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XBT ACCURACY
by George Seaver and Stanislav Kuleshov

During the November-December 1977
POLYMODE cruises of the Mikhail Lomonosov,
103 XBT-STD (Istok) and 14 XBT-XBT com-
parisons were made. The results were

qualitatively similar to previous studies,
and they greatly improve the existing
statistics of the XBT mean and random errors.
Figure 1 shows the mean error and the
standard deviation (o) of the random error
along with the results of previous experi-
ments (Flierl and Robinson, 1977; McDowell,
POLYMODE News No. 29; Fedorov et al.,
POLYMODE News No. 50). Survey 8 (November
1977) and Survey 9 (December 1977) differ
by a nearly constant six-meter offset in
depth, which is probably due to a pressure
error in the STD during Survey 8. Also,
Survey 9 is a smoother curve. All of the
results exhibit a positive excursion
(negative curvature) in the 18° water, the
region of small mean temperature gradient.
Finally, all of the results show positive
curvature as the main thermocline is
approached with two of the mean curves
having zero slope here. These properties
will be important later in redards to the
analytical models of the error. The random
error of Survey 9 exhibits a deeper and
weaker minimum near 100 m, reflecting the
deeper and weaker seasonal thermocline during
December. The remaining portions of the
g curves are quite similar with Survey 8
being somewhat larger and noisier.

Also plotted is the standard deviation
for the 14 XBT-XBT comparisons, a subset of
Survey 8. The results are somewhat smaller
than the XBT-STD results, the difference
representing the noise introduced by using
the STD to determine the mean. Also shown
is the standard deviation from McDowell of
the strip chart recorder-Bathy Systems
Digitizer (SCR-BSD) comparison. These data
are for a different recorder and mean
temperature gradient and probably are
different quantitatively from what it would
be for the present study. However, it
indicates that significant random noise
exists in the analog recorder and manual
digitizing process (McDowell, POLYMODE News
No. 58). Table 1 summarizes the contribu-
tions to the random error by the STD and the
strip chart recorder. Although the standard
deviations (o) for the XBT vs. XBT and SCR
vs. BSD are for different water columns,
we believe Table 1 is a useful demonstration
of what is involved.

The calculation for o is quadratic and
the total random error is not a simple sum
of its parts. However, it is clear from
Table 1 that a major part of the random error
is from the STD comparison and the XBT
recorder procedures. Further, Figure 2
shows temperature vs. depth profiles for
two XBTs taken in the same location one hour
apart, at the beginning and the end of an
STD drop. The Brunt-Vaisdla frequency has

(continued page 5)



N OTE S from the Editor

You may have noticed that the amount of
material in POLYMODE News is dropping off.

The size of the issues has not been
significantly reduced, but the frequency
of issuance is decreasing. Rather than
simply cease in the near future we will
continue to issue the News for some time
longer, since we have been informed that
some worthwhile contributions are still
being prepared and will be sent to us fgr
inclusion.

If you anticipate having any material
for POLYMODE News, please get in touch with
Catherine Herrity so that she can make
plans accordingly. Judging from what we
have been told about articles in the works,
the News will likely expire, due to lack
of material, sometime in the first half
of 1980.

Data from the Bermuda Biological Station
tide gauge from 1932 through 1979 can now
he obtained from: Associate Director,
Office of Oceanography, C2, National Ocean
Survey/NOAA, 6001 Executive Blvd, Rockville
MD 20852. Historical data are summarized
in the form of monthly and yearly means
of tidal datums, i.e., mean low and mean
high water and mean sea level, and extreme
water levels. FPor recent years, times and
heights of high and low waters and hourly
heights can be provided.

--F. W.

The PQLYMODE* News is produced at the
Woods Hole Oceanographic Institution, It
is edited by Ferris Webster and .Catherine
Herrity.

Material of interest for this newsletter
may be sent to Catherine Herrity at the Woods
Hole Oceancgraphic Institution, Woeds Hole,
MA, 02543, Telephone (617) 548-1400, ext.
2550, TWX 710~346-6601; or to Ferris Webster
at NOAA/RD, 6010 Executive Blvd, Rockville,
MD, 20852, Telephone (301) 443-8344,

*POLYMODE is derived from the names of the
USSR POLYGON experiments and the Mid-Ocean
Dynamics Experiment (MODE).
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Marine Hydrophysical Institute
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ERRATUM
Seaver (POLYMODE Mews No. 64)

A line was inadvertently omitted from the
second paragraph of Seaver's article
entitled "Surface currents in the POLYMODE
XBT area." Line 12 in paragraph 2 should
read "Loran A was not useful at night.
The ship's speed was 10.2 knots (£0.,2 knots)
and the ship's course on autcmatic pilot

was generally good to 1°."
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AN EXAMPLE OF THE LAGRANGIAN MASS TRANSPORT
BY FINITE AMPLITUDE ROSSBY WAVES

by Colin Shen

The Lagrangian fluid motion (Stokes drift)
is principally responsible for the mass trans-
port in a wave field of infinitesimal amplitude.
Whether this applies to nonlinear, finite-
amplitude waves is a question of considerable
interest., This is especially so in the study
of mass transport by finite-amplitude Rossby
waves since this gquestion bears directly upon
the advection of water properties by mesoscale
eddies in the ocean.

An example of Lagrangian transpeort by
finite~amplitude Rossby waves will be presented
to demonstrate its possible importance. In

the example, we use a wave field composed of non-

interacting Rossby waves. This wave field
satisfies the potential vorticity equation, and
its Lagrangian solution can be computed exactly.
The main result to be shown in this note is
that at a sufficiently high amplitude, some of
the fluid masses are trapped and carried west-
ward by the wave field at the wave's phase
speed, while the rest of the masses are
advected by the wave field at a large speed
to the east. In the limit of small amplitude
the result reduces simply to that of Stokes
drift. The present finding may have some
implications concerning the mass transport by
mesoscale eddies. However, the existence of
such transport in a more general wave field
remains to be seen and is under investigation.
For the following, it is sufficient to
consider the wave moticon in a censtant depth,
homogeneous fluid on a beta-plane. In this
fluid, the potential vorticity eguation is
then given by

(g2 + 31 (VY + By) = O (1)
where ¢ is the usual streamfunction whose
first derivatives, 3y/3x = v and -3y/3y = u,
are respectively the north and the east
component of the velocity. The non-interacting
waves which satisfy (1) are those having equal
westward phase speed or, equivalently, equal
magnitude wave number vector.

A convenient form of the wave field to

work with here is

p = (wO/Z)'i sinfr; (x+c t)+2,¥v]l, 1 =1,2 (2)

which is composéd of two non-interacting
Rossby waves denoted by the suffix i = 1,2,

with each having the same westward phase
speed ¢y = B/ (k] + 23).

We now show that the wave field given by
(2) can produce "particle" speed greater than
or equal to the phase speed at a sufficiently
high amplitude y,, thereby demonstrating that
the wave carries the mass directly. 1In
order to show this, one normally needs to
determine the f£luid particle speed and hence
the Lagrangian motion, which is generally
a difficult task. For a simple wave field
as (2), however, it is sufficient to compute
the Eulerian velocity and show the existence
of the following

el
3y

= Cy %% =ecy =0, (3)
i.e., the instantaneous Eulerian speed equals
the phase speed.

As will be seen shortly, where (3) is
satisfied the fluid also preserves its
potential vorticity. Since a fluid particle
conserves its own potential wvorticity, (3}
also implies that the particle speed equals
the phase speed. Given (2) and (3}, the
calculation is now straightforward. Rewriting
(2) as

¥ = Ygsin[Ky {x+c t)+Liylcos [Ky (xtoxt)+Lloyl  (4)
with K3 = (ky+K3/2),L] = (£1+23)/2

and Ry = (k1-Kk2}/2, Lz = (&1-42}/2,

condition (3) becomes

Licospicosds - Lpsing;singy = cx/wo
Kjcos¢ cosdy - Kzsin¢1sin¢2 =0 (5)
where ¢; and 9o denote the phase functions
of sin and cos in (4), respectively.
Equation (5) may be solved alternately for
sin and cos, and one has

cos¢jcospr = (Kpcy)/ (YD)

(6)
sing) singy = (Kjc,)/ (4 D)

with D = K3L; - KjLy. The ratio of the above
two equations gives
tan¢j;tang, = Kl/KZ' (]

This condition determines the instantaneous
position of the particle that satisfies (3).
Given a pair of K; and Ky, there is always

a solution to (7); in fact, infinitely many.

{continued page 4)



AN EXAMPLE OF THE LAGRANGIAN MASS TRANSPORT
BY FINITE AMPLITUDE ROSSBY WAVES (continued})

The appropriate root, however, is determined
by the wave amplitude condition
b, = (chx)/(D sin¢lsin¢2)

. (8)
= (R3Cy) /(D cos¢jcosésy) .

Clearly, for a sufficiently large 3, {>K1cy/D or
Kze,/D), a unique solution to (7) can be found
and (3) exists. The exception to the above

is the case D = 0. Here, all constant phase
lines given by (2) are parallel and all
particle motions are normal to the direction
of the phase propagation; thus, (3) cannot

be satisfied. A single Rossby wave will not
satisfy (3) for the same reason. The poten-
tial vorticity for the wave field (2) has

the form

V2 + By = (=8/culy + BY - (9

It can be readily shown that the extremum

of the potential vorticity is also given by
(3). Thus, the instantaneous ﬁosition of the
potential vorticity extremum and the position
where the fluid motion equals the phase speed
are the same. This shows that the positions
given by (7) and (8) are also the particle
positions. It can be concluded that the
particles there move with the wave at the
same speed, Finally, it should be pointed
out that in a reference frame moving with

the wave, the positions given by (7) and (8)
are stationary.

Figures 6 and 7 illustrate the patterns
of the streamlines of (2) and also the
corresponding potential vorticity field for
two different orientations of the constant
phase lines. The patterns in all these
figures move to the west (left edge) without
changing shape. Since the potential vorticity
is conserved with respect to the £fluid
particle, each of the constant potential
vortiecity lines in Figures 6b and 7b repre-
sents the path of the particles. Thus, the
closed contour lines indicate that the
particles are trapped and move westward with
the wave at the same speed.

The circulation within the trapped region
in Figure éb resembles that of "modon" with
anticyclonic circulation in the uppex half --
since the potential vorticity there is less
than the background, By, planetary vorticity.
The motion is cyclonic in the lower half.

The trapped regions in Figure 7b
artificially resemble planetary "solitons."

®

The sense of the circulation within each is
easily deduced from the background planetary
vorticity. Outside of the trapped region in
both figures, the direction of the mass
transport is to the east. This is obvious
since the mass must be conserved. By knowing
the particles' paths which are the isopoten-
tial vorticity lines, one is, in principle,
in a position to compute the speed of the
Lagrangian particle motions. We shall
refrain from presenting a detailed discussion
here. Instead, we consider a sgpecial case
below (Ky = 0 = L1} to illustrate the
connection between the mass transport
discussed in this note and the Stokes drift.
In this case the amplitude condition (8)
for the existence of trapped mass becomes
po = —cy/(Lzsingsing,}, which implies that
the amplitude be at least |yg] = cyx/Ly. For
the moment, we assume that the amplitude is
small, cyx>>¥,Ly, and compute the Stokes
drift of the wave field. This is easily
done by means of Stokes' expansion, and the
result after averaging over a wave cycle is <f~>

Ug = (w;Li/Zcx) cos2LgY. {10) e

The drift is maximum and westward at

o T . —
y = EE;' and is eastward at y 0 (see

Figure 8). The above formula is not walid
for yoLy £ c,. 1In this range, the wave
amplitude is finite, and a different approach
is required to determine the Lagrangian
particle motion. As stated above, the
particle always moves along a constant
poteitial vorticity line. This fact suggests
a convenient method of calculation.

First, note that along a constant
potential vorticity line {(call it a constant
Q line) the Lagrangian velocity, U, is given
by ~
Ulxg,t} = uix,y,t) = ulx,y{x,t,Q),t], (11)
where u is the Eulerian velocity and X, is
the initial position of the Lagrangian particle
(serving as a "tag"). The last term in (11)
follows because x and y are related by
Q(x,y,t) = constant. The rate of the dis-
placement of the particle is as usual dx/dt =
g(fo't)' With (11), the rate of displacement
can be

dx/dt = ulx,y(x,t,Q),t]. (123 Q

This is a first-order, ordinary differential
equation. Since u is known the equation can
be solved, and the displacement of the

{continued pige 9, lower half)
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XBT ACCURACY {continued)

a period from 1.2 minutes in the seasonal
thermocline to 10 minutes in the 18° water.
Consequently, internal waves could bé
responsible for the differences between the
two temperature profiles. The coincident
points down the profile rule out the usual

- instrument problems., At 70 m depth a 4 m

depth difference translates into a 1.1°C
temperature "random" error. For the 18.3°C
isotherm, a 0.15°C temperature difference
between the two profiles translates into a
35 m random depth error. During Survey 8,
the mixed layer varied from 15 m to B85 m
with winds of 25 knots for two-day periods.
The forcing for internal waves is available.
From the above considerations, the random
error contribution of the XBT probe itself
is probably a small part of the total random
error observed by at-sea experiments.

The various experimental mean errors
of Figure 1 are difficult to interpret
without a @ynamical model. An at-sea
calibration of the XBT against the STD is
valid for the probe type used and the
temperature profile in the region of
comparison. A correct dynamical model of
the error would generalize the results to
all temperature profiles and probe types
{reference temperature)}.

From Figure 3a, the kinematic viscosity
changes by 42% between 10°C and 25°C; the
possibility that decreasing temperature with
ocean depth significantly changes the XBT
probe fall rate is explored below. Figure
3b is a composite from Schilichting showing
the terminal velocity of streamlined bodies
as a function of viscosity. The slope of
the curve is of interest here; the vertical
position of the curve segments is not
necessarily correct. Also, the Reynolds
number (Re. No.) as indicated in Figure 3b
denotes its approximate value of transition
between the various regimes and not a
functional dependence. The Reynolds number
cf the XBT probe based upon its diameter is
3.5 x 10%. The probe is in transition
between a laminar and a turbulent boundary
layer. From Schlichting (1955) the boundary
layer drag (d) on a streamlined body is:

1

d = constant p U? (8 _
v n

(1)

1

U[v(T)] = constant v — TnT (2)

_ A0 1 _ i -1
AU = (Au §) UAv = = 5T w7 Ay (3)
- VTl AV AT o
AU = 55 77 35 U° At (4)
AD = AU At ()
where:

U = XBT fall rate (terminal velocity) =
6.5 m/sec

v = kinematic viscosity

T = temperature

D = depth

tc = thermocline

tref = time of arrival to reference

temperature and depth at 6.5 m/sec

n = 2 for laminar, 5 for turbulent case
{Schlichting, 1955)

t = time

AD = XBT systematic error

Tref = XBT probe calibration temperature

ml = mixed layer
18 = 18° water

Equation (4) is wvalid for small changes
in the variables (an exact analysis is left
to the computer); the results presented here
are good to firat order. The mean tenmperature
profile has been broken into three straight
line segments: the mixed layer to 100 m;
the 18° water to 500 m; and the main thermo-
cline. The zerc-order fall rate used is
6.5 m/sec, the value Sippican Corporation
(Marion MA) uses for their depth deter-
mination. Sippican does not know the
calibration velocity and temperature to the
required accuracy. Consequently, the fall
rate. calibration temperature (chart drive
RPM and chart paper grid size) has been
taken at 1l°C {52°F at 750 m). From Figure 1,
this is where the boundary condition %%E
(the fall rate error} is closest to zero.

Equation (5) bacomes:

laminar AD = -.699t - .378(t-t,.) -
18 (6)

- U P S S
.UOGE[tref(t ttc) 3 (ti-t tc)],

turbulent AD = =.233t = .126{t-t.,.)
18 (N

1 242
L0022([t 3 (Lt -t tc)].

reg{t tee)”
The laminar case has a maximum error
of 30 m, which is excessive. The turbulent
case is presented in Figure 4, and has a
smaller maximum error than the experimental
results. AS pointed out previocusly, the
Reynolds number of the probe is 3.5 x 10%,

(continued page 6)



¥BT ACCURACY (continued)

and the boundary layer is partly laminar and
partly turbulent. The point of transition
to turbulence is probably at the point of
inflection in the probe's shape (near the
end of the zinc portion). This is where

the Reynolds number based upon the boundary
length is 3.5 x 10°; this is also where

an adverse pressure gradient develops. The
slope of the terminal velocity-viscosity
curve is then obtained by weighting the
slopes of the laminar and turbulent cases

of eguations (6) and (7) in proportion,to
the probe surface areas of the two regimes
(Schlichting, 1955). The slope then becomes

m= 4= -0.173 &2

Av u

The results are plotted in Figure 4 and show
better agreement. This will be discussed
later.

Ballast and rereeling errors have been
investigated. Rearranging equation (1}:

Uim) = [m, g (l—t/ta)]'586 x constant

{1)
D = constant (t-.293 t?/t,)) for t®/t? <<l

where
m, = initial total mass .
t = XBT fall time/ratioc of wire to

‘ total weight.

Sippican corrects for the loss of weight and
drag from dereeling with an empirical
relation:

D = At(l - Bt}

The error in the correction of the above
equation is

.293

4D = 6.472 (“F== - .000334)t*; _
1Y) m, T-7 probe (8
AD = 6.828B (4%23 - .000267)t%;

’ 1800 m, T-5 probe (9
The results are presented in Figure 4.
They show poor, agreement with experiment
{error of the wrong sign) for a wire weight
of 15% as specified by Sippican. There is
much better agreement for a hypothetical
wire weight of 5%, although it is difficult
to believe that the probe or wire weight
could be off by 75 grams. Conversely, the
empirical and theoretical fall-rate relations
agree to 2.2 m at 750 m for the design wire
weight ratio providing some confidence in

the theory. Eelow 650 m, the hypothetical
dereeling results begin to diverge from
experiment; it increases quadratically with
depth.

As all of the experimental results show
a positive hump in the mean error curve for
small mean temperature gradient, a small
positive temperature axis error is suggested.
This is supported by Georgi et al. (POLYMCDE
News No. 71). Sippican corrects for the non-
linearity of the thermisteor temperature-
resistance relation with a fourth-order
polynomial accurate to 0.025°C., From these
considerations a +0.025°C temperature axis
errox has been assumed. This is muitiplied
by the inverse of the mean temperature
gradient to obtain the equivalent depth
error, and is plotted in Figure 4. The mean
error from Survey 9 has heen corrected for
this temperature axis error in Figure 4;
the resultant mean error is in better agree-
ment’ with the fall rate theory and a more
reasonable function of depth. The full

equation for the mean theoretical XBT ey
errox is ( ‘)
AD = AUml t = AUlB (t-tls) + Atc[tref(t—ttc) -
A_4+2 - E-l 2
Lit*-t tc)] .025 [az] + Bdr t? +
AUBallast t. (10}

The first three terms are the temperature-
viscosity-drag effect; this contribution has
a positive curvature, The fourth term is the
temperature axis error and exhibits a positive
hump in the 18° and 4° water where the mean
temperature gradient is small. The fifth term
is the dereeling effect; it has a quadratically
increasing value, positively or negatively.

The sixth term is the ballast error effect;
it has a constant plus or minus slope.

From the above properties the temperature-
viscosity effect would be the major contri-
butor tc the systematic XBT error.

Figure 5 shows the depth error va. depth
for the 1800 m, T-5 probe from McDowell
(POLYMODE News No. 29). The T-5 probe has
a different shape than the T-7 with an
extended mid-section, greater weight, and a (::)
somewhat faster design fall rate. The
viscosity-drag theory gives the change in
fall rate, not the absolute fall rate.

{continued page 7}
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XBT ACCURACY (continued)

Consequently, it is as applicable to the
T-5 probe as it is to the T-7 probe. The
3AD
3t
The probe enters the water on

boundary condition, = 0, is taken at
100 m.
average with nearly the design velocity, as
For the T-7 probe it
was previously suggested that the XBT ervor
is: 8D = £(T-T ., t, ST/AZ), where the
value of Tref depends on the probe type.

In the case of the T-7 probe, (T_Tref)>0
and AD<O.
(I-Tyef) <0 and the mean XBT error is
positive.

shown by Figure 5.

How, for the T-5 probe,

As before, the experimental mean
exhibits a positive curvature in the main
thermocline (500-1100 m), and positive humps
in the 18° and 5° water. An.implied +.025°C
temperature axis error results in a single-
valued error curve and improved agreement
between the fall-rate theory and experiment.
A dereeling correction errer is also shown
in Figure 5 and shows poor agreement with the
experimental error for the design wire weight
ratio of 28,.4%; conversely, the empirical
and theoretical fall rate relations agree to
11 m at 1830 m depth for the design wire

weight. This encourages belief in the

functional relation of the theory. A hypo-
thetical wire weight ratio of 38% is shown
and is in much better agreement with experi-
ment, although it is difficult to believe
that the probe or wire weight could be off
by 80 grams, as Sippican's weight specifica-
tions are to *0.36%. The 95% confidence
limits on the experimental mean are *5.1 m
at 1600 m depth, and include the temperature-
viscosity theory. Finally, the temperature-
viscosity explanation of the XBT systematic
error appears valid from the results of the
T-5 and T-7 probes.

A depth error from fall-rate variations
would be a monotenically increasing function
of time and dépth from equation (10). The
T-7 probe results show a 6.0 m increase in
¢ between the seasonal and main thermocline
from Table 1.
fall-rate variations are an important part
Table 2
summarizes the potential random errors

From this it is seen that
of the resultant random error.

derived from equation (10) of varying probe
roughness {laminar-turbulent or all turbulent
boundary layers), varying probe weights, and
These
points will be discussed in detail in a future

a 0.025°C thermistor variability.

(continued page 9, upper half)

T=-7 Probe
Seasonal 187
Comparison Thermocline Water 750 m
I. XBT vs. STD:
o {AD") 5.5 m 14 m 9.75 m
o (AT} 0.35°C 0.09°C 0.25°C
I1. XBT wvs. XBT:
g (AD"} 3.0m 12.5 m 8.50 m
g (AT') 0.34°C 0.040°C 0.19°C
IrI., Strip Chart
Recorder vs.
Bathy Systems
Digitizer:
a{aDp') z2.0m 8.5 m 1.50 m
a{AT') 0.07°C 0.025°C 0.034°C
grr (4D')=0r1g (AD'") lL.0m 4.0 m 7.00m
orp (AT')=o17r (AT") 0.27°C 0.0l5°C 0.15°C

Contributions to the random error by the strip chart

recorder and STD.

Table 1 {Seaver and Kuleshov)



THECRY
Depth, Temperature,
Maximum Maximum Maximuamn
Cause Error Error o {AD") Remedy
Probe nose 7.0m 4.6 m Trip boundary layer
roughness at 700 m at nose front
Probe nose/ 1.6 m 1.1 m Quality control and
wire wt. 0.36% 8.8 m 6.2 m random weight checks
variations 2.0% at
750 m
Non-vertical - ! - Design of probe
trajectories shape; rotation
Thermistor 5m .025°C .3.5m Note thermistor batch
variability (18° waterx) number and calibration
25 m .025°C 17.7 m from manufacturer
(4° water)
[2N(£\D')2] %
g = | ——
max N
XBT probe random errors.
Table 2 (Seaver and Kuleshov)
Variable Improvement Accuracy
Define, remove systematic 4 mat 800 m
Depth erreorxr. Reduce random
error. 0.5%
Record thermistor
Temperature calibration. Provide 025°C
digital interface to '
XBT recorder.
Salinity 8-8 relation -- .02%/ .4,
MODE area.
XS5BT ?
Dvnamic Using the 8-8 relation
ﬁei ht (POLYMODE area} between 8%
g 100 and 800 db.
Between 500 and 1500 db: 5%
3.9 db in depth, .0067°/,, 08 cm

salinity, and .028°C.

Dynamic “h
Table

eight accuracy of XBT probes.
3 (Seaver and Kuleshov)
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XBT ACCURACY (continued)

paper by Seaver and Kuleshov entitled
"Experimental and theoretical XBT error."

A comment is necessary on the mixed-
layer. Between winter and summer in the
POLYMODE area the mixed layer temperature
changes by 6°C. From equation (3) this
represents a change in fall rate of 0.126
m/sec, or a displacement of the theoretical
error curve of 1.9 m from summer to winter,
and could explain the variability between
the experimental results of Figure 1 above
200 m. This introduces the thought of a
"Mathews Tables" type of correction (geography
and season) for fall rate and depth, similar
to the correction for sound velocity and
depth in echo sounding.

Finally, the XBTs' potential accuracy
in oceanography is summarized in Table 3.

If the XBT systematic error were confirmed
and removed and the random error reduced,

its error in depth could be reduced to v m
or 0.5%, the 95% confidence limits on the
mean experimental error. There is evidence
(Georgi et al., POLYMODE News No. 71} that
by noting the thermistor batch number and
calibration from the manufacturer and using

a digital intexrface to the XBT bridge circuit
output, the temperature-axis error could be
improved to .025°C. This accuracy is com-—
parable to the aggregate of the STDs now in
use (Scarlet, 1975). The use of the potential

temperature-salinity relation between 100
and 800 db in the MODE region is good to
.02°/,, salinity, and would introduce an

8% error in dynamic heights, sufficient to
define the dynamic topography {Scarlet, MODE
Hot Line News No. 57; Fofonoff, MODE Hot
Line News No. 43). Also, Sippican is
developing an expendable temperature-salinity
probe (XSBT) with the addition of a thermistor
to their expendable sound velocimeter. It
is premature to estimate what the salinity
resolution will be. However, between 500
and 1500 db in the MODE region systematic
errors of 3.9 db in depth, .0067°/,,
salinity, and .029°C in temperature intro-
duced a 5% error in dynamic height (Scarlet,
private communication, 1974). It is for-
seeable that an expendable bathythermograph
with salinity will be available with the
accuracy of the aggregate of the STDs now

in use,

References

Flierl), G. and A. Robinson (1977) XBT
measurements of thermal gradients in
the MODE eddy. J. Phys. Oceanogr.,
7¢2), 300-302.

Scarlet, R. (1975) STDs in MODE -- A Grab
Bag of Calibration Problems: The Results.
Proceedings of the 3rd 5TD Conference,
Plessey Environmental Systems (Suppl.}.

Schlichting, H. (1955) Boundary Layer Theory.
McGraw-Hill, New York.

AN EXAMPLE OF THE LAGRANGIAN MASS TRANSPORT
BY FINITE AMPLITUDE ROSSBY WAVES ({(continued)

particle obtained for a given initial position
of the particle, xg at t=0. For the present
problem, (12} is intrinsic nonlinear, and a
numerical integration is necessary to obtain
the particle motion along each Q-line. The

only exception is the straight constant
bl -7

2L3' 2L
where the velocity takes on a rather simple

Q-line at y = , etc., (Figure 8),

form, We will focus on the line at y = f%;'

along this line, the fluid motion is strictly
east-west, and (12} reduces to

dx/dt = Y504 sin[Kl(x+cxt)]

where (4) is used. Changing the variable,
E' = Kl(x+cxt). and integrating the above
equation over one full cycle, one has

t

(1/Kje) 727 Qg /(14 (Lyy /e,) sing’]
0

(@n/xy) (21292 7%,

{(continued page 10}
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AN EXAMPLE OF THE LAGRANGIAN MASS TRANSPORT
BY FINITE AMPLITUDE ROSSBY WAVES (continued)

in which the initial condition x = 0 at
t = 0 is assumed, The total distance that
the particle traverses over one wave cycle

is x = (Zﬂ/Kl) - cxt. Thus, the average
Lagrangian particle speed in one cycle is
just

K _ .2 _ p2,20Hs _

t_(cx szo} cx

2.2
—L2¢°/2cx for cx>>L2\bo .

The second result may be compared with the
Stokes drift U, obtained earlier. One can
also see that for Loy, = cy the particle
speed eguals the phase speed.

In conclusiocn, the above result can
be extended to three or more non-interacting
Rossby waves, and more complicated patterns
of the trapped mass may be constructed. The
method for computing the Lagrangian motion by
following the potential vorticity lines can
be applied to the fully interacting Rossby
wave field as well. A generalization of
the method to a slightly viscous f£luid also
appears possible. These possibilities are
being explored.
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Temperature vs. depth profiles for 2 XBTs taken in the same location
66 minutes apart, at the beginning and end of an STD drop.

Figure 2 (Seaver and Kuleshov)



Viscosity vs. temperature
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103 V(35°/40) =V (30°/50)=.01x20"°
Kinematic
viscosity li2
T+ 1l a
vzx 1068
(m*/sec)
+1.0
L [ [ L T
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Vs 7 D
Probe Reynolds number rag
5 Y | 10? Reynolds number
3 3% 10 {0 mRe:

3 Kinematic viscosity

{Relative vertical positions of the
curve segments not necessarily correct)

a) Kinematic visceosity vs. temperature;
b) terminal velocity vs. viscosity (from
Schlichting, 1955j).

Figure 3 (Seaver and Kuleshov)



(TeoT3oYr0d&y) G0 =

burTeaasp - I0xx3 yadep TeoTISIOBUL —h—

(enTea TEN3OR)} GT°0 =

butTesaep - aoxxe yadep TeoTl2xcyL —l-

zZ
_lammgmmo. = JOIID
*due} D,GZ0°0+ I0F Ioxxs yjdeg-—o-—

(u) y3zdap 08
-

(aoyssTny pue xsarag) p =2Inbta

aqoxd (- W 0¢/ SYI x03 JudwrIadxo
pue Axcsyl woxzy yadsp °sa zoxxe yidep uesy

uesu Tejuswtaedxs
///// Y3 U0 SITWIT SOUIPTIUOD | ——-—==

Joxxe STXe *duldl D,GZ0 "+
— A 10 pPe3oaII00 g AsAIng 1juswTISAXT —e—

AN N Iolel Axepuncq JFuSTNGING IO0T
~ // UOT3INDIACD berip--osTa--dwsel :A109yl —@—

> N Teker Aiepunoq jusTnginiy
//// N IeuTwe] I0I UOTIDDIAOD

\ beip--osTA-*dwel) :AI00UL —H—
RSN _ | |

34 Te303

M oxtm 7

IM TERO]

Iog
JM 9ITHM

OOL Q07

O — — O mm g ——

O

loz-

-+ m__l

() @V
..O‘_l.

S
PIEpPURIS  IAX

L G-

- S+




{aoyseTny pue IsaEa5) § 2anbrd

‘(67 "ON SMBN @AOWATOd ‘TTSMOQoH) @qoxd
(- w 0087 ay3 x03 yidep *sSA xolIe yidep IaX

J0xa® STXE -dulal D,SZ0°0
I0J peloeIIoD uesw TeluswiIadxy
& 87 = 1M SITM ULTSSP
{10110 UOT3IDDIIOD BUTT99Ip :AIOBUL

$0°8€ = 34 9ITa TedTIaylcdAy

.
—h—

a {I0119 UOTIODIICO HUTTS2I8P : AICSYL —9—
——

—

s
¥~
~—

ueslt 9yl uo
SITUTT IDUSPTIUCD 354

)
Q
o

Je w 0QT=d
e g = ave i1q4g togTa-dusy :AI09UT

(TToMOdOKH) X0XID
uesul grs-Ig¥ : TRiuswrasdxy

" {u)

ALS,_L9X
008l o0 Q¥ X0 969
“—t t } % + { Y i ; p——
(u) yadsp
1+ 0T
{ur)
T% {(.avlo
-+ O.T

sgoooxd BUTZT3THTP TeEnuUPW 05
pue I9pIOdSI Jdg¥ IOJ PII0DDIIOD H —e— T

L9=N {QLS-I9X 0 —¥—

o
O
W,



™
o

=31.08

9,
=)
- I

§ BaBbiRciaanin g
|
o

&
!
EEkbBaRE g
[
)

5 B

By
—31,08
-{0.72

Cx i

—0.36
=0,0
d-. 36

a) Streamlines and b) lines of constant potential vorticity for ¢
given by equation (4) with Ly = 0 = Ky and Yo > Kicg,/(D singjsingd,).
The areas within the enclosed contour near the center and those
at the four corners in (b) represent the trapped masses; the
o patterns are periodic in space and move to the west. At the right
ke) side, values of streamline contours are under Y (a), potential
vorticity contours are under Q(b), and background planetary
vorticity is under By(a,b). All values are dimensionless and
are chosen for the convenience of the presentation.

Figure 6 (Shen)
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Caption same as Figure 6, except Ly # 0 and Ky # 0.
The dash lines in (b) are hand drawn contours.

Figure 7 (Shen)
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Figure 8 (Shen)
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