 

circulation. To ascertain whether Northern Hemisphere climate is forced or reinforced by 165 

changes in AMOC, we investigated the phase relationship between surface and deep-sea 166 

properties. Cross-correlations were performed on each of δ13CBF, Pa/Th, SST, CaCO3 167 

with NGRIP δ18O from both sediment cores CDH19 and MD95-2036 from the Bermuda 168 

Rise. The optimal correlation of δ13CBF leads NGRIP δ18O by approximately two 169 

centuries (Fig 4). This lead is corroborated by Pa/Th phasing which, when considering 170 

the century-scale response time of the proxy (13, 14), is consistent with AMOC changes 171 

indicated by δ13CBF. The SST reconstruction from MD95-2036 was aligned with 172 

Greenland δ18O, yielding a correlation of r2=0.83(30). SST and Pa/Th are synchronous 173 

with NGRIP to within the estimated bioturbation error of 8cm within the core, displaying 174 

correlations with Greenland of r2 =0.47 for Pa/Th, and r2 =0.65 for SST. The optimal 175 

correlation of %CaCO3, r2 =0.64, lags NGRIP δ18O by nearly 200 years.  176 

The consistent lead of variations in δ13CBF before SST and Greenland 177 

temperatures, repeated over multiple millennial cycles, indicates the potential influence 178 

of AMOC on NH climate, and suggests the Bermuda Rise is exposed to shifts in deep 179 

water mass mixing. Initially, deep circulation changes, evidenced overall by the timing of 180 

δ13CBF. Pa/Th shifts are essentially in tandem with regional temperature when circulation 181 

accelerates, and soon thereafter as it responds to weakening AMOC (S3). Given the 182 

response time of Pa/Th to instantaneous shifts in North Atlantic overturning(13, 14), this 183 

also suggests that changes in AMOC precede regional temperature change, although the 184 

exact timing may have differed during cooling and warming phases. Both SST and 185 



Greenland temperature proxies lag the ocean circulation in a consistent fashion, and in 186 

turn these northern changes have been demonstrated to lead Antarctic temperatures (5).  187 

Calcium-carbonate concentration is the last of the proxies to respond to AMOC change, 188 

consistent with the longer timescale of preservation, dissolution and dilution in the deep 189 

ocean. 190 

The relative timing of the observed AMOC changes has important implications 191 

for regional and global climate. While numerous computer simulations suggest that 192 

melting icebergs and other freshwater input associated with H events may have shut 193 

down NADW production(9, 11, 26), recent results examining the phasing of North 194 

Atlantic SST and ice rafted detritus (IRD) suggest stadial conditions began to develop 195 

prior to ice-rafting(31). The evidence here nevertheless indicates that the greatest AMOC 196 

reduction and the coldest stadial intervals accompanied the largest iceberg discharges. 197 

This suggests that the iceberg discharges may have provided a positive feedback 198 

mechanism to accelerate the initial cooling within each multi millennial climate cycle. In 199 

addition, the extended Heinrich-stadial reductions in AMOC observed in this study 200 

coincide with intervals of rising atmospheric CO2(32), while CO2 declined when AMOC 201 

increased during the subsequent sharp transitions to northern interstadials, supporting a 202 

potential influence on the atmosphere by the deep circulation on millennial 203 

timescales(33). 204 

The robust relationship of reductions in export of northern deep waters evident in 205 

reduced 231Paxs export and decreased δ13CBF before and during stadial periods, and the 206 

dramatic increases in both during interstadials provides direct evidence for the role of 207 

AMOC in abrupt glacial climate change. The sequence of marked circulation changes 208 



and northern hemisphere climate detailed here, combined with the demonstrated lag of 209 

Antarctic temperature variations (5), strongly implicates changes in meridional heat 210 

transport by the ocean as a trigger for abrupt northern hemisphere warming and the 211 

tipping of the “bipolar seesaw (25).”  212 

 213 
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 235 

Fig. 1. Location sediment core CDH19 shown as star (33˚ 41.443’ N; 57˚ 34.559’ W, 236 

4541m water depth) with Pa/Th ratios (black dots) in core top sediments used with ODV 237 

DIVA gridding to produce the color contours. White areas contain no data. 238 
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 244 

 245 

Fig. 2. Stadials are numbered with vertical bars. [A] NGRIP ice core δ18Oice  246 

75.1°N, 42.32°W (34). [B] SST (°C) from MD95-2036, 33˚ 41.444’N, 57˚ 34.548’W, 247 

4462m (30). [C] Calcium x-ray fluorescence (orange) from core CDH19 (this study) 248 

mapped to %CaCO3, with calibration r2 = 0.87 (S.1), with spectral reflectance (blue) from 249 

core MD95-2036 (35) [D] Pa/Th from bulk sediment (green) taken from core CDH19. 250 

[G] Benthic foraminiferal δ13CBF from core CDH19 (purple) alternates between values 251 

consistent with southern and northern sourced δ13CBF end members. 252 

 253 
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 258 
 259 
 260 
 261 
 262 
 263 
 264 
Fig. 3. (A) through (E) as in Figure 2, with the addition of (F) simulated NADW (Sv) in a 265 

coupled ocean/atmosphere model (11), with previously published Böhm et al Pa/Th data 266 

(20) and Keigwin and Boyle δ13CBF data (12). 267 



 268 

 269 
 270 
Fig. 4. Correlation of NGRIP ice core δ18O with CDH19 %CaCO3 (orange), Pa/Th of 271 
bulk sediment from CDH19 (green), δ13CBF from CDH19 (purple), SST °C from MD95-272 
2036 (30) (red). 273 
 274 
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