Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes

Sune G. Nielsen1,2*, Gene Yogodzinski2, Julie Prytulak3, Terry Plank4, Suzanne M. Kay5, Robert W. Kay5, Jerzy Blusztajn1,2, Jeremy D. Owens1,2, Maureen Auro1 and Tristan Kading1

1NIRVANA laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
2Dept. of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
3Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC, USA
4Department of Earth Science and Engineering, Imperial College London, UK
5Lamont Doherty Earth Observatory, Columbia University, NY, USA
6Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA

* corresponding author: snielsen@whoi.edu
Abstract - Sediment transport from the subducted slab to the mantle wedge is an important process in understanding the chemical and physical conditions of arc magma generation. The Aleutian arc offers an excellent opportunity to study sediment transport processes because the subducted sediment flux varies systematically along strike (Kelemen et al., 2003) and many lavas exhibit unambiguous signatures of sediment addition to the sub-arc mantle (Morris et al., 1990). However, the exact sediment contribution to Aleutian lavas and how these sediments are transported from the slab to the surface are still debated. Thallium (Tl) isotope ratios have great potential to distinguish sediment fluxes in subduction zones because pelagic sediments and low-temperature altered oceanic crust are highly enriched in Tl and display heavy and light Tl isotope compositions, respectively, compared with the upper mantle and continental crust.

Here, we investigate the Tl isotope composition of lavas covering almost the entire Aleutian arc as well as sediments outboard of both the eastern (DSDP Sites 178 and 183) and central (ODP Hole 886C) portions of the arc. Sediment Tl isotope compositions change systematically from lighter in the Eastern to heavier in the Central Aleutians reflecting a larger proportion of pelagic sediments when distal from the North American continent. Lavas in the Eastern and Central Aleutians mirror this systematic change to heavier Tl isotope compositions to the west, which shows that the subducted sediment composition is directly translated to the arc east of Kanaga Island. Moreover, quantitative mixing models of Tl and Pb, Sr and Nd isotopes reveal that bulk sediment transfer of ~0.6-1.0% by weight in the Eastern Aleutians and ~0.2-0.6% by weight in the Central Aleutians can account for all four isotope systems. Bulk mixing models, however, require that fractionation of trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd in the Central and Eastern Aleutians occurs after the sediment component was mixed with the mantle wedge. Models of Sr and Nd isotopes that involve sediment melting require either high degrees of
sediment melting (>50%), in which case trace element ratios like Ce/Pb, Cs/Tl, and Sr/Nd of Aleutian lavas need to be produced after mixing with the mantle, or significant fluid additions from the underlying oceanic crust with Sr and Nd isotope compositions indistinguishable from the mantle wedge as well as high Sr/Nd ratios similar to that of low (<20%) degree sediment melts.

Thallium isotope data from Western Aleutian lavas exhibit compositions slightly lighter than the upper mantle, which implies a negligible sediment flux at this location and probably involvement of low-temperature altered oceanic crust in the generation of these lavas. In general, the lightest Tl isotope compositions are observed for the highest Sr/Y ratios and most unradiogenic Sr and Pb isotope compositions, which is broadly consistent with derivation of these lavas via melting of eclogitized altered oceanic crust.
1. Introduction

Volcanic arcs are the surface expression of plate subduction, which controls the transfer of volatiles and other chemical heterogeneities into Earth’s mantle. Subduction zones are also the centers of the most pronounced natural hazards on Earth due to their frequent volcanic eruptions as well as great earthquakes. It is therefore important to understand the physical and chemical mechanisms that are responsible for generating volcanic arcs.

Material erupted from arc volcanoes are derived from two principal sources: The subducting slab and the mantle wedge located between the slab and arc crust. While the mantle wedge often is considered to consist of relatively homogenous depleted peridotite, the subducting slab is highly heterogeneous, and it is uncertain which portions of it are released into the volcanic arc and which portions are ultimately subducted into the deep mantle (Ryan and Chauvel, 2014). The subducting slab contains sediments, variably altered oceanic crust (AOC), ultramafic cumulates and mantle rocks, some of which may be substantially hydrated. Uncertainties associated with determining mass fluxes from the slab make it difficult to construct models of the distribution and origin of chemical and physical heterogeneities in the deep Earth and thereby understanding mantle geodynamics and terrestrial volatile budgets.

Sediments are known to contribute to many arc lavas (Carpentier et al., 2008; Morris et al., 1990; Plank, 2005; Tera et al., 1986), but their exact fluxes from the slab are particularly difficult to quantify, in part because they likely represent a very small fraction of the material contained in arc lavas (Ben Othmann et al., 1989; Kay, 1980; Thirlwall et al., 1996; White and Dupré, 1986). Sediments may also be scraped off the slab into forearc accretionary complexes along some margins (Von Huene and Scholl, 1991). At the same time, sediments often contain very high concentrations of many trace elements compared with the mantle wedge (Ben Othmann et
al., 1989; Plank and Langmuir, 1998), which could enable detection of even minor sediment additions to arc lavas. However, many of these trace elements may be strongly affected by retention in accessory mineral phases that likely exist in the slab (Hermann and Rubatto, 2009; Johnson and Plank, 1999; Skora and Blundy, 2010), which further complicates the assessment of sediment contributions to volcanic arcs.

The Aleutian arc provides an excellent opportunity to study geochemical fluxes from slab to surface because previous studies have shown that subducted marine sediments unambiguously contribute to most Aleutian lavas (Kay and Kay, 1994; Morris et al., 1990; Plank, 2005; Sun, 1980; Tera et al., 1986). In addition, there is a systematic decrease in subduction rate from east to west while only relatively minor variations occur in the overall sediment thickness subducted along the main arc (e.g. Kelemen et al., 2003). Thus, the sediment subduction flux is thought to be highest in the east and almost absent in the westernmost portions of the arc (Kay and Kay, 1994). The question, however, is whether the sedimentary flux beneath the arc is also reflected in the magnitude of the sediment component in the arc volcanic rocks and, hence, if the fraction of sediment removed from the slab to the arc is independent of total sediment subduction flux. Several studies have also suggested that the chemical characteristics of the subducted sediment are likely to change along the arc from thick continental detrital in the east (turbidites of the Zodiac and Surveyor fans) to abyssal pelagic clays in the central Aleutians (Kay and Kay, 1988; Kay and Kay, 1994; Sun, 1980; Yogodzinski et al., 2010), which should be manifested in the isotopic characteristics of Aleutian lavas. However, this trait has yet to be confirmed, partially because no direct measurements of pelagic sediments outboard of the Central Aleutians have been conducted to date.
An additional interesting feature of the Aleutian arc is the presence of lavas that may reflect melting of eclogitized subducted oceanic crust due to their high silica, high Sr/Y, and unradiogenic Pb and Sr isotope compositions (Kay, 1978; Yogodzinski et al., 2015; Yogodzinski et al., 1995; Yogodzinski et al., 2001). These lavas are predominant in the Western part of the arc with Miocene-age examples from Adak Island (Kay, 1978) giving rise to the name of the rock type adakites (Defant and Drummond, 1990).

Here we use thallium (Tl) isotope ratios to assess sediment fluxes to the Aleutian arc. Thallium isotopes have great potential to quantify fluxes from the slab because modern pelagic sediments are highly enriched in Tl and display isotopic compositions that are heavier than the isotopically homogeneous upper mantle (Nielsen and Rehkämper, 2011; Prytulak et al., 2013; Rehkämper et al., 2004). Oceanic crust altered by hydrothermal fluids at low temperatures (<100°C), on the other hand, display light Tl isotope compositions coupled with high Tl concentrations (Coggon et al., 2014; Nielsen et al., 2006c). Therefore, the diversity of previously inferred source regions of the Aleutian arc provides an ideal setting to employ Tl isotopes as a slab component tracer.

2. Thallium isotope background

Thallium is a trace metal that displays both lithophile and chalcophile behaviors. In geochemical studies, it is often grouped with the alkali elements K, Rb, and Cs due to their similar ionic radii and charge (Heinrichs et al., 1980; Shannon, 1976; Shaw, 1952). However, a recent study found that Tl is compatible in mantle sulfides and therefore has a higher bulk partition coefficient during mantle melting than do the alkali metals (Nielsen et al., 2014). Nonetheless, Tl is incompatible during mantle melting and is enriched in the continental crust
Thallium has two stable isotopes with masses 203 and 205. Thallium isotope compositions are reported relative to the NIST SRM 997 Tl standard in parts per 10,000 such that

$$
\varepsilon^{205}\text{Tl} = 10,000 \times \left(\frac{^{205}\text{Tl}_{\text{sample}}}{^{203}\text{Tl}_{\text{sample}}} \right) \left(\frac{^{203}\text{Tl}_{\text{SRM 997}}}{^{205}\text{Tl}_{\text{SRM 997}}} \right)
$$

It is thought that the small relative mass difference between the two isotopes prevents extensive isotopic fractionation in all but a select few environments, which may be linked to nuclear volume isotope fractionation that occurs in chemical reactions primarily involving both oxidation states of Tl, +1 and +3 (Nielsen and Rehkämper, 2011; Schauble, 2007). Trivalent Tl, however, is not likely to be thermodynamically stable in the igneous environments including the mantle given that Tl dissolved in oxic seawater is exclusively univalent (Byrne, 2002; Nielsen et al., 2009). The univalent Tl redox state of the mantle renders the average upper mantle homogenous with respect to Tl isotopes ($\varepsilon^{205}\text{Tl}_{\text{MORB}} = -2 \pm 0.5$; (Nielsen et al., 2006b)) because no significant isotope fractionation is expected during melting or fractional crystallization (Schauble, 2007). In contrast, hydrothermally altered oceanic crust and metalliferous marine sediments are highly variable with respect to Tl isotope ratios and concentrations.

Enrichment of Tl in marine sediments is primarily due to adsorption onto authigenic manganese (Mn) oxides (Hein et al., 2000; Nielsen et al., 2013; Rehkämper et al., 2004; Rehkämper et al., 2002) that precipitate ubiquitously from oxic seawater onto sedimentary particles. This adsorption process is responsible for heavy Tl isotope compositions detected in pelagic clays of $\varepsilon^{205}\text{Tl} > 2$ (Rehkämper et al., 2004) and is probably linked to surface oxidation of Tl during adsorption to Mn oxides (Nielsen et al., 2013; Peacock and Moon, 2012). Rates of Mn oxide precipitation are very slow, thus the abundance of Mn oxides in sediments generally
inversely correlates with sediment depositional rates. This process renders sediments deposited close to continents or underneath highly productive water masses depleted in Tl associated with Mn oxides and consequently such sediments are characterized by ε^{205}Tl \sim -2, akin to the continental crust and the upper mantle (Nielsen et al., 2006b; Nielsen et al., 2005; Nielsen et al., 2006c).

In the basaltic oceanic crust, Tl enrichment occurs within the upper few hundred meters of the oceanic crust during the circulation of seawater at low temperatures (<100°C). Thallium enrichment may be related to biologically mediated pyrite precipitation (Coggon et al., 2014) or alternatively to Tl partitioning into alkali-rich clay minerals that also form during low temperature alteration (Nielsen et al., 2006c). Analysis of Tl concentrations and isotope compositions in low-T altered crust from IODP Hole U1301B, Deep Sea Drilling Project (DSDP) Hole 417D and DSDP/Ocean Drilling Project (ODP) Hole 504B showed high Tl concentrations (30-1000 ng/g) and light Tl isotope ratios (down to ε^{205}Tl \sim -15; (Coggon et al., 2014; Nielsen et al., 2006c)). Conversely, the sheeted dike portion of the oceanic crust is depleted in Tl (<1 ng/g; (Nielsen et al., 2006c)), which is the result of hydrothermal fluid circulation at high temperature (300-400°C) near the ridge axis that drives extraction rather than deposition of Tl. This process does not appear to cause isotope fractionation, however, as sheeted dikes have ε^{205}Tl similar to MORB glass (ε^{205}Tl \sim -2 ± 0.5; (Nielsen et al., 2006b; Nielsen et al., 2006c)).

The Tl isotope systematics of marine sediments and oceanic crust combined with previous studies of the Aleutian arc allow some general predictions to be made about what Tl isotope compositions to expect in different portions of the Aleutian arc. Sediment fluxes from the slab have been inferred to account for the majority of the observed trace element and isotopic
enrichments in the eastern and central portions of the arc (Kay et al., 1978; Kelemen et al., 2003; Yogodzinski et al., 2010). The turbidites of the Surveyor and Zodiac fans (Fig. 1) supply primarily detrital sediments to the eastern portion of the arc, while the Central Aleutians are sufficiently distal to any continent that slowly accumulating pelagic clays become the dominant sediment type in that region. Given that Tl isotope compositions of detrital sediments ($\epsilon^{205}\text{Tl} \sim -2$) and pelagic clays ($\epsilon^{205}\text{Tl} > 0$) are distinct, we might expect the Central Aleutians to display somewhat heavier Tl isotope compositions than do the Eastern Aleutians. The Western Aleutians, on the other hand, are often inferred to have almost negligible sediment input. Instead, adakitic lavas that may be derived from melting of the down-going oceanic crust are common (Yogodzinski et al., 2015; Yogodzinski et al., 2001). If the upper volcanic portion of the oceanic crust that has previously been hydrothermally altered at low temperatures takes part in these melting processes, then Tl isotope compositions of $\epsilon^{205}\text{Tl} < -2$ are expected.

3. Samples

3.1. Aleutian lavas

Lava samples from the east and central Aleutians (from Okmok, Westdahl, Moffett and Kanaga volcanoes) were originally chosen to explore Th-Nb-REE variations with high quality ICP-MS analyses, and are the same as those published and discussed in Plank (2005) and Kay and Kay (1994). This subset of Aleutian volcanic rocks form a tight linear trend in Th/La-Sm/La that were interpreted to derive from simple binary mixing between mantle and a sedimentary component that is nearly identical to the DSDP 183 sediment average. These samples thus show clear evidence for subducting sediment in their source, largely of continental detrital (high Th/La) origin.
Western Aleutian samples were dredged from locations west of Buldir Volcano, which is the westernmost emergent volcano in the Aleutian arc (Fig. 1). The samples are from volcanic cones of the Ingenstrem Depression, a rectangular-shaped structural depression immediately west of Buldir, and from the Western Cones area, which is located 200-300 km further west. Ages of the samples are uncertain, but all were dredged from constructional volcanic edifices which, based on available dating, appear to be no more than 500-600 ka years old (Yogodzinski et al., 2015). Petrographic observations indicate that the samples are fresh and apparently unaffected by weathering or other alteration processes. Additional details, including geochemical methods, complete whole-rock compositions, petrographic descriptions and photomicrographs are provided in Yogodzinski et al. (2015).

3.2. Sediment samples

Thallium isotope compositions and concentrations were determined for discrete sediment samples from Deep Sea Drilling Program (DSDP) Sites 178 and 183 and Ocean Drilling Program (ODP) Hole 886C (Fig. 1). Sites 178 and 183 are both located outboard of the eastern portion of the Aleutian arc with DSDP Site 178 located in the Gulf of Alaska and therefore slightly to the east of the Aleutian islands, but representative of sediments of the Surveyor Fan. The samples analyzed here from DSDP 178 have previously been investigated for both trace elements and some radiogenic isotope ratios (Plank and Langmuir, 1998; Vervoort et al., 2011). Samples from DSDP 183 are new samples that were obtained from core depths adjacent (2cm) to the samples that had previously been used to assess the composition of subducted sediment in the Aleutians (Kay and Kay, 1988; Plank and Langmuir, 1998; Vervoort et al., 2011; Von Drach et al., 1986).
Sediment samples from ODP Hole 886C were also obtained, which is located outboard of the Central Aleutians on the abyssal plain at 44°41.384'N, 168°14.416'W. The sediment thickness in this location is ~70m with an estimated maximum age of ~80Ma (Snoeckx et al., 1995). However, the upper ~50m were deposited in the last 10 million years while the bottom ~20m are characterized by several hiatuses and very slow deposition rates (Snoeckx et al., 1995). We selected 15 samples at approximately evenly distributed intervals (Table 1). Each sample was selected by visual inspection of core barrels in order to obtain the most representative samples from each section. The types of sediment analyzed range from diatom ooze to dark brown pelagic clay. Several ferromanganese (Fe-Mn) nodules are also found in Hole 886C and because such nodules often contain large enrichments of many trace metals we also selected one of these here (886C 6H-3 120-122cm) to assess the effect on the trace element budget in the average subducted sediment composition. A single sample from the uppermost altered basaltic basement at Site 886B (Table 1) was also obtained in order to potentially assess the composition of the hydrothermally altered basaltic crust in the Central Aleutians.

4. Methods

4.1. Sample preparation and chemical separation of Tl, Sr, Nd and Pb

The eastern and central Aleutian lavas were powdered as part of the study in Kay and Kay (1994) and Plank (2005) in an alumina ball mill to eliminate Nb-Ta contamination in samples previously powdered in tungsten carbide. Sediment samples from ODP Hole 886C were dried in an oven at 80°C overnight before powdering in an agate swing mill. The swing mill was cleaned with high purity quartz before and after each run, triple rinsed with deionized water and air dried to avoid cross-contamination. Lavas from the Western Aleutians consist of submarine dredges
primarily from the Ingenstrom depression (~ 52°30'N, 175°W) were obtained as rock fragments of ~50g. Due to potential alteration by interaction with seawater and possible contamination with Fe-Mn minerals precipitated from seawater, we did not powder these samples. Instead each sample was fractured into mm-sized chips. These were handpicked under a binocular microscope to select pieces devoid of alteration and Fe-Mn minerals. The rock chips were then ultrasonicated in MQ water to remove any dust or superficial contaminants. Additional tests were also performed on a subset of the Western Aleutian lavas in order to investigate if alteration or Fe-Mn minerals were present in the otherwise visually pure rock chips. These tests involved separating three additional aliquots of rock chips. These three splits were 1) dissolved without further preparation, 2) ultrasonicated for 1 hour in 1M distilled HCl prior to dissolution and 3) ultrasonicated for one hour in 6M distilled HCl prior to dissolution. For two of the 1M HCl leachates sufficient Tl was present for Tl isotope analysis.

Chips as well as powdered samples (0.1-0.3g) were dissolved in a 1:1 mixture of concentrated distilled HF and HNO₃ on a hotplate overnight. Following this, they were dried and fluxed several times with concentrated distilled nitric acid and hydrochloric acid until the fluorides that formed during the first step could no longer be seen. Separate powder splits of the Central Aleutian lavas were dissolved for Tl, Sr, Nd and Pb isotopes. Following complete dissolution of fluorides, samples were dried on a hotplate and taken up in appropriate acid matrices for separation of Tl, Sr, Nd and Pb, respectively. Isolation of Tl, Sr, Nd and Pb from sample matrix followed previously published ion exchange chromatographic methods (Baker et al., 2009; Jackson and Hart, 2006; Lugmair and Galer, 1992; Nielsen et al., 2004; Rehkämper and Halliday, 1999; Scher and Delaney, 2010). Strontium was separated and purified from samples using Sr-Spec (Eichrom® Technologies, Inc.) resin. Neodymium chemistry was done
with LN resin (Eichrom® Technologies, Inc.) following methods described in Scher and Delaney (2010). Lead chemistry utilized the HBr-HNO$_3$ procedure of Lugmair and Galer (1992) and Abuchami et al. (1999). The Tl separation procedure has been shown to produce quantitative yields (Nielsen et al., 2004; Nielsen et al., 2006a; Rehkämper et al., 2004) and these can therefore be converted to Tl concentrations. Total procedural Tl blanks during this study were <3pg, which is insignificant compared to the indigenous Tl processed for the samples of >3ng. Total chemistry blanks for Sr, Nd and Pb were 60pg, 5pg and 50pg, respectively, which is significantly less than the minimum amounts processed of 15μg, 1μg, and 200ng, respectively.

4.2. Determination of Tl isotope compositions and concentrations

The Tl isotope compositions were determined at the WHOI Plasma Mass Spectrometry Facility using a Thermo Finnigan Neptune multiple collector inductively coupled plasma-mass spectrometer (MC-ICPMS). Previously described techniques that utilize both external normalization to NIST SRM 981 Pb and standard-sample bracketing were applied for mass bias correction (Nielsen et al., 2004; Rehkämper and Halliday, 1999). Due to the quantitative yields of Tl from the column chemistry procedure, Tl concentrations were determined by monitoring the 205Tl signal intensities of the samples during the isotopic measurements. A known quantity of NIST SRM 981 Pb was added to the sample Tl and the measured 205Tl/208Pb ratios were then converted directly into Tl abundances. Previous studies (Nielsen et al., 2007; Nielsen et al., 2006b; Nielsen et al., 2006c) that utilized the Nu Plasma MC-ICPMS applied a 5% correction that assumed Tl ionises 5% more efficiently than Pb. However, we have not been able to verify this behavior for the Neptune and thus do not apply this correction here. The uncertainty on the Tl concentration measurements is likely on the order of ±10% (2sd) (Prytulak et al., 2013).
During the course of this study we evaluated the external Tl isotope reproducibility with repeat analyses of USGS reference basalt powder BHVO-1, which was found to have an isotope composition of $\varepsilon^{205}\text{Tl} = -3.5 \pm 0.5$ (2sd) (Nielsen et al., 2015). Although individual Tl isotope analyses have internal counting statistical uncertainties of about 0.07-0.15 $\varepsilon^{205}\text{Tl}$-units (1se), we apply the external 2sd reproducibility of 0.5 $\varepsilon^{205}\text{Tl}$-units to all unknowns because this uncertainty accounts for all possible sources of error including sample dissolution, ion exchange chromatography and mass spectrometric procedures (Nielsen et al., 2004).

4.3. Determination of Sr, Nd and Pb isotope compositions

Strontium, Nd and Pb isotopic measurements were performed on a Thermo Finnigan Neptune MC-ICPMS at the WHOI Plasma Mass Spectrometry Facility. For Sr isotope measurements, isobaric interferences of ^{87}Rb on ^{87}Sr and ^{86}Kr on ^{86}Sr were corrected for by monitoring ^{82}Kr, ^{83}Kr and ^{85}Rb. Mass bias was corrected for with the exponential mass fractionation law assuming $^{86}\text{Sr}/^{88}\text{Sr} = 0.1194$, with a secondary correction to the Sr standard NIST SRM 987 ($^{87}\text{Sr}/^{86}\text{Sr}=0.710214$) (Jackson and Hart, 2006). These secondary corrections were always smaller than 40 ppm. The internal precision for Sr isotopic measurements was 8-14 ppm (2se), while repeat measurements of the NIST SRM 987 standard yielded external precision of ~25 ppm (2se).

For Nd isotope measurements, ^{147}Sm and ^{149}Sm were monitored to correct for the ^{144}Sm interference on ^{144}Nd. The interference corrected Nd isotope data were internally corrected for mass bias using the exponential mass bias law, assuming $^{146}\text{Nd}/^{144}\text{Nd} = 0.7219$, with a secondary correction to JNd1-1 ($^{143}\text{Nd}/^{144}\text{Nd}=0.512104$, (Tanaka et al., 2000)). These secondary corrections
were always smaller than 20 ppm. The internal precision of individual analyses was 8-12 ppm (2se) and the external precision, assessed through repeat analyses of JNd1-1, was ~15 ppm (2se).

Lead isotope compositions were externally normalized for instrumental mass bias relative to $^{205}\text{Tl}/^{203}\text{Tl} = 2.3871$ for the NIST SRM 997 Tl standard and were also corrected using measurements of NIST SRM 981 using values from Todt et al. (1996). The Pb isotopic ratios have internal precision of 15-60 ppm for $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, and $^{208}\text{Pb}/^{204}\text{Pb}$. External reproducibility was assessed through repeat measurements of NIST SRM 981 and range from 17 ppm (2se) for $^{207}\text{Pb}/^{206}\text{Pb}$ to 120 ppm (2se) for $^{208}\text{Pb}/^{204}\text{Pb}$.

The well-characterized USGS rock standard BHVO-1 was dissolved, processed, and analyzed along with unknowns. Results for Pb, Sr and Nd isotopic measurements of the BHVO-1 rock standard (Table S1) are within error of those reported in Weis et al. (Weis et al., 2006; 2005).

4.4. Trace element concentration analyses

The Eastern and Central Aleutian lavas were digested and analyzed by ICP-MS, as described and given in Plank (2005). DSDP 183 and 178 sediments were analyzed by INAA, DCP and ICP-MS sediments as described and presented in Kay and Kay (1988), Plank and Langmuir (1998) and Vervoort et al (2011), respectively. The ODP 886C sediments were analyzed by ICP-MS and ICP-ES at Lamont-Doherty Earth Observatory as part of this study, following procedures described in Rabinowitz et al (2015). Calibration standards and data quality are as reported in Rabinowitz et al. (2015). Notably, thallium concentrations were determined to within 3% relative standard deviation based on three separate digestions of the Indian Ocean Radiolarian Clay (407 ± 11 ng/g).
5. Results

Thallium isotopic variation in the Eastern and Central Aleutian Islands (Unimak to Kanaga, Fig. 1) ranges from $\varepsilon^{205}\text{Tl} = -3.8$ to $+2.6$ (Table 2). The vast majority of samples, however, have values that are within error of or heavier than the average upper mantle and continental crust ($\varepsilon^{205}\text{Tl} = -2$). The largest spread in Tl isotope compositions are found in samples from Adak and Kanaga islands whereas samples in the eastern Aleutians tend to cluster around the value for average upper mantle and continental crust ($\varepsilon^{205}\text{Tl} = -2$). Samples in this study from Adak and Kanaga islands also cover the largest range in age (Kay and Kay, 1994), which may partially account for the larger Tl isotope diversity. For the most mafic lavas ($\text{SiO}_2 < 54\%$), Tl concentrations range between 25 and 97 ng/g, which is significantly enriched compared to 2-20 ng/g observed for most MORB (Jenner and O'Neill, 2012; Nielsen et al., 2014).

Lavas from the Western Aleutians are characterized by lighter Tl isotope compositions than the Central and Eastern Aleutians with most samples exhibiting $\varepsilon^{205}\text{Tl} = -3.4$ to -1.5. Two samples have somewhat heavier Tl isotope compositions close to $\varepsilon^{205}\text{Tl} = 0$ while one sample is very light at $\varepsilon^{205}\text{Tl} = -9.3$ (Table 3). Thallium concentrations in the Western Aleutian lavas overlap with those recorded for basaltic samples from the Eastern and Central Aleutians, but also extends up to 470 ng/g for the very light sample. It is important to note that repeat analyses of Western Aleutian lavas often showed a range of concentrations (Table 3). Some of this variation can possibly be ascribed to the presence of contamination from Fe-Mn minerals or alteration via interaction with seawater. However, a large fraction of this variation is clearly unrelated to these secondary processes as the four different analyses of sample TN182_07_002 varies by more than a factor of five (Table 3). The most likely explanation for the large concentration differences is
that the Western Aleutian rocks are crystalline with a mixture of mineral grains up to several mm in diameter and groundmass (Yogodzinski et al., 2015). Each Tl isotope analysis was performed on separately handpicked rock chips, not from a homogenized rock powder. Most igneous minerals (olivine, pyroxene, plagioclase, amphibole) likely contain very low Tl concentrations (Adam and Green, 2006) and, hence, it is expected that samples are heterogeneous on the mm-scale with respect to Tl concentrations. With this caveat in mind, we emphasize that element ratios involving Tl for Western Aleutian samples likely have uncertainties that approach a factor of two. All other Tl isotope analyses were performed on homogenous rock powders and are therefore not prone to effects of heterogeneity.

Sediments outboard of the Aleutian arc display Tl isotope compositions from ϵ^{205}Tl = -3.1 to +10.9 (Table 4), while Tl concentrations also vary strongly between 55 to ~20000 ng/g. Although most samples fall in the range from ϵ^{205}Tl = -3 to -1, there is a clear tendency for the most Tl–rich samples to display the heaviest Tl isotope compositions (Fig. 2). In addition, it is evident that samples from ODP Site 886C exhibit, on average, heavier Tl isotope compositions and higher Tl concentrations than do the sediments from DSDP 178 and 183 (Fig. 2), which is clearly related to the high abundance of Fe-Mn minerals in certain sections of ODP Site 886C sediments. Another striking feature of the pelagic sediments from ODP Site 886C outboard of the Central Aleutians is that 206Pb/204Pb and 208Pb/204Pb isotope compositions of many samples are significantly less radiogenic than those found in DSDP Holes 178 and 183 that are further to the east (Table 4). This effect is likely due to the presence of Pb-rich Fe-Mn minerals that precipitate directly from North Pacific seawater, which is thought to have been unradiogenic throughout the Cenozoic (Ling et al., 1997; Ling et al., 2005). In addition, the oldest and most Pb-enriched pelagic sediments in Hole 886C also display very unradiogenic 207Pb/204Pb, which
could indicate Pb inputs to seawater from MORB hydrothermal sources at this location. However, due to the large uncertainties on the sediment ages in the lower portion of ODP Hole 886C (Snoeckx et al., 1995) it is difficult to assess to what extent these sediments contain sufficient Pb to significantly affect the bulk subducted sediment $^{207}\text{Pb}/^{204}\text{Pb}$ isotope composition.

Here we use the trace element concentrations and isotope compositions determined for sediments outboard of the Aleutian Islands to construct weighted average subducted sediment compositions for the eastern and central Aleutians (Table 5). The averages were also weighted by lithological abundance and density (Table 1), which was determined based on sediment descriptions and core barrel photographs (Rea et al., 1993). It is assumed that the sediment pile found at ODP Hole 886C is similar to what has been subducted in the Central Aleutians for the past at least 10 Ma. This assumption is reasonable because the sediment depositional environments as a function of distance from the Aleutian arc in the direction of the plate motion have likely remained relatively constant over this time period. That is, the North Pacific is characterized by relatively high productivity resulting in diatom rich sediments whereas the Central Pacific gyres display low productivity and, therefore, are dominated by abyssal red clays. Below we use the average subducted sediment components to investigate how changing sediment composition along the Aleutian arc affects the composition of erupted lavas.

6. Discussion

6.1. Thallium isotopic variation induced by secondary processes

The Tl isotope compositions and concentrations recorded in volcanic rocks can be modified by a number of syn- and post-eruption processes such as degassing, subaerial aqueous alteration, submarine hydrothermal alteration and submarine precipitation of Fe-Mn minerals on sample
surfaces. In addition, assimilation of wall rock and fractional crystallization prior to eruption could also alter the Tl budget of the original magma if the Tl concentrations and/or isotope compositions of wall rock and crystallizing phases were different from that of the original magma. In the following sections we discuss the potential for these processes to have affected our Tl isotopic data for lavas from the Aleutian arc in order to assess how much Tl isotope variation can be directly linked to inputs from the subducted slab.

6.1.1. Submarine contamination and alteration of Western Aleutian samples

Lavas erupted under submarine conditions are easily contaminated with Tl either associated with clay minerals that form during alteration of the lava (Jochum and Verma, 1996) or due to precipitation of Fe-Mn oxyhydroxides that form ubiquitously in oxic seawater (Nielsen and Rehkämper, 2011). As outlined in section 2, both these components are characterized by very strong Tl enrichments compared with those found in mantle derived melts as well as substantial Tl isotope fractionation (Coggon et al., 2014; Nielsen et al., 2006c; Rehkämper et al., 2004). Thus, even minute amounts of these contaminants may completely alter the Tl concentration and isotope composition of a given sample. In order to eliminate these sources of contamination, we analyzed only rock chips of dredge samples (not powders), which were prepared as described above to eliminate possible effects of seawater-rock interaction. The results of these analyses reveal Tl isotope and concentration patterns for a few samples that could reflect alteration or Fe-Mn mineral contamination. Additional tests were, therefore, conducted on a subset of the samples to further investigate if contamination was significant (Table 3). These tests involved leaching two separate aliquots of chips in 1M HCl and 6M HCl, respectively, during ultrasonication. The results of these tests confirm that one sample (TN182_07_002) had clearly
been affected by minor Fe-Mn mineral contamination. This assessment was confirmed by analysis of both an untreated aliquot of the sample as well as the 1M HCl leachate, both of which showed heavy Tl isotope compositions as would be expected for Fe-Mn minerals (Nielsen et al., 2013; Peacock and Moon, 2012; Rehkämper et al., 2002). It is notable that even though the 1M HCl leachate contained only very small amounts of Tl (2 ng per gram of sample) the exceedingly heavy Tl isotope composition of the leachate ($\varepsilon^{205}\text{Tl} = +9.8$), which is consistent with values found in Fe-Mn crusts (Nielsen et al., 2011; Nielsen et al., 2009; Rehkämper et al., 2002), approximately accounts for the small isotopic shift observed in the unleached samples. The uncontaminated Tl isotope composition of the sample is, therefore, best represented by the leached aliquots both of which display identical values of $\varepsilon^{205}\text{Tl} = -1.8$. We are confident that the leaching process has not induced notable Tl loss or isotope fractionation in sample TN182_07_002 because leaching of an uncontaminated sample (TN182_07_009) yielded a result identical to the untreated sample aliquot (Table 3).

6.1.2. Degassing

Degassing should be expressed as a loss of Tl potentially associated with kinetic isotope fractionation whereby the light Tl isotope would preferentially be lost. Thallium isotope measurements of volcanic fumaroles did not find any systematic enrichment in $\text{^{203}Tl}$ (Baker et al., 2009), suggesting that kinetic Tl isotope fractionation during degassing might be limited. However, these effects have never been investigated for actual rocks, which makes it difficult to predict the magnitude of Tl isotope and concentration effects from degassing.

Given that Tl partitioning during mantle melting is similar to that of Ce (Nielsen et al., 2014), it could be inferred that unusually high Ce/Tl ratios coupled with heavy Tl isotope
compositions might be indicative of significant degassing. However, because Ce/Tl in both sediments and AOC (Ce/Tl ~ 100-400) is much lower than the upper mantle (Ce/Tl ~1100, (Nielsen et al., 2014)) variations in Ce/Tl are not necessarily due to degassing unless Ce/Tl significantly exceeds the mantle value. Except for three samples, all Aleutian lavas display Ce/Tl ratios significantly lower than the upper mantle (Fig. 3). In addition all samples fall within the field expected for mixing between the mantle and sediments or AOC (Fig. 3), which suggests that degassing did not significantly affect Tl concentrations or isotopes in the majority of the samples studied here.

Of the three samples that display significantly higher Ce/Tl than sediments and AOC, one (SAR-17) displays Ce/Tl and ε205Tl within error of the upper mantle, which could be consistent with a melt largely unmodified by addition of slab material. However, Pb isotope ratios in SAR-17 and other samples from this volcano are much more radiogenic (Table 2) than the depleted MORB mantle (Workman and Hart, 2005), which likely reflects the influence of terrigenous sediments (Kay et al., 1978). Alternatively, the low Tl content of this sample may reflect degassing from a lava that either 1) had a starting Tl isotope composition significantly lighter than the normal mantle or 2) did not register any significant Tl isotope fractionation during degassing. The latter interpretation would be consistent with the data of Baker et al. (2009), which showed no systematic enrichment in 203Tl for volcanic fumaroles.

The second sample (TN182_07_005) with Ce/Tl similar to the upper mantle is characterized by ε205Tl significantly heavier than the upper mantle (Table 3), which is consistent with degassing coupled with kinetic Tl isotope fractionation. This conclusion is supported by the chemical compositions of samples TN182_07_009 and TN182_07_005, which were collected in close proximity to one another, being almost identical for all elements except Tl concentrations
and isotopes. It is unclear exactly why Tl isotopes are significantly different for these two samples, but, given the anomalous Tl isotope composition, we infer that TN182_07_005 was likely degassed and does not reflect the primary Tl isotope systematics of the original lava. Therefore, we will not consider it further in our discussion of slab-mantle interactions in the Aleutian arc and it has not been included in any figure except Figure 2.

The last sample to display Ce/Tl higher than the upper mantle is the Miocene adakite lava from Mt. Moffett (ADK53), which could indicate significant Tl degassing. However, the Tl isotope composition of ADK53 is not enriched in 205Tl (Table 2), as might be expected from kinetic isotope fractionation. In addition, this sample has, based on its high Sr/Y and unradiogenic Sr and Pb isotope ratios, been proposed as a possible melt derived from eclogitized oceanic crust (Kay, 1978). Bulk Tl and Ce partition coefficients during melting of eclogite are unlikely to be identical to those found for mantle melting and therefore it is possible that Ce/Tl could be significantly altered during eclogite melting. Thallium partitions into sulfide (Kiseeva and Wood, 2013; Nielsen et al., 2014) and probably phengite (Prytulak et al., 2013) while Ce may be accommodated by allanite and/or epidote (Carter et al., 2015; Hermann, 2002). The relative abundances of these minerals will have a strong control on melt Ce/Tl especially at low degrees of melting where these phases potentially could be in the residue. However, given the lack of experimental data on Tl partitioning at relevant conditions it is currently not possible to constrain the effect on Ce/Tl during eclogite melting. Therefore, it we cannot conclusively distinguish between degassing or source mineralogy as the cause of the high Ce/Tl observed in ADK53.

For the remaining samples in this study we do not find any chemical or isotopic indications of significant degassing. If Tl degassing played a role in the Tl budgets of the lavas investigated
here, then the effects are too small to quantify and most likely smaller than the Tl elemental and isotopic signatures imposed by addition of subduction components.

6.1.3. Subaerial aqueous alteration

Subaerial lavas are often observed to preferentially lose alkali metals during aqueous alteration from meteoric water (Schiano et al., 1993). This effect is most likely due to the high solubility of these metals in aqueous solution and given the geochemical similarity between Tl and the alkali metals (i.e. ionic charge and radius as well as high aqueous solubility) one might expect subaerial alteration to be accompanied by significant Tl losses that would lead to high Ce/Tl ratios. These losses, however, would likely not be associated with Tl isotope fractionation because weathering has been shown to cause negligible Tl isotope fractionation (Nielsen et al., 2005).

High Ce/Tl ratios produced by subaerial weathering should be coupled with significant losses of alkali metals. Here we investigate this using Th/Rb as these two elements partition similarly in igneous processes while Th is highly insoluble in aqueous solution. Thus, high Th/Rb coupled with high Ce/Tl might indicate subaerial alteration. Figure 4 shows that only sample ADK53 has a clear signature that could be interpreted as subaerial alteration. Some alteration of ADK53 is also reasonable given that it is Miocene in age. All other samples investigated here are relatively recent, fresh lava flows that are unlikely to have experienced significant alteration. It should be noted that, while the trace element systematics of mobile elements like K, Rb, Cs and Tl may have been perturbed in ADK53, there is no indication that the original isotope compositions (radiogenic or Tl) of this lava have been reset by post-eruption
processes. We, therefore, use the isotopic characteristics of ADK53 in our discussion of subduction processes in the Aleutian arc, but omit trace element ratios from consideration.

6.1.4. Assimilation and fractional crystallization

Fractional crystallization in itself is not likely to alter the Tl isotope composition of magma. First, Tl is likely very incompatible in the major crystallizing phases like olivine, clinopyroxene and plagioclase (Adam and Green, 2006; Nielsen et al., 2014). Second, lavas from Korovin volcano (Atka Island) also support the lack of Tl isotope fractionation with magmatic differentiation. These Korovin lavas display patterns broadly consistent with evolution by fractional crystallization from basalt to high-silica andesite (Fig 5). Thallium is enriched in the more evolved lavas and the progressive Tl enrichment is not accompanied by any systematic Tl isotope change (Table 2), which confirms that fractional crystallization does not impart any detectable Tl isotope fractionation. The constancy of Tl isotopes for the more evolved samples also shows that any assimilation that might have occurred during fractional crystallization of the Korovin samples did not cause a notable change in Tl isotopes.

Even though fractional crystallization and assimilation appears to have a limited effect on Tl isotopes, we still choose to exclude samples from the Eastern and Central Aleutian Islands that bear evidence of magmatic evolution (>55 wt% SiO₂, <3% MgO and Mg# < 45) in order to remove any doubt that some Tl isotope variation could be caused by these processes. This step removes the three most evolved Korovin samples from consideration as well as one from Westdahl (SAR-4). It should be noted that all of the excluded samples display ε²⁰⁵Tl ~ -2 (Table 2), which could indicate that assimilation of the arc crust tends to add Tl with an isotope
composition that is similar to continental crust. Hence, assimilation may possibly attenuate the Tl isotope variation of arc lavas.

One sample from the Western Aleutians (TN182_08_003) is unusually enriched in Tl compared with all other Aleutian samples (subaerial or submarine) investigated here. The sample displays Ce/Tl \(\sim 35 \), a factor of about 4 lower than any other sample in this study. It also has the lightest Tl isotope composition measured for the Aleutians \((\varepsilon^{205}\text{Tl} = -9.3) \) and the leaching experiments confirmed that this value was unlikely to be caused by seawater alteration (Table 3). Inspection of the sample in thin section did not reveal any alteration minerals. However, the sample contains abundant amphibole phenocrysts many of which have resorbed textures indicating that amphibole was first crystallized and then started re-dissolving back into the melt (Yogodzinski et al., 2015). TN182_08_003 is the only basalt sample recovered from the Western Aleutians, which exhibits this texture, which may indicate that the liquid line of decent was interrupted potentially by assimilation of wall rock. If the magma chamber that hosted the lava prior to eruption was relatively shallow in the upper few km of the crust then the wall rock could be composed of low-temperature altered volcanic rocks, which are known to carry high Tl concentrations and very light Tl isotope compositions (Coggon et al., 2014; Nielsen et al., 2006c). Such assimilation processes would likely not affect radiogenic isotope systems like Pb, Nd and Sr because low-temperature AOC is not significantly enriched in these elements compared with fresh basalt and does not possess radiogenic isotope compositions that deviate substantially from fresh MORB and thereby also the compositions of the primary magma.

Strontium isotope ratios of basaltic oceanic crust do become more radiogenic when interacting with seawater, but the vast majority of Sr isotope data for AOC in the literature display \(^{87}\text{Sr}^{86}\text{Sr} \sim 0.703-0.705 \) (Staudigel et al., 1995; Teagle et al., 2003), which is only slightly different to
TN182_08_003 that exhibits $^{87}\text{Sr} / ^{86}\text{Sr} = 0.7033$. We, therefore, conclude that this sample has been contaminated by assimilation of low-temperature AOC at relatively shallow crustal depths prior to eruption and do not consider it further in our discussion of Aleutian sub-arc mantle processes.

6.2. Sediment controls Tl isotope variation in the Central and Eastern Aleutian Islands

Excluding the sample that shows evidence of degassing (SAR-17) as well as the more evolved lavas (SAR-4, and three Korovin lavas) does not change the range of Tl isotope compositions recorded in the Eastern and Central Aleutian samples ($\varepsilon^{205}\text{Tl} = -3.8$ to $+2.6$). We interpret these data as representative of the Tl isotope variation in the mantle sources of the Aleutian lavas investigated here. Only one sample (Kanaga S489, $\varepsilon^{205}\text{Tl} = -3.8$) is lighter than the normal mantle value of $\varepsilon^{205}\text{Tl} = -2 \pm 0.5$ (Nielsen et al., 2007; Nielsen et al., 2006b; Nielsen et al., 2006c) with 13 of the remaining 18 samples exhibiting Tl isotope compositions significantly heavier than normal mantle. The generally heavy Tl isotope compositions of the lavas are similar to the Tl isotope variation in the sediments outboard of the Aleutian arc (Fig. 2), which clearly implicates sediments as a significant source of Tl in the Aleutians. In detail, however, there are some important systematic along-arc changes in Tl isotopes that provide clues to processes taking place in the sub-arc mantle.

As has been noted previously (Kay and Kay, 1994; Sun, 1980; Yogodzinski et al., 2010), the composition of sediment subducted underneath the Aleutian arc is expected to change from continental detrital in the east as represented by DSDP Site 178 toward compositions with a higher proportion of abyssal clay in the Central Aleutians. Here we have obtained the first data from a drill hole outboard of the Central Aleutians (ODP Hole 886C), which confirms that
pelagic clays enriched in trace elements like Nd, Pb and Tl are common at this location. Thallium isotope compositions of sediments in DSDP Sites 178 and 183 and ODP Hole 886C conform to the expected relationship whereby sediments more proximal to the continent display $\varepsilon^{205}\text{Tl} \sim -2$, with increasingly heavy Tl isotope compositions as sediment deposition rates decline and therefore contain higher concentrations of authigenic Fe and Mn oxides (Figs. 2 and 6).

The clear shift in Tl isotope composition of sediments from $\varepsilon^{205}\text{Tl} \sim -2$ outboard of the Eastern Aleutians to $\varepsilon^{205}\text{Tl} > 0$ outboard of the Central Aleutians is mirrored by the average Tl isotope compositions of lavas in these locations (Figs. 7 and 8). Although each island appears to preserve some Tl isotope variation outside of analytical uncertainty (Figs. 7 and 8), on average, islands in the Central Aleutians exhibit heavier Tl isotope compositions than do the islands in the Eastern Aleutians. The relationship between Tl isotope compositions in subducted sediments and the extruded lavas indicates that sediment inputs are the main control on Tl isotope compositions of lavas in the Aleutians east of Kanaga Island. This interpretation is corroborated by the inverse correlation observed between Pb and Tl isotopes for the Central and Eastern Aleutian lavas (Fig. 7). It is important to note that this inverse correlation does not reflect two-component mixing, but that each point lies on an individual mixing line between the mantle wedge and a unique pelagic-detrital mix.

However, the observed trend is generally consistent with the Pb isotopes observed for pelagic clays at ODP 886C that are, on average, less radiogenic than the detrital-dominated sediments at DSDP Sites 178 and 183. Mixing lines between the sub-arc mantle and bulk detrital and pelagic sediments show that the quantity of sediment added from the slab to the sub-arc mantle decreases systematically from the Eastern to the Central Aleutians, which is consistent
with the previously inferred subducted sediment flux along the Aleutian arc (Kay and Kay, 1994; Kelemen et al., 2003).

This trend is also reproduced in plots of Sr-Tl and Nd-Tl isotopes (Fig. 8), which shows that all four elements are likely dominated by sediment fluxes from the slab. The amount of bulk sediment required to account for the observed Nd, Pb, Sr and Tl isotope variations are consistently ~0.6-1% by weight in the east, while mixing relationships in the Central Aleutians using Nd, $^{206}\text{Pb}/^{204}\text{Pb}$, Sr and Tl isotopes are consistent with ~0.2-0.6% by weight sediment addition, which is in reasonable agreement with previous work that inferred up to ~2 weight % sediment in the mantle sources of the Aleutian Islands (Kay, 1980; Kay and Kay, 1988; Kay et al., 1978; Kelemen et al., 2003; Yogodzinski et al., 2010). Interestingly, bulk sediment mixing using $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ (Figs. 7b and 7c) predict significantly smaller (<0.2% by weight) pelagic sediment fractions in the Central Aleutians than do all other isotope ratios.

This consistent offset might be explained by addition of a third component with unradiogenic $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ such as a fluid from AOC (Miller et al., 1994). To maintain the consistent mixing relationships illustrated in Fig. 8, such a fluid would have to be highly enriched in Pb compared with Nd, Sr and Tl. In addition, the $^{206}\text{Pb}/^{204}\text{Pb}$ of the fluid could not be significantly less radiogenic than 18.6-18.7 in order to preserve the ~0.4% pelagic sediment produced by the mixing relationship in Figure 7a. Alternatively, it is also possible that the average subducted sediment outboard of the Central Aleutians is more affected by the type of highly enriched pelagic sediment represented by 886C-8H-4 58-60cm (Table 4), which is characterized by highly unradiogenic $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$, whereas $^{206}\text{Pb}/^{204}\text{Pb}$ is only slightly less radiogenic than most of the other pelagic sediment samples from ODP Hole 886C. Hence, if material similar to sample 8H-4 58-60cm represents close to 60% of the subducted
sediment Pb budget the bulk subducted sediment would be characterized by $^{207}\text{Pb}/^{204}\text{Pb} \sim 15.57$
and $^{208}\text{Pb}/^{204}\text{Pb} \sim 38.3$, which would yield mixing relationships requiring $\sim 0.4\%$ bulk sediment
like those observed for Nd, $^{206}\text{Pb}/^{204}\text{Pb}$, Sr and Tl isotopes. The present fraction of Pb in ODP
Hole 886C contributed from the basal pelagic sediment is $\sim 35\%$, which is based on visual
inspection of core barrel photographs (Rea et al., 1993). Although this method of estimating
average sediment core compositions is the best available (short of conducting hundreds of
individual sediment analyses throughout a core), it carries significant uncertainties for elements
such as Pb, Tl, La and Nd that display almost two orders of magnitude concentration variations
in individual sediment horizons. Hence, if the sediment thickness and/or average concentration
of certain sediment horizons have been under- or overestimated this could lead to large changes
in the whole-core average composition.

The similarity in the required sediment component based on Sr, Nd, Pb and Tl isotopes
suggests that initial mixing between sediment and mantle does not strongly fractionate these four
trace elements. However, it is well documented that Aleutian lavas (and arc lavas in general)
display highly fractionated Sr/Nd and Pb/Nd compared with all the bulk input components that
enter the subduction zone (Class et al., 2000; Miller et al., 1994). Therefore, there must be one or
more processes occurring within the subduction zone that are capable of fractionating trace
elements. Combining the evidence from isotope-isotope diagrams and the ubiquitous trace
element fractionation in arcs would, therefore, suggest that mixing and trace element
fractionation occur in two separate steps. The elemental fractionations of Sr/Nd, Ce/Pb, Th/Nd
and others are often inferred to originate from melting or dehydration of slab sediment and/or
altered oceanic crust with phases such as allanite, monazite, apatite, phengite, biotite, lawsonite
or sulfide in the residue (Hermann and Rubatto, 2009; Johnson and Plank, 1999; Prytulak et al.,
These accessory phases could produce large variations in the transport efficiency of Sr, Nd, Pb and Tl, because of the strong compatibility of Nd in allanite and monazite, Pb in sulfide and apatite, and Tl in sulfide, biotite and phengite. Thus, sediment melts released from the slab into the mantle wedge are likely characterized by fractionated Sr/Nd, Pb/Tl, Sr/Tl and Nd/Tl ratios that would cause strong curvature in the isotope mixing diagrams (Figs. 7 and 8) that is not compatible with the consistent bulk mixing relationships observed.

Of the four isotope systems considered here, reliable experimental data for element partitioning during sediment melting only exists for Sr and Nd (Hermann and Rubatto, 2009; Johnson and Plank, 1999; Skora and Blundy, 2010). These data show that over a range of temperatures (600-1050°C) and sediment compositions, Nd is preferentially retained in the sediment residue (notably by monazite), while Sr is uniformly released into the melt phase. On average, experiments in the temperature range from 700-900°C show that Sr is about 20 times less compatible than Nd during sediment melting, which results in high Sr/Nd ratios in the sediment melts. A potential problem with these experiments is that they were all doped with relatively large amounts of Nd and other REE, which may have stabilized excess abundances of monazite because REE are a main constituent of the mineral. The Nd partition coefficients presented in these studies may, therefore, be higher than for undoped compositions. Irrespective of the absolute partition coefficients, sediment melts are expected to be characterized by higher Sr/Nd ratios than the bulk sediment, which generates significantly different mixing relationships between mantle and sediment melts compared to bulk sediment. Figure 9 shows the effect of the different Nd/Sr ratios in bulk sediment and sediment melts generated by 20% melting of the subducted sediment components in the Eastern and Central Aleutians when using the experimental data currently available in the literature. It is evident that none of the lavas studied
here nor those of other published lavas from the Central and Eastern Aleutians fall within the sediment melt field. Larger degrees of sediment melting (Skora and Blundy, 2010) will move the sediment melt field closer to the bulk sediment field, but even 40% sediment melting will only move a few of the samples into the sediment melt field and then only close to the mixing line with ODP 886C sediment melts.

On the other hand, if monazite abundances for un-doped sediment compositions are lower than doped experiments suggest, then it is likely that degrees of sediment melting around 20-40% will significantly attenuate the Sr/Nd fractionation of the sediment melt because the accessory phases responsible for the elemental fractionation are almost or entirely melted out (Hermann and Rubatto, 2009). In this case, sediment melts will fail to produce the high Sr/Nd ratios (and likely also other trace element ratios that might be governed by residual accessory phases) observed in Aleutian lavas and therefore processes subsequent to mantle-sediment melt mixing would be needed to fractionate trace element ratios like Sr/Nd, Ce/Pb, Cs/Tl and Th/Nd.

Bulk sediment transfer from slab to mantle wedge could be consistent with recent models of sediment transport from the slab to the mantle wedge whereby either pure sediment (Behn et al., 2011) or mélange diapirs (Marschall and Schumacher, 2012) are the primary mode of adding sediments and/or AOC to the source regions of arc lavas. Mélange formation at the slab-mantle interface, which based on field studies is common in subduction zones (Bebout, 1991; King et al., 2003), represents a mixture between slab material (both sediments and AOC) and the mantle wedge. Therefore, average mélange material is expected to plot along bulk mixing lines between mantle and sediment/AOC slab components, similar to what we observe in Figures 7-9.

It is important to note that the isotope-isotope plots (Figs. 7-9) only provide information about the elemental ratios (e.g. Sr/Nd, Tl/Sr, Tl/Nd, Tl/Pb) at the time when the components
mixed. Subsequent trace element fractionation would not be detected in these plots. In other words, models that invoke bulk mixing between mantle and sediment/AOC require that the strong fractionation of trace elements observed in arc lavas, including Sr/Nd, Ce/Pb and Nd/Th, must then occur upstream of the mixing process rather than prior to. Melting of mélange diapirs in the mantle wedge (Marschall and Schumacher, 2012) is a potential means of fractionating trace elements if melting residuals at high temperatures (likely >1100°C) contains the residual phases that may produce the required trace element fractionations. Future experiments and studies of mélange material at subduction zone conditions will need to investigate the viability of these processes in more detail.

6.3. Thallium isotope signature of slab melts from altered oceanic crust

The Tl isotope ratios determined for samples from the Western Aleutians are systematically different from those observed in the Central and Eastern Aleutian Islands. When the two samples affected by assimilation and degassing (TN182_07_005 and TN182_08_003) are excluded, all samples except two fall within a limited range of ε^{205}Tl = -1.5 to -3.4 (Table 3). Even though this range only represents about four times our long-term reproducibility there is a suggestion that Tl isotopes correlate with both Sr and Pb isotopes, whereby the least radiogenic Sr and Pb isotope compositions are characterized by ε^{205}Tl ~ -3.5 (Figs. 7 and 8). We also find that the Miocene sample from Adak Island, ADK53, falls close to these trends, suggesting that the Western Aleutian lavas were influenced by the same component as ADK53. There is strong evidence that the Western Aleutian lavas as well as ADK53 sample a distinct component of eclogite slab melt (Kay, 1978; Yogodzinski et al., 2015; Yogodzinski et al., 1995) that is characterized by high Sr/Y and Dy/Yb coupled with unradiogenic Pb and Sr isotope compositions. This eclogite melt
likely originates from subducted basaltic oceanic crust that was transformed at depth to eclogite.

Conversely, the lack of heavy Tl isotope compositions in the Western Aleutians indicate that sediments do not play a major role for the Tl mass balance of these lavas. This observation is consistent with the strongly attenuated sediment flux underneath the Western Aleutians (Kelemen et al., 2003; Yogodzinski et al., 1994) as well as radiogenic isotope compositions of Western Aleutian samples, which have among the least radiogenic Pb and most radiogenic Nd in the Aleutians. Nonetheless, plots of Pb-Pb and Nd-Pb isotopes as well as Ce/Pb significantly lower than normal mantle imply that minor sediment or fluid components are present in Western Aleutian samples (Yogodzinski et al., 2015). Therefore, simple mixing of melts from eclogitized oceanic crust and the mantle wedge cannot account for the petrogenesis of most Western Aleutian volcanics.

Thallium concentrations and isotope compositions of oceanic crust display distinct and systematic variations with crustal depth (Nielsen et al., 2006c). In particular, the upper volcanic zone is enriched in Tl with distinct ε^{205}Tl < -2. The sheeted dike complex, lower crustal gabbros and ultramafic cumulates, however, are likely very depleted in Tl and exhibit ε^{205}Tl ~ -2, which is indistinguishable from the MORB mantle (Nielsen et al., 2006c). In the Western Aleutian lavas, the proposed eclogite melt endmember is characterized by the lightest Tl isotope compositions suggesting that at least part of the eclogite source region formed from the volcanic zone of the subducted basaltic crust. This inference is also supported by the relatively high Tl concentrations for the putative eclogite component of up to 150 ng/g (Table 3), which would imply a source region containing Tl concentrations significantly in excess of the ~ 1 ng/g Tl observed for the sheeted dike complex (Nielsen et al., 2006c).
One lava from Kanaga Island (S489) is the only sample from the main Aleutian Islands in this study that exhibits ε^{205}Tl < -2, which could be indicative of influence from low-temperature altered oceanic crust. There is no indication based on Sr/Y, Dy/Yb or radiogenic isotope ratios that a significant component derived from slab melting has influenced this sample. However, given the generally attenuated sediment flux needed to account for radiogenic isotope data from the Central Aleutians compared to the Eastern Aleutians (Figs. 7 and 8), it is possible that some volcanoes in the Central Aleutians become more dominated by inputs from dehydrated altered oceanic crust. Such an interpretation would be consistent with the greater range in Tl isotopes observed for Kanaga Island, which could reflect that the relative contributions of Tl from sediments and altered oceanic crust are highly variable when the subducted sediment flux becomes sufficiently small.

6.4. Possible contributions from oceanic crust dehydration

Sediments have been widely implicated as the primary component that causes radiogenic Pb, Sr and Nd isotope variation in the Eastern and Central Aleutians (Kay and Kay, 1988; Kay et al., 1978; Kelemen et al., 2003), which is clearly supported by our new Tl isotope data (Figs. 7 and 8). However, fluids sourced from dehydrating oceanic crust as well as melts from eclogitized oceanic crust may also contribute to lavas in the Central and Eastern Aleutian Islands (Jicha et al., 2004; Miller et al., 1994; Singer et al., 2007; Yogodzinski et al., 2015; Yogodzinski et al., 1995). For example, several studies have suggested that a fluid extracted from AOC can account for the excess Sr in Aleutian lavas (Class et al., 2000; Jicha et al., 2004; Singer et al., 2007). This process is clearly a reasonable way to explain the trace element fractionation of several key trace elements (notably the high Sr/Nd, Pb/Ce and B/La). However, addition of an AOC component
would cause Sr isotopes to become slightly more radiogenic (assuming $^{87}\text{Sr}/^{86}\text{Sr}$ ~ 0.704 in the upper ~600 meters of the oceanic crust (Staudigel et al., 1995; Teagle et al., 2003)) whereas Nd would be largely unaffected due to the low solubility of Nd in the fluid phase (Kessel et al., 2005). Adding this 'fluid AOC' component to the sediment melt would move the sediment melt-mantle mixing lines in Figure 9 upwards and therefore even further away from the sediment melt field. On the other hand, if 'fluid AOC' Sr were derived from throughout the oceanic crust (with MORB $^{87}\text{Sr}/^{86}\text{Sr}$ ~ 0.7025) and this fluid exhibited elevated Sr/Nd similar to low degree (<20%) sediment melts, then a mixing line could be produced that is indistinguishable from mantle-bulk sediment mixing, and would intersect the Aleutian arc data. Hence, low degree (<20%) sediment melts are able to explain the Sr-Nd isotope data from the Aleutian arc if they were mixed with AOC fluids characterized by MORB isotope compositions and Sr/Nd ratios similar to the sediment melt. However, this scenario would require that less than 15% of Sr in the Aleutian lavas are derived from the mantle, as otherwise the mixing lines would become too curved to encompass all the isotopic data.

It is currently unknown how mobile Tl is in fluids released from the subducting slab and, therefore, it is difficult to quantify what the effect on Tl isotopes and abundances would be if Aleutian lavas contained a significant fluid component from altered oceanic crust. We can obtain qualitative information by examining the relation between the highly fluid mobile element Cs (Kessel et al., 2005; Melzer and Wunder, 2000) and Tl across the Aleutian arc (Fig. 10). All bulk endmembers in the Aleutian arc (e.g. mantle wedge, detrital and pelagic sediments, altered oceanic crust and slab melts) display Cs/Tl < 10, while lavas from the Central and Eastern Aleutian Islands display Cs/Tl = 8-35. Although Cs and Tl do not partition identically during mantle melting (Nielsen et al., 2014), they are both so incompatible that mantle melts
representing >5% melting are not significantly fractionated from their mantle source. Thallium concentration data from a range of arcs indicates that Tl is only mildly fluid mobile (Noll et al., 1996) and, therefore, fluid dominated arc lavas should display high Cs/Tl. Thus, the high Cs/Tl in Aleutian lavas are potentially caused by addition of a fluid with high Cs/Tl to the magma source region. Alternatively, the high Cs/Tl could be explained by a residual phase in the mantle wedge or the slab that retains Tl over Cs. This residual phase could for example be sulfide or phengite, both of which are expected to accommodate Tl (Kiseeva and Wood, 2013; Nielsen et al., 2014; Prytulak et al., 2013). Phengite also incorporates Cs, but it has been shown that Cs is the least compatible alkali metal in phengite (Hermann and Rubatto, 2009; Melzer and Wunder, 2000) due to its slightly larger ionic radius than the alkali metal cation site in phengite (Busigny et al., 2003). The ionic radius of Tl is very similar to that of Rb (Shannon, 1976), which should render Tl significantly more compatible in phengite than Cs. Thus, high Cs/Tl in arc lavas could be due to phengite retention in the slab as well as residual sulfide in the mantle wedge. However, future experimental work must be conducted in order to verify this inference.

Conversely, lavas from the Western Aleutians exhibit Cs/Tl that overlaps with MORB (Fig. 10) suggesting that the high Cs/Tl component in the main Aleutian Islands is largely absent in the Western Aleutians. Considering that sediment contributions are likely small in the Western Aleutians (Kelemen et al., 2003; Yogodzinski et al., 2015; Yogodzinski et al., 1994), it follows that the high Cs/Tl ratios in the main Aleutian Islands probably originate from the sediment component rather than fluids released from altered oceanic crust. This conclusion is supported by the weak tendency for Eastern and Central Aleutian lavas with heavy Tl isotope compositions to display the highest Cs/Tl (Fig. 10). It should be noted that the process that generated high Cs/Tl in the Aleutian lavas, be it fluid driven or mineralogical, would still need to occur after bulk
mixing between the sediment and mantle components due to the mixing relations observed between Tl-Sr-Nd-Pb isotopes (Figs. 7-9). However, given the lack of Tl partitioning data for phengite and subduction fluids it is presently not possible to conclude if fluids are necessary to account for the Cs/Tl ratios observed in the Aleutian lavas.

7. Conclusions

We have conducted the first Tl isotope study of lavas covering the entire Aleutian arc and subducting sediments located outboard of the main Aleutian Islands. Systematic changes are observed in the average sediment Tl isotope composition from $\varepsilon^{205}\text{Tl} \sim -2$, similar to the continental crust and upper mantle, in the Eastern Aleutians to $\varepsilon^{205}\text{Tl} \sim +4$ in the Central Aleutians, which reflects a significant component of authigenic Mn oxides in these slowly accumulating sediments. Lavas in the Aleutian Islands east of Kanaga generally mirror the trend from $\varepsilon^{205}\text{Tl} \sim -2$ in the Eastern Aleutians to $\varepsilon^{205}\text{Tl} \sim +2$ in the Central Aleutians caused by the changing subducted sediment composition across the arc. Simple models of sediment-mantle mixing in Nd, Pb, Sr and Tl isotope space reveal that bulk sediment mixed with a depleted mantle source can account for the isotopic variation observed in the Central and Eastern Aleutian Islands. Our results are, therefore, consistent with recent models of sediment transport from the slab to the mantle wedge whereby either pure sediment (Behn et al., 2011) or mélange diapirs (Marschall and Schumacher, 2012) are the primary mode of adding sediments to the source regions of arc lavas. However, bulk sediment mixing models require that processes occurring after sediment-mantle mixing fractionate trace element ratios such as Ce/Pb, Cs/Tl, Sr/Nd, and Th/Nd. Both the sediment and mélange diapir models have not been explored in terms of the resulting chemical signatures that can be generated in these scenarios. For example, it is not clear...
if sediment diapirs need to melt first in order to effectively mix with the mantle wedge in which case trace element fractionation would likely occur prior to mixing and, therefore, not adequately explain the isotope-isotope relationships (Fig. 9). The strong heterogeneity of mélange zones sometimes observed in the field (Bebout, 2007) is perhaps not compatible with the relatively homogenous isotopic signatures often observed for individual Aleutian volcanoes (Kelemen et al., 2003). Lastly, the high temperatures (>1100°C) potentially experienced by sediment and mélange diapirs in the mantle wedge could prevent significant trace element fractionation as accessory phases might melt out and therefore not generate the required trace element fractionation. Future experiments that reproduce the conditions experienced in sediment and mélange diapirs will need to investigate the viability of these processes in generating the observed major and trace element characteristics of arc lavas.

Alternative models that involve sediment melting in excess of 50% may also be compatible with the presented Nd, Pb, Sr and Tl isotopes. Such large degrees of melting could be driven by an influx of AOC fluid with MORB-like isotope compositions (Skora and Blundy, 2010), which may also deliver fractionated trace elements. Provided the sediment melt and AOC fluid had similar trace element ratios, they have the potential to produce arrays that look like bulk mixing but also generate trace element fractionations (e.g., high Sr/Nd, Cs/Tl and Pb/Ce) observed in arc lavas.

Thallium isotope systematics in Western Aleutian lavas show compositions slightly lighter than the upper mantle, which implies a negligible sediment flux at this location and probably involvement of low-temperature altered oceanic crust in the generation of these lavas. In general, the lightest Tl isotope compositions are observed for the highest Sr/Y ratios and most
unradiogenic Sr and Pb isotope compositions, which may be consistent with derivation of these lavas via melting of eclogitized altered oceanic crust.

8. Acknowledgements

This study used samples recovered during the Ocean Drilling Program. This study was funded by NSF grants EAR-1119373 and -1427310 to SGN and EAR-1456814 to TP. We thank Daniel Rasmussen and Louise Bolge for their chemistry lab and ICP-MS talents in analyzing elemental concentrations in ODP 886 sediments. We also thank Merry Cai for sharing Aleutian data compilations, Peter Kelemen for discussions and Oliver Nebel and an anonymous reviewer for insightful comments that helped improve this manuscript.

9. References

Figure captions

Figure 1: Map of the Aleutian arc. Arrows indicate the locations of the lavas analyzed in this study. The colors used for the different lava locations are repeated throughout all the subsequent figures in this paper where lavas from multiple locations are plotted. Also shown are the three sediment drill cores investigated in order to characterize the sediment input flux to the arc.

Figure 2: Thallium isotope composition and concentration for individual sediment samples from DSDP 178 (dark green), DSDP 183 (light green) and ODP 886C (blue). These colors mimic those used for the lavas whereby the eastern-most sediment core is dark green followed by light green and blue. The large symbols indicate the concentration weighted average Tl isotope compositions and concentrations for each of the three sediment cores. Although DSDP 183 and ODP 886C both contain pelagic components with heavy Tl isotopes and detrital components with $\varepsilon^{205}\text{Tl} \sim -2$, ODP 886C clearly is much more dominated by the pelagic components than DSDP 183.

Figure 3: Ce/Tl ratios plotted against Tl isotope composition for all Aleutian lavas investigated in this study. Also shown is the depleted mid ocean ridge basalt mantle (DMM) as well as the average compositions for detrital (DSDP 178 and 183) and pelagic (ODP 886C) sediments. Note that the legend colors follow that of the map in figure 1 and is the same for all subsequent figures with lavas from multiple locations.
Figure 4: Ce/Tl plotted against Th/Rb for all subaerial lavas analyzed in this study. Subaerial aqueous alteration of basaltic lavas preferentially removes alkali metals and given the similarity of the ionic charge and radius between Tl and the alkali metals similar loss of Tl is likely during subaerial alteration. Hence, samples with high Ce/Tl and Th/Rb are probably affected by post eruption alteration (see text for further details).

Figure 5: Potassium plotted against Tl concentrations in lavas from Korovin volcano. Samples broadly follow a fractional crystallization trend. The two arrows indicate the evolution of primitive magmas from fractional crystallization assuming partition coefficients for K and Tl of 0.

Figure 6: Charts showing the Tl isotopic composition of sediments from the three drill holes investigated as a function of depth. It is evident that sediment cores located further west, and thereby more distally to the continent, contain more sections with Tl isotope compositions that are heavier than the continental crust. Grey bars denote the Tl isotope composition of the continental crust and upper mantle (Nielsen et al., 2006b; Nielsen et al., 2005).

Figure 7: Thallium isotopes plotted against Pb isotope ratios. Only samples that are not affected by subaerial weathering, assimilation, contamination or degassing are shown (see text for details). Symbol colors as in figure 3. Also shown are mixing lines between depleted mantle and bulk detrital (DSDP 178 and 183) and pelagic (ODP 886C) sediments. Dashed lines of constant sediment addition are indicated at 0.2% by weight intervals. The Pb isotope composition of the depleted mantle was taken from the most proximal MORB sample, which is
from the northern Juan de Fuca ridge (Hegner and Tatsumoto, 1987). A Pb concentration of 28 ng/g for the DMM is used, which is based on Ce/Tl\textsubscript{DMM} = 1110 and Pb/Tl\textsubscript{DMM} = 56 (Nielsen et al., 2014) and a Ce concentration of 0.55 μg/g (Workman and Hart, 2005). The Tl isotope composition of the upper mantle is $\varepsilon^{205}\text{Tl} = -2$ (Nielsen et al., 2006b). The Pb isotope compositions and concentrations for detrital (DSDP 178 and 183) sediments were taken from (Plank and Langmuir, 1998), whereas Pb data for pelagic (ODP 886C) sediment as well as all sedimentary Tl data was taken from Table 5 in this study.

Figure 8: Thallium isotopes plotted against (a) Sr and (b) Nd isotope ratios. Only samples that are not affected by subaerial weathering, assimilation, contamination or degassing are shown (see text for details). Symbol colors as in figure 3. Grey areas denote the Western Aleutian samples except one (for Sr isotopes) or three (for Nd isotopes) outliers. Also shown are mixing lines between depleted mantle and bulk detrital (DSDP 178 and 183) and pelagic (ODP 886C) sediments. Dashed lines of constant sediment addition are indicated at 0.2% by weight intervals. The Nd and Sr isotope composition of the depleted mantle was taken from the most proximal MORB sample, which is from the northern Juan de Fuca ridge (Hegner and Tatsumoto, 1987).

Concentrations in the DMM of Sr = 7.66 μg/g and Nd = 0.58 μg/g were used, which were taken from Workman and Hart (2005). The Tl isotope composition of the upper mantle is $\varepsilon^{205}\text{Tl} = -2$ and the Tl content of the DMM was inferred from Pb/Tl ~ 56 (Nielsen et al., 2014). The Nd andSr isotope compositions and concentrations for detrital (DSDP 178 and 183) sediments were taken from (Plank and Langmuir, 1998; Vervoort et al., 2011), whereas Nd and Sr data for pelagic (ODP 886C) sediment as well as all sedimentary Tl data was taken from Table 5 in this study.
Figure 9: Nd and Sr isotope compositions plotted against each other. Symbol colors as in figure 3, except the Western Aleutian samples that are denoted by grey area. Additional data from previous studies of the Aleutian Islands east of Kanaga are plotted for comparison (Class et al., 2000; George et al., 2003; Jicha et al., 2004; Singer et al., 2007; Yogodzinski et al., 2010). Also shown are mixing lines (bold lines) between depleted mantle and bulk detrital (DSDP 178 and 183) and pelagic (ODP 886C) sediments. Thin dashed lines of constant sediment addition are indicated at 0.2% by weight intervals. The Nd and Sr isotope composition of the depleted mantle was taken from the most proximal MORB sample, which is from the northern Juan de Fuca ridge (Hegner and Tatsumoto, 1987). Concentrations in the DMM of Sr = 7.66 μg/g and Nd = 0.58 μg/g were used, which were taken from Workman and Hart (2005).

A second set of bold dashed mixing lines between DMM and sediment melts are also shown. These mixing lines were constructed by generating 20% melts from the detrital and pelagic sediment endmembers and using melt-residue partition coefficients of $D_{\text{Sr}} = 7.3$ and $D_{\text{Nd}} = 0.35$, which represents the average values recorded in sediment melting experiments by Hermann and Rubatto (2009) with temperatures from 750-900°C.

Figure 10: Thallium isotope compositions plotted against Cs/Tl ratio for Aleutian lavas from this study. Only samples that are not affected by subaerial weathering, assimilation, contamination or degassing are shown (see text for details). Symbol colors as in figure 3. Also shown are the values for detrital (DSDP 178 and 183) and pelagic (ODP 886C) sediments as well as an estimated value for altered oceanic crust (AOC) (Nielsen et al., 2006c) and the DMM (Nielsen et al., 2006b; Nielsen et al., 2014). It is notable that many of the Central and Eastern
Aleutian lavas display Cs/Tl higher than any of the bulk components contributing to the lavas.

This effect could either be explained by the involvement of Cs-rich fluids or preferential retention of Tl in phengite (see text for details).
<table>
<thead>
<tr>
<th>ODP sample ID</th>
<th>Depth (mbsf)</th>
<th>Lithology</th>
<th>Unit</th>
<th>Unit density (g/cm³)</th>
<th>Unit thickness (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H 3 60-62cm</td>
<td>3.61</td>
<td>Reddish brown clay</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1H 4 70-72cm</td>
<td>5.21</td>
<td>Reddish brown clay</td>
<td>1</td>
<td>1.5</td>
<td>6.8</td>
</tr>
<tr>
<td>2H 1 55-57cm</td>
<td>7.36</td>
<td>Dark brown spicule clay</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2H 4 65-67cm</td>
<td>11.96</td>
<td>Light brown spicule clay</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3H 1 90-92cm</td>
<td>17.21</td>
<td>Brown diatom clay</td>
<td>2</td>
<td>1.45</td>
<td>15.4</td>
</tr>
<tr>
<td>3H 5 60-62cm</td>
<td>22.91</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4H 1 80-82cm</td>
<td>26.61</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4H 5 30-32cm</td>
<td>30.61</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5H 1 50-52cm</td>
<td>35.81</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5H 3 45-47cm</td>
<td>38.76</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6H 2 70-72cm</td>
<td>47.01</td>
<td>Light brown diatom ooze</td>
<td>3</td>
<td>1.4</td>
<td>26.5</td>
</tr>
<tr>
<td>6H 3 120-122cm</td>
<td>49.01</td>
<td>Mn nodule</td>
<td>4</td>
<td>4</td>
<td>0.2</td>
</tr>
<tr>
<td>7H 3 58-60cm</td>
<td>57.89</td>
<td>Dark brown clay</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7H 5 73-75cm</td>
<td>61.04</td>
<td>Dark brown clay</td>
<td>5</td>
<td>1.5</td>
<td>15</td>
</tr>
<tr>
<td>8H 1 48-50cm</td>
<td>64.29</td>
<td>Dark brown clay</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8H 4 58-60cm</td>
<td>68.89</td>
<td>Dark brown clay</td>
<td>6</td>
<td>1.55</td>
<td>8.5</td>
</tr>
</tbody>
</table>
Table 5: Weighted average subducted sediment components

<table>
<thead>
<tr>
<th>Parameter</th>
<th>East Aleutian Sediment</th>
<th>Cent. Aleutian Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rb</td>
<td>57</td>
<td>77.1</td>
</tr>
<tr>
<td>Cs</td>
<td>3.4</td>
<td>7.1</td>
</tr>
<tr>
<td>Sr</td>
<td>245</td>
<td>203</td>
</tr>
<tr>
<td>Ba</td>
<td>2074</td>
<td>3910</td>
</tr>
<tr>
<td>La</td>
<td>18.0</td>
<td>58.8</td>
</tr>
<tr>
<td>Ce</td>
<td>39.0</td>
<td>103</td>
</tr>
<tr>
<td>Nd</td>
<td>19.1</td>
<td>75.7</td>
</tr>
<tr>
<td>Tl</td>
<td>0.31</td>
<td>2.25</td>
</tr>
<tr>
<td>Th</td>
<td>12.9</td>
<td>39.6</td>
</tr>
<tr>
<td>Pb</td>
<td>5.5</td>
<td>11.4</td>
</tr>
<tr>
<td>U</td>
<td>2.4</td>
<td>2.23</td>
</tr>
<tr>
<td>$^{87}\text{Sr}/^{88}\text{Sr}$</td>
<td>0.7064</td>
<td>0.711</td>
</tr>
<tr>
<td>$^{143}\text{Nd}/^{144}\text{Nd}$</td>
<td>0.51261</td>
<td>0.5124</td>
</tr>
<tr>
<td>$^{206}\text{Pb}/^{204}\text{Pb}$</td>
<td>19.04</td>
<td>18.61</td>
</tr>
<tr>
<td>$^{207}\text{Pb}/^{204}\text{Pb}$</td>
<td>15.63</td>
<td>15.61</td>
</tr>
<tr>
<td>$^{208}\text{Pb}/^{204}\text{Pb}$</td>
<td>38.69</td>
<td>38.60</td>
</tr>
<tr>
<td>$\varepsilon^{205}\text{Tl}$</td>
<td>-2.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

* - concentrations in μg/g

- Eastern Aleutian sediment composition from Plank & Langmuir, 1998 except Nd isotope composition from Vervoort et al. (2011) and Tl concentrations and isotopes (this study).
Table 2: Tl, Sr, Nd and Pb isotopes for Main Arc lavas

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tl</th>
<th>Tl [ng/g]</th>
<th>n</th>
<th>87Sr/86Sr</th>
<th>143Nd/144Nd</th>
<th>206Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>208Pb/204Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanaga 514</td>
<td>0.2</td>
<td>20</td>
<td>1</td>
<td>0.70307</td>
<td>0.51303</td>
<td>18.731</td>
<td>15.545</td>
<td>38.259</td>
</tr>
<tr>
<td>repeat</td>
<td>0.5</td>
<td>31</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanaga 58</td>
<td>-1.6</td>
<td>199</td>
<td>1</td>
<td>0.70330</td>
<td>0.51304</td>
<td>18.802</td>
<td>15.558</td>
<td>38.347</td>
</tr>
<tr>
<td>Kanaga S489</td>
<td>-3.4</td>
<td>24</td>
<td>1</td>
<td>0.70307</td>
<td>0.51301</td>
<td>18.734</td>
<td>15.548</td>
<td>38.267</td>
</tr>
<tr>
<td>repeat</td>
<td>-4.1</td>
<td>25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanaga S508</td>
<td>0.8</td>
<td>40</td>
<td>1</td>
<td>0.70308</td>
<td>0.51302</td>
<td>18.731</td>
<td>15.548</td>
<td>38.268</td>
</tr>
<tr>
<td>Moffett 18 - 15A</td>
<td>1.2</td>
<td>26</td>
<td>1</td>
<td>0.70312</td>
<td>0.51300</td>
<td>18.710</td>
<td>15.538</td>
<td>38.220</td>
</tr>
<tr>
<td>Moffett 18-15B</td>
<td>1.3</td>
<td>32</td>
<td>1</td>
<td>0.70312</td>
<td>0.51301</td>
<td>18.709</td>
<td>15.539</td>
<td>38.222</td>
</tr>
<tr>
<td>Moffett 2A</td>
<td>2.6</td>
<td>43</td>
<td>1</td>
<td>0.70314</td>
<td>0.51299</td>
<td>18.705</td>
<td>15.540</td>
<td>38.220</td>
</tr>
<tr>
<td>Moffett 81 19A</td>
<td>1.8</td>
<td>37</td>
<td>1</td>
<td>0.70315</td>
<td>0.51302</td>
<td>18.731</td>
<td>15.548</td>
<td>38.260</td>
</tr>
<tr>
<td>Moffett ADK53*</td>
<td>-3.3</td>
<td>34</td>
<td>1</td>
<td>0.70285</td>
<td>0.51309</td>
<td>18.462</td>
<td>15.499</td>
<td>37.964</td>
</tr>
<tr>
<td>Okmok UM-10</td>
<td>0.7</td>
<td>36</td>
<td>1</td>
<td>0.70303</td>
<td>0.51304</td>
<td>18.726</td>
<td>15.545</td>
<td>38.245</td>
</tr>
<tr>
<td>Okmok UM-21</td>
<td>-1.7</td>
<td>91</td>
<td>1</td>
<td>0.70325</td>
<td>0.51304</td>
<td>18.877</td>
<td>15.569</td>
<td>38.415</td>
</tr>
<tr>
<td>Okmok UM-23</td>
<td>-0.5</td>
<td>97</td>
<td>1</td>
<td>0.70326</td>
<td>0.51303</td>
<td>18.865</td>
<td>15.566</td>
<td>38.404</td>
</tr>
<tr>
<td>Okmok UM-5</td>
<td>-0.2</td>
<td>59</td>
<td>1</td>
<td>0.70329</td>
<td>0.51302</td>
<td>18.887</td>
<td>15.570</td>
<td>38.430</td>
</tr>
<tr>
<td>repeat</td>
<td>-0.2</td>
<td>60</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westdahl SAR-4</td>
<td>-2.1</td>
<td>170</td>
<td>1</td>
<td>0.70304</td>
<td>0.51307</td>
<td>18.859</td>
<td>15.561</td>
<td>38.388</td>
</tr>
<tr>
<td>Westdahl SAR-11</td>
<td>-1.4</td>
<td>68</td>
<td>1</td>
<td>0.70313</td>
<td>0.51304</td>
<td>18.867</td>
<td>15.563</td>
<td>38.403</td>
</tr>
<tr>
<td>Westdahl SAR-17</td>
<td>-1.4</td>
<td>27</td>
<td>1</td>
<td>0.70309</td>
<td>0.51304</td>
<td>18.870</td>
<td>15.562</td>
<td>38.398</td>
</tr>
<tr>
<td>repeat</td>
<td>-1.6</td>
<td>32</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westdahl SAR-7</td>
<td>0.1</td>
<td>56</td>
<td>1</td>
<td>0.70313</td>
<td>0.51306</td>
<td>18.872</td>
<td>15.563</td>
<td>38.398</td>
</tr>
<tr>
<td>KR01-20</td>
<td>-2.0</td>
<td>43</td>
<td>1</td>
<td>0.51302</td>
<td>18.846</td>
<td>15.573</td>
<td>38.408</td>
<td></td>
</tr>
<tr>
<td>KR01-6_11</td>
<td>0.5</td>
<td>41</td>
<td>1</td>
<td>0.70323</td>
<td>0.51304</td>
<td>18.791</td>
<td>15.557</td>
<td>38.341</td>
</tr>
<tr>
<td>repeat</td>
<td>0.7</td>
<td>45</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KR01-37_23</td>
<td>0.0</td>
<td>81</td>
<td>1</td>
<td>0.70349</td>
<td>0.51302</td>
<td>18.843</td>
<td>15.577</td>
<td>38.418</td>
</tr>
<tr>
<td>repeat</td>
<td>0.5</td>
<td>80</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRO2-55_8</td>
<td>-2.0</td>
<td>115</td>
<td>1</td>
<td>0.51303</td>
<td>18.825</td>
<td>15.571</td>
<td>38.389</td>
<td></td>
</tr>
<tr>
<td>KR01-33_14</td>
<td>-2.3</td>
<td>165</td>
<td>1</td>
<td>0.51302</td>
<td>18.826</td>
<td>15.570</td>
<td>38.391</td>
<td></td>
</tr>
<tr>
<td>KR02-74_17</td>
<td>-0.9</td>
<td>194</td>
<td>1</td>
<td>0.51301</td>
<td>18.846</td>
<td>15.576</td>
<td>38.419</td>
<td></td>
</tr>
<tr>
<td>KR01-9_26</td>
<td>-2.3</td>
<td>244</td>
<td>1</td>
<td>0.51303</td>
<td>18.849</td>
<td>15.576</td>
<td>38.421</td>
<td></td>
</tr>
<tr>
<td>KR01-24_29</td>
<td>-2.1</td>
<td>297</td>
<td>1</td>
<td>0.51302</td>
<td>18.846</td>
<td>15.574</td>
<td>38.414</td>
<td></td>
</tr>
</tbody>
</table>

* - Radiogenic isotope data from (Kay, 1978; Sun, 1973)
Table 3: Tl concentrations and isotopic compositions of Western Aleutian lavas

<table>
<thead>
<tr>
<th>Sample</th>
<th>tn182_01_0</th>
<th>tn182_01_0</th>
<th>tn182_03_0</th>
<th>tn182_04_0</th>
<th>tn182_05_0</th>
<th>tn182_07_0</th>
<th>tn182_07_7</th>
<th>tn182_07_0</th>
<th>tn182_08_0</th>
<th>tn182_08_6</th>
<th>tn182_09_0</th>
<th>tn182_10_0</th>
<th>tn182_11_0</th>
<th>tn182_11_0</th>
<th>tn182_13_0</th>
<th>SO201-1b-33-001</th>
<th>SO201-1b-35-004</th>
<th>SO201-1b-36-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic H2O</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-3.2</td>
<td>-2.2</td>
<td>-2.2</td>
<td>-2.7</td>
<td>-2.6</td>
<td>-0.5</td>
<td>0.6</td>
<td>-2.7</td>
<td>-9.3</td>
<td>-2.3</td>
<td>-1.7</td>
<td>-1.5</td>
<td>-0.7</td>
<td>-3.4</td>
<td>-2.2</td>
<td>-2.0</td>
<td>-1.8</td>
<td>-3.1</td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>110</td>
<td>59</td>
<td>54</td>
<td>65</td>
<td>54</td>
<td>69</td>
<td>23</td>
<td>151</td>
<td>476</td>
<td>69</td>
<td>66</td>
<td>83</td>
<td>124</td>
<td>129</td>
<td>123</td>
<td>121</td>
<td>94</td>
<td>36</td>
</tr>
<tr>
<td>Ultrasonic 1M HCl</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-1.8</td>
<td>0.9</td>
<td>-9.2</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>107</td>
<td>30</td>
<td>465</td>
<td></td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic 6M HCl</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-1.8</td>
<td>0.7</td>
<td>-2.5</td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>106</td>
<td>30</td>
<td>184</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>No treatment</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>0.3</td>
<td>2.2</td>
<td>-9.5</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>17</td>
<td>23</td>
<td>877</td>
<td></td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>1M HCl leach</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>9.8</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Preferred Values

<table>
<thead>
<tr>
<th>Sample</th>
<th>tn182_01_0</th>
<th>tn182_01_0</th>
<th>tn182_03_0</th>
<th>tn182_04_0</th>
<th>tn182_05_0</th>
<th>tn182_07_0</th>
<th>tn182_07_7</th>
<th>tn182_07_0</th>
<th>tn182_08_0</th>
<th>tn182_08_6</th>
<th>tn182_09_0</th>
<th>tn182_10_0</th>
<th>tn182_11_0</th>
<th>tn182_11_0</th>
<th>tn182_13_0</th>
<th>SO201-1b-33-001</th>
<th>SO201-1b-35-004</th>
<th>SO201-1b-36-003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrasonic H2O</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-3.2</td>
<td>-2.2</td>
<td>-2.2</td>
<td>-2.7</td>
<td>-2.6</td>
<td>-1.8</td>
<td>0.7</td>
<td>-2.6</td>
<td>-9.3</td>
<td>-2.3</td>
<td>-1.7</td>
<td>-1.5</td>
<td>-0.4</td>
<td>-3.4</td>
<td>-2.2</td>
<td>-2.0</td>
<td>-1.8</td>
<td>-3.1</td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>110</td>
<td>59</td>
<td>54</td>
<td>65</td>
<td>54</td>
<td>107</td>
<td>27</td>
<td>168</td>
<td>470</td>
<td>69</td>
<td>66</td>
<td>83</td>
<td>140</td>
<td>298</td>
<td>123</td>
<td>79</td>
<td>94</td>
<td>56</td>
</tr>
<tr>
<td>Ultrasonic 1M HCl</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-1.8</td>
<td>0.9</td>
<td>-9.2</td>
<td>0.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>107</td>
<td>30</td>
<td>465</td>
<td></td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic 6M HCl</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>-1.8</td>
<td>0.7</td>
<td>-2.5</td>
<td></td>
<td>-1.0</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>106</td>
<td>30</td>
<td>184</td>
<td></td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>No treatment</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>0.3</td>
<td>2.2</td>
<td>-9.5</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>17</td>
<td>23</td>
<td>877</td>
<td></td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>1M HCl leach</td>
<td></td>
</tr>
<tr>
<td>Eps 205 Tl</td>
<td>9.8</td>
<td></td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Tl (ng/g)</td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>Trace Element</td>
<td>Radiogenic Isotope</td>
<td>Data Source</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Z</td>
<td>W</td>
<td>Kay & Kay (1988)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Site</th>
<th>Trace Element</th>
<th>Radiogenic Isotope</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>Z</td>
<td>W</td>
<td>Kay & Kay (1988)</td>
</tr>
</tbody>
</table>

For more detailed information, please refer to the original sources.
Figure 1

Western Aleutian dredges

Adak Island (Moffett volcano)

Kanaga Island and volcano

Atka Island (Korovin volcano)

Unimak Island (Westdahl volcano)

Umnak Island (Okmok volcano)

Surveyor Fan

Zodiac Fan

DSDP Hole 178

DSDP Hole 183

app. dir. of plate motion

app. dir. of plate motion

ODP Hole 886C
Figure 4

Subaerial weathering - Tl and Rb loss

ADK53
Figure 6

The figure shows the distribution of $\varepsilon^{205}\text{Tl}$ with depth meters below the sea floor for three different sites: DSDP 178, DSDP 183, and ODP 886C. The data points are plotted on a log scale for depth and $\varepsilon^{205}\text{Tl}$ concentration. The shaded areas represent the range of values for each site.
Figure 8

- Bulk detrital sediment
- Bulk pelagic sediment
- Western Aleutians
- ADK53

Figure 8: Diagram showing the isotopic ratios of 143Nd/144Nd and 87Sr/86Sr for different samples. The graph includes data points for Western Aleutians, Bulk detrital sediment, Bulk pelagic sediment, and ADK53, along with typical 2σ uncertainty lines.

Isotopic Ratios

- **143Nd/144Nd**
 - Western Aleutians: 0.7031 to 0.7033
 - Bulk detrital sediment: 0.7025 to 0.7037
 - Bulk pelagic sediment: 0.7027 to 0.7035
 - ADK53: 0.7029 to 0.7033

- **ε^{87}Sr/86Sr**
 - Western Aleutians: 0.7031 to 0.7033
 - Bulk detrital sediment: 0.7025 to 0.7037
 - Bulk pelagic sediment: 0.7027 to 0.7035
 - ADK53: 0.7029 to 0.7033

Additional Notes

- **Typical 2σ Uncertainty**: Shown as dashed lines on the graph.
- **DMM**: Represented as markers on the graph.

Legend

- **Blue**: Data points for Western Aleutians
- **Red**: Data points for Bulk detrital sediment
- **Green**: Data points for Bulk pelagic sediment
- **Gray**: Data points for ADK53
Figure 9

Western Aleutians
(Yogodzinski et al., 2015)

20% Detrital sediment melt
20% Pelagic sediment melt

Bulk detrital sediment
Bulk pelagic sediment

87Sr/86Sr

143Nd/144Nd

0.2%
0.4%
0.6%
0.8%
1.0%
1.2%

DMM

ADK53

- literature data

typical 2sd uncertainty