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Abstract

High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes—generically

known as restriction site associated DNA sequencing (RAD-seq)—is a common strategy to generate genome-wide genotypic and

sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic

markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and

ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be

estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon

fornonmodel species.Here,weperformedsystematic insilicosurveysof recognitionsequences, fordiverseandcommonlyusedtype II

restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given

restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic

relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes

targeting “neutral” elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of

recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including

transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/

PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or

related methods.

Key words: RAD-seq, reduced representation sequencing, PredRAD, experimental design, genome size prediction, restriction

recognition sequence probability.

Introduction

The use of type II restriction enzymes to obtain reduced rep-

resentation libraries from nuclear genomes, combined with

the power of next-generation sequencing technologies, is rap-

idly becoming one of the most commonly used strategies to

generate genome-wide genotypic and sequence data in both

model and nonmodel organisms (Baird et al. 2008; Andolfatto

et al. 2011; Elshire et al. 2011; Peterson et al. 2012). The single

nucleotide polymorphisms (SNPs) embedded in the resulting

restriction site associated DNA (RAD) sequence tags (Miller,

Dunham, et al. 2007; Baird et al. 2008) have myriad uses in

biology, which range from genetic mapping (Wang et al.

2013; Weber et al. 2013) to population

genomics (Hohenlohe et al. 2010; Andersen et al. 2012;

White et al. 2013), phylogeography (Emerson et al. 2010;

Reitzel et al. 2013), phylogenetics (Wagner et al. 2012;

Eaton and Ree 2013; Herrera and Shank 2015; Herrera

et al. 2015), and SNP marker discovery (Scaglione et al.

2012; Toonen et al. 2013).

The choice of appropriate type II restriction enzyme(s) is

critical for the effective design and application of RAD se-

quencing (RAD-seq) and a rapidly growing number of related

methods such as genotyping-by-sequencing (Elshire et al.

2011), multiplexed shotgun genotyping (Andolfatto et al.

GBE
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2011), double digest RAD-seq (Peterson et al. 2012), and

ezRAD (Toonen et al. 2013). This choice determines the

number of RAD markers that can be obtained, which in

turn dictates the amount of sequencing needed for a desired

coverage level, the number of samples that can be multi-

plexed, the monetary cost, and ultimately the success of a

project. The theoretical maximum number of RAD markers

that can be obtained for a given combination of restriction

enzyme and biological species can be easily calculated as twice

the frequency (absolute number of occurrences) of the en-

zyme’s recognition sequence (RS) (which for type II restriction

enzymes is also the cleavage site) in the genome, but only

when the fully sequenced genome is available. For cases in

which the whole genome sequence is not available (i.e., most

cases), this number can be approximated as twice the product

of the genome size and the probability of the enzyme’s RS in a

given genome.

Genome Sizes

Genome sizes can be approximated in nonmodel organisms

through sequencing-independent techniques such as Feulgen

densitometry (Hardie et al. 2002) or flow cytometry

(Vinogradov 1994; Dolezel et al. 2007). However, these tech-

niques have well-known limitations: 1) Flow cytometry often

requires the availability of fresh tissue material with accessible

intact cells or nuclei, thus diminishing its applicability to field-

collected and fixed samples; and 2) both flow cytometry and

Feulgen densitometry can be affected by staining interference

with cytosolic compounds and variability in DNA packaging

among cell types, which can significantly impact the accuracy

and reproducibility of measurements (see reviews by Hardie

et al. 2002; Dolezel and Bartos; and references therein).

Therefore, alternative methods for genome size estimation

are desirable.

Type II restriction enzymes, which are endonucleases chiefly

produced by prokaryotic micro-organisms, cleave double-

stranded DNA (dsDNA) at specific unmethylated RSs that

are 4–8 bp long and typically palindromic. These enzymes

are thought to play an important role as defense systems

against foreign phage dsDNA during infection or as selfish

parasitic elements, and therefore have been the center of an

evolutionary ‘arms race’ (Rambach and Tiollais 1974; Karlin

et al. 1992; Rocha et al. 2001). Type II restriction enzymes

are not known in eukaryotes and are not used as virulence

factors by bacteria to infect eukaryotic hosts. Therefore there

are no a priori reasons to believe that RSs in eukaryotic ge-

nomes are subject to selective pressures, but rather they

should be evolutionarily neutral. A prediction from this

neutrality hypothesis is that the frequency of restriction RSs

in a genome will be linearly correlated with the size of that

genome, unless the particular restriction RS is associated with

nonneutral genomic elements. Hence, the genome size of a

species can in theory be estimated from the number of

markers obtained from a RAD-seq experiment, given that

the restriction enzyme used shows the aforementioned

linearity.

Recognition Sequence Probabilities

Flow cytometry has also been used as a sequencing-

independent method to estimate the genomic guanine-

cytosine (GC) composition (Vinogradov 1998; Šmarda et al.

2011), a widely suggested parameter for the estimation of the

restriction enzyme’s RS probability (Baird et al. 2008; Davey

and Blaxter 2011). Nonetheless, preliminary evidence suggests

that restriction RS probability calculation, using GC composi-

tion as the only parameter, can yield predicted cleavage site

frequencies that deviate significantly from observations, for

particular combinations of taxa and restriction enzymes

(Davey and Blaxter 2011; Davey et al. 2011). The extent and

magnitude of these deviations across the eukaryotic tree of life

remain unknown. Better models to calculate restriction RS

probabilities across taxonomic groups are needed to improve

the accuracy of predictions of cleavage site frequencies in spe-

cies without sequenced genomes. These models could be ap-

plied using nongenomic data sets (e.g., transcriptomes) to

obtain RS probability estimates, thus aiding the applicability

of RAD-seq methods in nonmodel organisms.

Eukaryotic genomes have heterogeneous compositions

with characteristic signatures at the level of di- and trinucleo-

tides that are largely independent of coding status or function

(Karlin and Mrázek 1997; Karlin et al. 1998; Gentles and

Karlin 2001). Thus, it is possible that genome composition at

these levels has a large influence on the abundance of short

sequence patterns, such as RSs of restriction enzymes. Models

incorporating the information from these genomic composi-

tional signatures should improve the accuracy of restriction RS

probability calculations.

Here we performed systematic in silico genome-wide

surveys of genome compositions and RSs, for diverse

and commonly used type II restriction enzymes, in 434

eukaryotic whole and draft genomes (supplementary

table S1, Supplementary Material online) to: 1)

Characterize restriction RS frequencies across the eukary-

otic tree of life; 2) explore the potential for predicting

genome sizes from restriction RS frequency data; 3) de-

velop stochastic models based on genomic compositions

to calculate probabilities of RSs across taxa; and 4) evalu-

ate the applicability of these models to species for which

only nongenomic data are available (i.e., not whole or

draft genome assemblies), such as transcriptomes or

RAD-seq data. The PredRAD analytical pipeline developed

in this study (https://github.com/phrh/PredRAD), and the

resulting databases constitute a valuable reference re-

source that will help guide restriction enzyme choice in

future studies using broadly applicable RAD-related

methods.
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Materials and Methods

Observed Restriction Recognition Sequence Frequencies

Assemblies from eukaryotic whole genome shotgun (WGS)

sequencing projects available as of December 2012 were re-

trieved primarily from the US National Center for

Biotechnology Information (NCBI) WGS database (supplemen-

tary table S1, Supplementary Material online). Only one spe-

cies per genus was included. Of the 434 genome assemblies

included in this study, 42% corresponded to fungi, 21% to

vertebrates, 16% to invertebrates, and 9% to plants. Only

unambiguous nucleotide calls were taken into account.

Genome sequence sizes were measured as the number of

unambiguous nucleotides in the assembly. A set of 18 com-

monly used palindromic type II restriction enzymes with vari-

able nucleotide compositions was screened in each of the

genome assemblies (table 1). The number of cleavage sites

present in each genome was obtained by counting the

number of unambiguous matches for each RS pattern.

Under optimal experimental conditions each cleavage site

should produce two RAD tags, one in each direction from

the restriction site. Therefore, we define the number of ob-

served RAD tags in each genome assembly as twice the

number of RS pattern matches.

To test for potential correlation between observed restric-

tion RS frequencies for each enzyme and the phylogenetic

relatedness among species, we calculated the Abouheif’s

Cmean index of phylogenetic signal (Pavoine et al. 2008;

Abouheif 1999) as implemented in the abouheif.moran func-

tion of the R package “adephylo” (Jombart et al. 2010).

Abouheif’s Cmean performs well for traits evolving under a

model of Brownian Motion, and does not depend on

branch lengths of the phylogenetic tree, but focuses on the

topology (Münkemüller et al. 2012). This later characteristic is

important given the large phylogenetic scale of this study,

which restricts us to use summary “supertrees” with uncertain

branch lengths. To test the possible influence of the chosen

phylogenetic tree, we compared the Abouheif’s Cmean index

values calculated using a tree containing information for all

evaluated species, which was extracted from the US NCBI

phylogenetic taxonomy database on May 16, 2013, using

the iTOL tool http://itol.embl.de. (Federhen 2012), with an

equivalent tree obtained from the Open Tree of Life (OTL)

synthetic draft phylogenetic tree database version 3

(Hinchliff et al. 2015), retrieved on September 28, 2015 and

pruned using the R package “ape” (Paradis et al. 2004). The

OTL tree had fewer branches than the NCBI tree due to the

incompleteness of the OTL database at the time of writing.

Recovery of RAD Tags

The number of cleavage sites in a genome is not the only

factor that determines the number of RAD loci that can be

recovered experimentally. The architecture of each genome,

and in particular the number of repetitive elements and gene

duplications, can significantly decrease the number of unam-

biguous loci obtained via alignment to a reference genome or

de novo assembly. To quantify this contribution, we assessed

the proportion of RAD tags that can potentially be recovered

unambiguously after empirical sequencing. We performed in

silico sequencing experiments for all genome assembly–

restriction enzyme combinations. For each restriction site lo-

cated in the genome assemblies, 100 bp up- and downstream

of the restriction site was extracted. This sequence read length

is typical of sequencing experiments performed with current

Hi-Seq platforms (Illumina, Inc.). The resulting RAD tags were

aligned back to their original genome assemblies using

BOWTIE v0.12.7 (Langmead et al. 2009). Only reads that pro-

duced a unique best alignment were retained.

Genome Size Estimation

To explore the potential for predicting genome sizes from re-

striction RS frequency data, we modeled their relationship

using data from the 434 genomes and 18 restriction enzymes

through linear regression. Genome sizes and restriction RS

frequencies were log10 converted to handle the multiple

orders of magnitude spanned within each variable. The

nonparametric Spearman’s rank-order correlation coefficient

(r) was calculated to measure the strength of association be-

tween genome sizes and restriction RS frequencies. Simple

linear models were fitted using least-squares estimation of b
parameters with the lm function in R. The linear model (eq. 1)

used to predict genome size y, in units of base pairs, is defined

as follows:

y ¼ 10ðb0þb1 log10xÞ
ð1Þ

where x is the number of restriction RSs in the genome, and b0

and b1 are the estimated parameters. Table 2 provides the

estimated values of b0 and b1 for each restriction enzyme.

Restriction Recognition Sequence Probability Calculation

To test the hypothesis that compositional heterogeneity in

eukaryotic genomes can determine the frequency of cleavage

sites of each genome, we characterized the GC content, as

well as the mononucleotide, dinucleotide, and trinucleotide

compositions of each genome and developed probability

models to predict the expected frequency of RSs for each

restriction enzyme. GC content was calculated as the propor-

tion of unambiguous nucleotides in the assembly that are

either guanine or cytosine, assuming that the frequency of

guanine is equal to the frequency of cytosine.

Mononucleotide composition was determined as the fre-

quency of each one of the four nucleotides. Dinucleotide

and trinucleotide compositions were determined as the fre-

quency of each one of the 16 or 64 possible nucleotide com-

binations, respectively.

RAD-seq Marker Numbers GBE
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Mononucleotide and GC content sequence models were

used to estimate the probability of a particular RS assuming

that each nucleotide is independent of the others and of its

position on the RS. The GC content model has only two pa-

rameters, the GC and adenine-thymine (AT) frequencies. In

the mononucleotide model (eq. 2), there are four parameters,

one for each of the four possible nucleotides.

pðsÞ ¼
Y

i¼1;...;nðsÞ

pðsiÞ ð2Þ

Here, pðsiÞ is the probability of nucleotide si at the position i of

the RS s. n(s) is the length of the RS. In the GC content model,

pðsiÞ can take the values of fG;C or fA;T . In the mononucleotide

model, pðsiÞ can take the values of fA, fG, fC , or fT , where fX is

the frequency of a given mononucleotide (X = A, G, C, or T ).

Dinucleotide and trinucleotide sequence models (eq. 3)

were defined as first- and second-degree Markov chain tran-

sition probability models with 16 or 64 parameters, respec-

tively (Karlin et al. 1992; Singh 2009). These models take into

account the position of each nucleotide in the RS. Nucleotides

along the RS are not independent from nucleotides in neigh-

boring positions. The probability of a particular RS for these

Markov chain models was calculated as follows:

pðsÞ ¼ pðs1Þ
Y

i¼2;...;nðsÞ

pcðsi jsi�1; . . . ; si�nÞ ð3Þ

where pðs1Þ is the probability at the first position on the RS

and pc is the conditional probability of a subsequent nucleo-

tide on the RS depending on the previous n nucleotides. In the

dinucleotide sequence model, n ¼ 1 and in the trinucleotide

sequence models n ¼ 2.

Genomic resources are unavailable for most species.

However, reduced representation data sets that capture a

small fraction of a genome, such as RNA-seq or RAD-seq

data sets, are more widely available. We investigated the po-

tential use of these data sets to estimate genome composition

parameters for our predictive models and calculate RS proba-

bilities for the selected set of 18 restriction enzymes. For this

we selected a set of 27 species out of the 434 examined eu-

karyotic species with whole and draft genomes, which also

have publically available transcriptome data (supplementary

table S2, Supplementary Material online). We also used the

data from the in silico RAD sequencing experiments (described

above) as reduced representation data sets for these species.

We estimated genome composition parameters from tran-

scriptome and RAD-seq data sets, and calculated RS probabil-

ities using the models.

Expectations versus Observations

To assess the effectiveness of the predictive RS models, we

compared the number of observed restriction sites (frequency)

in the genome assemblies with the expected predicted

number according to each model using composition parame-

ters estimated from whole and draft genome data sets. The

expected number of restriction sites in a given genome was

calculated as the product of the probability of a RS multi-

plied by the genome sequence size. To quantify the de-

partures from expectation, we define a similarity index (SI)

as follows:

SI ¼ log2ðO=EÞ

where O and E are the observed and expected number of

restriction sites, respectively. If SI = 0, then E = O. If SI< 0,

then E>O, and vice versa.

To measure the overall similarity between the restriction RS

probabilities calculated using known composition parameters

from the genome and those calculated using estimated com-

position parameters from reduced representation transcrip-

tome and genome data sets, we calculated the mean

squared error (MSE) per species as follows:

MSE ¼
1

n

Xn

i¼1

ðpRRðsÞi � ðpGNðsÞiÞ
2

ð4Þ

where pRRðsÞi is the probability of a restriction RS (of an

enzyme i ) calculated using composition parameters estimated

from reduced representation data sets and pGNðsÞi is the

Table 1

Restriction enzymes included in this study

Core

Sequence

Restriction

Enzyme

Recognition

Sequence

Recognition

Sequence

Length (bp)

GC Content

of Recongition

Sequence (%)

GGCC

NotI GCGGCCGC 8 100.0

CCGG

SgrAI CRCCGGYG 8 87.5

BsrFI RCCGGY 6 83.3

NgoMIV GCCGGC 6 100.0

AgeI ACCGGT 6 66.7

MspI CCGG 4 100.0

TGCA

SbfI CCTGCAGG 8 75.0

PstI CTGCAG 6 66.7

NsiI ATGCAT 6 33.3

AATT

ApoI RAATTY 6 16.7

EcoRI GAATTC 6 33.3

MluCI AATT 4 0.0

TTAA

MseI TTAA 4 0.0

CATG

NspI RCATGY 6 50.0

NcoI CCATGG 6 66.7

PciI ACATGT 6 33.3

FatI CATG 4 50.0

GTAC

KpnI GGTACC 6 66.7
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probability of a restriction RS calculated using known compo-

sition parameters from genome data sets. Each enzyme was

assigned an arbitrary number from 1 to 18 (n). When MSE = 0,

the probabilities are identical. MSE value increases as similarity

decreases.

Location of Recognition Sequences in Mammalian
Genomes

To evaluate the possibility that RS frequency patterns in-

consistent with evolutionary neutrality occurred in geno-

mic areas subject to natural selection, we investigated the

genomic locations of RSs relative to well-annotated con-

served genomic elements. We obtained DNA sequences of

genomic elements (sensu Siepel et al. 2005; Miller,

Rosenbloom, et al. 2007) that are strongly conserved

across mammals from the human, dog, and mouse ge-

nomes using the University of California Santa Cruz

genome table browser (http://genome.ucsc.edu/cgi-bin/

hgTables). We counted the number of occurrences of

RSs for each of the 18 restriction enzymes in these con-

served genomic elements (observed) and compared them,

using the SI described above, with the expected number of

occurrences in a random genome sample of equal size

(calculated as the relative frequency of RSs in the whole

genome [total number of RSs/genome size in base pairs]

multiplied by the size of each of the conserved element

data sets in base pairs).

The analytical software pipeline described here (PredRAD),

visualization scripts, and output database files are publicly

available at https://github.com/phrh/PredRAD.

Results

Frequencies of Recognition Sequences Are Highly
Variable across Taxa

To characterize cleavage site frequencies across the

Eukaryotic tree of life, we surveyed restriction RSs for 18

commonly used palindromic type II restriction enzymes in

434 whole and draft genome assemblies. Observed relative

frequencies of RSs were highly variable among broad taxo-

nomic groups for the set of restriction enzymes examined

here (table 1), with clear clustering patterns determined by

phylogeny (fig. 1). To measure the significance of the corre-

lation between observed restriction RS frequencies for each

enzyme and the phylogenetic relatedness among species,

we calculated the Abouheif’s Cmean index of phylogenetic

signal (Pavoine et al. 2008; Abouheif 1999). To test the pos-

sible influence of the chosen phylogenetic tree, we com-

pared the Abouheif’s Cmean index values calculated using a

tree extracted from NCBI phylogenetic taxonomy database

(434 tips and 265 internal nodes) with an equivalent tree

obtained from the OTL database (219 tips and 175 internal

nodes; OTL tree had fewer branches due to the incomplete-

ness of the database at the time of writing). We found that in

both cases all correlations were significant (P< 0.05; fig. 1

and supplementary figs. S1 and S2, Supplementary Material

online), but, as expected, the magnitude of the correlation

(Abouheif’s Cmean value) was variable among restriction en-

zymes. The Abouheif’s Cmean values were remarkably similar,

although generally smaller when calculated on the OTL tree

than the NCBI tree. Most importantly, the differences in

Abouheif’s Cmean values observed across restriction enzymes

Table 2

Linear Regression Parameter Estimates and 95% CIs

Enzyme b0 b1 95% CI b0 95% CI b1

AgeI 3.791226 1.081123 3.589084–3.993368 1.030957–1.131288

ApoI 3.909432 0.789828 3.771043–4.047820 0.764083–0.815571

BsrFI 3.595150 0.972785 3.336245–3.854053 0.917377–1.028193

EcoRI 3.915725 0.932289 3.836952–3.994497 0.914985–0.949591

FatI 2.719837 0.947207 2.639872–2.799802 0.933248–0.961165

KpnI 4.041810 0.984192 3.931500–4.152119 0.957826–1.010558

MluCI 3.432945 0.796619 3.281188–3.584701 0.770985–0.822252

MseI 3.963499 0.722786 3.813020–4.113977 0.696835–0.748737

MspI 3.084383 0.957434 2.846370–3.322395 0.912357–1.002510

NcoI 4.089533 0.910311 3.975127–4.203937 0.884724–0.935898

NgoMIV 5.115077 0.738618 4.881512–5.348642 0.681804–0.795430

NotI 6.432067 0.581703 6.254678–6.609455 0.522412–0.640993

NsiI 3.948432 0.908376 3.874564–4.022299 0.892446–0.924304

NspI 3.399772 0.930233 3.316885–3.482657 0.914012–0.946453

PciI 4.092091 0.885098 4.031567–4.152614 0.871942–0.898254

PstI 4.244698 0.850488 4.114538–4.374857 0.822215–0.878759

SbfI 5.782031 0.726905 5.671977–5.892083 0.693729–0.760080

SgrAI 5.500710 0.749462 5.245991–5.755428 0.677348–0.821576

NOTE.—CI, confidence interval.
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FIG. 1.—Observed relative restriction recognition sequence frequencies. Left: Phylogenetic tree of all eukaryotic taxa analyzed in this study. The tree is

based on the NCBI phylogenetic taxonomy tree retrieved on May 16, 2013 using the iTOL tool http://itol.embl.de. Branch colors and labels indicate broad

taxonomic groups. Organism silhouettes and cartoons were created by the authors or obtained from http://phylopic.org. Right: Heatmap of the log10 of the

observed relative frequency of restriction sites per megabase. Each row corresponds to a species from the tree on the left, and each column corresponds to a

different restriction enzyme. Dot/line plot indicates the value of the Abouheif’s Cmean index of phylogenetic signal in the restriction recognition sequence

frequencies for each restriction enzyme. Light gray dots/lines indicate the values obtained when using the NCBI tree and dark gray dots/lines indicate the

values obtained when using the OTL tree. All Abouheif’s Cmean values are significant at a= 0.05 (P< 0.02).
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were mostly consistent in direction and magnitude between

the two trees.

As an example of this phylogenetic variability of observed

relative frequencies of RSs, we observed 45.8 recognition se-

quences per megabase (RS/Mb) ± 24.6 (mean ± standard de-

viation [SD]) for NgoMIV in core eudicot plants, compared

with 277.4 ± 131.3 RS/Mb in commelinid plants (monocots).

Among closely related species the relative frequency patterns

were similar and variability generally small. Observed relative

frequencies of RS/Mb were inversely proportional to the

length of the RS, with orders of magnitude differences

among the 4, 6, and 8 cutters when compared within the

same species; for example, in the starlet anemone

Nematostella vectensis, there were 3917.6, 167.6, and 6.9

RS/Mb for the 4-cutter FatI, 6-cutter PstI, and 8-cutter SbfI,

respectively. In contrast, nucleotide composition of the RS

itself did not show a clear correlation with the observed rela-

tive frequency of cleavage sites. For example, 83.6 RS/

Mb ± 25.1 were observed in Neopterygii vertebrates for KpnI

(GGTACC) and 622.6 RS/Mb ± 119.1 were observed for PstI (C

TGCAG), both RSs with the same GC content (66.7%).

Genome Sizes Can Be Predicted from Particular
Recognition Sequence Frequencies

To explore the potential for predicting genome sizes from re-

striction RS frequency data, we modeled their relationship

using data from the 434 genome assemblies and 18 restriction

enzymes through linear regression. A general positive correla-

tion between RS frequency and genome size was observed for

all restriction enzymes, being significantly strong (Spearman’s

correlation coefficient>0.95) for five of them: EcoRI, FatI, NsiI,

NspI, and PciI (fig. 2). Predicted genome sizes, calculated using

the linear models with estimated beta parameters for these

five enzymes (table 2), matched actual observed genome size

values extremely well (supplementary fig. S3, Supplementary

Material online).

Genome Composition-based Models Outperform
Traditional GC Content-based Models

To generate better models to calculate restriction RS probabil-

ities, we developed stochastic models based on the GC con-

tent of each genome, as well as the mononucleotide,

dinucleotide, and trinucleotide compositions for each restric-

tion enzyme. We evaluated the fit of each model by compar-

ing the in silico observed frequencies of cleavage sites with the

expected frequencies predicted by the models using compo-

sition parameters estimated from the full genome assemblies.

This fit was measured with an SI, defined as the binary loga-

rithm of the quotient of the number of observed and expected

cleavage sites. A positive SI indicates that the number of ob-

served cleavage sites is greater than the expected, whereas a

negative SI indicates a smaller number of observed sites than

expected. If SI is equal to 0, then the number of observed sites

is equal to the expectation. For example, an SI = 1 indicates

that the number of observed cleavage sites for a particular

enzyme in a given genome is twice the number of expected

sites predicted by a particular model. Similarly, an SI =�1 in-

dicates that the observed number is half the expected

number. Trinucleotide composition models were in general

a better predictor, in terms of their accuracy and precision,

of the expected number of cleavage sites than any of the

other models when full genome assemblies were used to es-

timate model parameters (figs. 3–5). The mononucleotide and

GC content models produced relatively poorer predictions

that were indistinguishable from one another (figs. 3–5). In

a few cases the other models outperformed the trinucleotide

model, for example, EcoRI (figs. 3–5). The fit of the predictions

was highly variable among broad taxonomic groups but gen-

erally similar within, for example, in Neopterygii vertebrates an

average SI of 0.14 ± 0.19 for AgeI with the dinucleotide model

compared with �0.31 ± 0.19 in Sarcopterygii.

Recognition Sequence Probability Can Be Calculated
from Nongenomic Data Sets

Genomic resources (whole or draft genomes) are unavailable

for most species. Dunn and Ryan (2015) estimate that less

than ~0.015% of species have a sequenced draft genome

to date. However, reduced representation data sets that cap-

ture a small fraction of a genome, such as RNA-seq or RAD-

seq data sets, can now be easily and economically developed.

We investigated the potential use of these data sets to esti-

mate genome composition parameters for our predictive

models and calculate RS probabilities of any given restriction

enzyme. For this we selected a set of 27 species out of the 434

examined eukaryotic species with whole and draft genomes,

which also have publically available transcriptome data. The

restriction sequence probabilities calculated for the same

panel of 18 restriction enzymes, as above, were remarkably

similar between those calculated using known composition

parameters from the whole and draft genomes and those

calculated using estimated composition parameters from tran-

scriptome data sets (fig. 6). Interestingly, the overall similarity

between the two kinds of calculated probabilities (measured

as the MSE calculated across all species) was greatest when

probabilities were calculated using a mononucleotide compo-

sition model (0.046; when MSE = 0 the probabilities are iden-

tical; MSE value increases as similarity decreases), and

decreased when dinucleotide and trinucleotide models were

used (0.06 and 0.07, respectively). As expected, the species-

specific MSE values were variable, and tended to decrease as

the propotion of genome represented by the transcriptome

increased (fig. 6).

We also calculated RS probabilities using parameters

estimated from the in silico RAD-seq data for the same

27 species, finding great variability (fig. 7). The RS proba-

bilities calculated using parameters estimated from
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FIG. 2.—Linear correlations of restriction recognition sequence frequencies and genome sizes. Scatter plots show the observed numbers of recognition

sequences in a genome for a given restriction enzyme (x-axis) versus the size of the genome in base pairs (y-axis). The data for all the 434 examined genomes

are shown. Each panel shows the data for a different restriction enzyme. Dot colors indicate broad taxonomic groups: Fungi (yellow), plants (green),

invertebrates (blue), vertebrates (red), and others (black). Nonparametric Spearman’s rank-order correlation coefficients (r) are shown for each restriction

enzyme. All r are significant at a=0.05 (P< 1�10�68). Solid gray lines represent the best-fit linear models with 95% confidence intervals (gray dotted lines).
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FIG. 3.—Overall fit of genome composition models per restriction enzyme as measured by the Similarity Index when calculated using known compo-

sition parameters from the full genome assemblies. Vertical axes in the box and whisker plots indicate the values of the SI for each species per enzyme (see

Methods). Horizontal axes in the box and whisker plots indicate the genome composition model: GC content (gc), mononucleotide (mono), dinucleotide (di),

and trinucleotide (tri). Horizontal edges of range boxes indicate the first and third quartiles of the SI values under each composition model. The thick

horizontal black line represents the median. Whiskers indicate the value of 1.5 times the interquartile range from the first and third quartiles. Outliers are

defined as SI values outside the whiskers range and are represented by dots. Red dashed lines indicate SI =0.
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FIG. 4.—Similarity indexes for trinucleotide and dinucleotide genome composition models calculated using known composition parameters from the full

genome assemblies. Left: Phylogenetic tree as in figure 1. Center: Heatmap of the similarity indices for the trinucleotide model Right: Heatmap of the

similarity indexes for the dinucleotide model. Each row corresponds to a species from the tree on the left, and each column corresponds to a different

restriction enzyme. Cyan indicates SI< 0 (smaller number of observed sites than expected) and yellow indicates SI> 0 (greater number of observed sites than

expected). If SI = 0, then the number of observed sites is equal to the expectation. An SI = 1 indicates that the number of observed cleavage sites for a

particular enzyme in a given genome is twice the number of expected sites predicted by a particular model. Red line in the color scale box shows the

distribution histogram of all values.
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FIG. 5.—Similarity indexes for mononucleotide and GC-content genome composition models calculated using known composition parameters from the

full genome assemblies. Left: Phylogenetic tree as in figure 1. Center: Heatmap of the similarity indexes for the mononucleotide content model Right:

Heatmap of the similarity indexes for the GC content model. As in figure 4, each row corresponds to a species from the tree on the left, and each column

corresponds to a different restriction enzyme. Cyan indicates SI< 0 and yellow indicates SI>0. Red line in the color scale box shows the distribution

histogram of all values.
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RAD-seq data sets obtained with enzymes that showed

strong correlations between RS frequency and genome

size (fig. 2) were almost identical to the probabilities cal-

culated using the known composition parameters from

the whole or draft genome data sets (fig. 7 and supple-

mentary fig. S4, Supplementary Material online).

Contrastingly, the probabilities calculated from RAD-seq

data sets obtained with enzymes that showed weaker cor-

relations between RS frequency and genome size (such as

NotI, NgoMIV, and SgrAI) were substantially dissimilar (fig.

7 and supplementary fig. S4, Supplementary Material

online). Overall, as observed for the transcriptome data

sets, the similarity between the two kinds of calculated

probabilities (measured by the MSE) was greatest when

probabilities were calculated using a mononucleotide

composition model, and decreased when dinucleotide

and trinucleotide models were used. Similarly, the spe-

cies-specific MSE values tended to decrease as the propor-

tion of genome represented by the RAD-seq data sets

increased (supplementary fig. S4, Supplementary

Material online), although in some cases (e.g., PstI and

SbfI) they showed a marked decrease followed by an in-

crease at higher representation proportions.

Predicted frequencies of cleavage sites (absolute number of

cleavage sites), obtained by multiplying known genome sizes

with the probabilities calculated using composition models,

were remarkably similar to the observed frequencies of cleav-

age sites in whole and draft genome data sets when the

model parameters were estimated from transcriptome data

sets, or from RAD-seq data sets generated with restriction

enzymes showing strong correlations between RS frequency

and genome size (supplementary figs. S5–S7, Supplementary

Material online).

Discussion

Genome-Wide Surveys of Cleavage Sites across the
Eukaryotic Tree of Life

Observed restriction RS frequencies for a given restriction

enzyme are strikingly variable across broad eukaryotic taxo-

nomic groups, but are similar among closely related species.

This pattern is most evident in groups that have a larger tax-

onomic representation, such as mammals and eudicot plants.

As more genome assemblies become available, patterns

within many other underrepresented taxonomic groups will

be further revealed. Quantitatively, the correlation between

RS frequencies and phylogenetic relatedness, measured by the

Abouheif’s Cmean index of phylogenetic signal, is significant in

all examined cases. The fact that Abouheif’s Cmean values are

similar and vary consistently between the two phylogenetic

trees evaluated in this study (OTL and NCBI) indicates that the

correlation between RS frequencies and phylogenetic related-

ness is robust to the use of alternative phylogenetic hypothe-

ses. The small observed differences in Abouheif’s Cmean

values might be attributable to the differences in the

number of branches between trees as well as the tree topol-

ogy, especially in deeper unresolved parts of the eukaryotic

tree of life. Altogether these observations are consistent with

the hypothesis that the abundance of cleavage sites is largely

determined by phylogenetic relatedness.

As expected, observed relative frequencies of cleavage sites

with shorter RSs are on average higher than the observed

frequencies with longer RSs. However, this pattern is not uni-

versal. There are several instances in which the relative fre-

quency of cleavage sites for a high-denomination cutter is

higher than that for a low-denomination cutter. For example,

in primates the relative frequency of the 8-cutter SbfI

0.046
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FIG. 6.—Left: Scatter plot of the probability of restriction RS probabilities calculated using known composition parameters from the full genome

assemblies (x-axis) versus those calculated using estimated composition parameters from transcriptome data sets (y-axis). Each dot represents the combi-

nation of one of the 18 examined restriction enzymes and one of the 27 species in the reduced representation subset. Colors indicate the probabilities

calculated by different models: Mononucleotides (yellow), dinucleotides (blue), and trinucleotides (red). Average MSE values for the probabilities calculated

with each model are shown. Solid black line represents the identity line, in which x = y. Right: Scatter plot of the percentage of the genome represented by

the transcriptome data sets (x-axis) versus per-species MSE values for the probabilities calculated with each model (y-axis). As before, colors indicate the

probabilities calculated by different models: Mononucleotides (yellow), dinucleotides (blue), and trinucleotides (red).
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FIG. 7.—Scatter plots of the probability of restriction RS probabilities calculated using known composition parameters from the genome (x-axis) versus

those calculated using estimated composition parameters from in silico RAD-seq data sets (y-axis). Each dot represents the combination of one of the 18

examined restriction enzymes and one of the 27 species in the reduced representation subset. Colors indicate the probabilities calculated by different models:

Mononucleotides (yellow), dinucleotides (blue), and trinucleotides (red). Average MSE values for the probabilities calculated with each model are shown.

Solid black lines represents the identity lines, in which x = y.
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(24.6 ± 1.7 RS/Mb) is significantly higher than the frequency of

the 6-cutter AgeI (18.4 ± 1.4 RS/Mb). These deviations from

expectation are indicative of enzyme-specific frequency

biases for particular taxa, and, as illustrated in the results sec-

tion, are not correlated with the base composition of RSs.

These observations demonstrate that the expected relative

frequencies of RSs cannot be naively extrapolated across

enzyme types and divergent taxa, but rather specific knowl-

edge of RS frequencies/probabilities and genome sizes is

needed.

Predictability of Genome Sizes

For many of the examined type II restriction enzymes (e.g.,

EcoRI, FatI, NsilI, NspI, PciI), the observed frequencies of RSs in

eukaryotic genomes are consistent with the idea that they

behave neutrally, evolutionary speaking, and therefore can

be readily used as parameters in linear models to estimate

genome sizes (figs. 1 and 2). In contrast, the observed fre-

quencies of RSs for some other type II restriction enzymes

showed significant deviations from the predictions of this evo-

lutionary neutrality hypothesis (e.g., BsrFI, NgoMIV, NotI, SbfI,

SgrAI). A closer look at the genomic locations of the RSs of

these deviant cases reveals that, in mammals, they are more

likely to occur in conserved genomic elements than what

would be expected by chance (fig. 8). Conserved genomic

elements (sensu Siepel et al. 2005) are widely recognized as

evidence of functional regions, mainly regulatory, under

strong purifying (negative) selection (Bejerano et al. 2004;

Katzman et al. 2007). Thus, this observation suggests that

the association of some restriction RSs with nonneutral

genomic elements in particular taxa can account for some

of the observed biases and heterogeneity in the relative fre-

quencies of cleavage site across the eukaryotic tree of life.

Further comparative genomic studies in underrepresented

clades promise to unravel additional potential mechanisms

that can further explain observed deviations from expected

neutral behavior.

Predictability of Recognition Sequence Probabilities

Our analyses indicate that in most cases, when composition

parameters are estimated from full genome assemblies, trinu-

cleotide stochastic models are the best predictors, whereas

the GC content and mononucleotide models are the worst

predictors of the expected relative number of cleavage sites in

a eukaryotic genome. It is likely that the greater number of

parameters in the trinucleotide model (64, compared with 16,

4, and 2 of the dinucleotide, mononucleotide, and GC con-

tent model, respectively), combined with the greater k-mer

length, is the cause of the better fit. However, this trend is

not universal. As illustrated in the Results section, in a few

cases the other models outperformed the trinucleotide com-

position model. Neither the GC content nor the length of the

RS can confidently explain the observed discrepancies.

Increasing the k-mer length above trinucleotide in the com-

position models (i.e., tetranucleotide, pentanucleotide, etc.)

could improve their fit; however, this will come at a cost of

increasing probability calculation error in reduced representa-

tion data sets (caused by sampling error in data sets composed

by many short contigs vs. data sets composed by few long

contigs) (figs. 6 and 7 and supplementary fig. S4,

Supplementary Material online). Future cost-benefit evalua-

tions of the overall influence of these factors (k-mer length

and genome sampling error) will help elucidate their relative

contributions to RS probability calculations using parameters

estimated from nongenomic reduced representation data

sets. In the meantime, we suggest generating a range of prob-

ability values from the different models when reduced repre-

sentation data sets are used to calculate RS probabilities.

It is not surprising that the fit of the predictions made by the

models is highly variable across taxonomic groups, given the

high heterogeneity observed in the genetic composition pat-

terns across the eukaryotic tree of life (Appendix). We con-

clude that the predictability of cleavage site frequencies in

eukaryotic genomes needs to be treated on a case-specific

basis, whereby the phylogenetic position of the taxon of in-

terest, its genome size, and the probability of the RS of the

selected restriction enzyme are the chief foci among the most

determinant factors.

The remarkable similarity between probabilities calculated

using parameters estimated from nongenomic (transcriptome

and “neutral” RAD-seq data sets) and genomic data sets dem-

onstrates the potential of using extant reduced representation

data sets for planning further RAD sequencing projects.

FIG. 8.—Scatter plot of the Spearman’s correlation coefficient (r)

values between genome sizes and restriction recognition sequence fre-

quencies (x-axis) versus SI values between observed and expected numbers

of restriction recognition sequences in mammalian conserved element ge-

nomic regions (y-axis). Corresponding restriction enzyme names to each r
value are shown. Colors and symbols indicate different taxa: Dog (blue

triangles), mouse (red crosses), and human (yellow circles). Dashed line

indicates SI = 0 (value at which expected and observed values are equal).
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Although transcriptome data sets by definition are enriched in

functional genomic regions (transcribed genes) that are

known to be targets of natural selection at different levels

(codons, protein domains, etc.) we find no evidence of sub-

stantial differences in the underlying mononucleotide, dinu-

cleotide, and trinucleotide compositions compared with the

overall genome-wide compositions. This observation is consis-

tent with previous studies showing that genomic composition

does not vary significantly between noncoding and coding

regions (Karlin and Mrázek 1997; Karlin et al. 1998; Gentles

and Karlin 2001). In the cases of RAD-seq data sets, there are

clear biases in the underlying mononucleotide, dinucleotide,

and trinucleotide compositions for data sets generated with

restriction enzymes targeting “nonneutral” RSs (e.g., NotI,

SgrAI, NgoMIV, SbfI, BsrFI) (figs. 7 and 8) compared with

the overall genome-wide compositions, as evidenced by the

calculated RS probabilities. As discussed above, these biases

are likely caused in part by associations with conserved regions

under strong selective pressures. RAD-seq data sets generated

with restriction enzymes that are known to target nonneutral

RSs should not be utilized for genome size estimation and

restriction RS probability calculation as these would likely

yield biased inferences.

Applications to Study Design with RAD-seq and Related
Methodologies

For the design of a study using RAD-seq, or a related meth-

odology, there are two fundamental questions that re-

searchers commonly face: 1) what is the best restriction

enzyme to use to obtain a desired number of RAD tags in

the organism of interest? and 2) how many markers can be

obtained with a particular enzyme in the organism of interest?

The results from this study coupled with the developed soft-

ware pipeline PredRAD will allow any researcher to obtain an

approximate answer to these questions. The flow diagram in

figure 9 illustrates a suggested workflow.

In a best-case scenario for the practical design of a study

using RAD-seq, or a related methodology, the species of in-

terest is already included in the database presented here. In

this case, the best proxy for the estimated number of RAD tags

that could be obtained empirically through classic RAD-seq

(Baird et al. 2008) would be twice the number of in silico

observed cleavage sites for each restriction enzyme (each

cleavage site is expected to produce two RAD tags, one in

each direction from the cleavage site) minus the number of in

silico tags that align to multiple regions in the genome. In the

case of ddRAD and other methodologies that predominantly

sequence in only one direction from the cleavage site

(Peterson et al. 2012), the number of markers would then

be approximately equal to the number of in silico observed

cleavage sites for each restriction enzyme. However, addi-

tional combined analysis with the pair of restriction enzymes

to be used in ddRAD is necessary in order to gain a more

accurate estimate of the number of RAD tags that could be

obtained empirically.

For most of the 434 genomes examined in this study, the

recovery of RAD-tags after in silico sequencing was notably

high, with a median percentage of suppressed alignments to

the reference genome assembly of only 3% (supplementary

fig. S8, Supplementary Material online). We observed no ev-

ident recovery bias by restriction enzyme, but rather bias was

pronounced in a few individual species, likely indicating an

enrichment of repetitive regions or duplications. For library

preparation protocols in which a fragment size selection

step is done without a prior shearing step, for example,

ddRAD (Peterson et al. 2012) and ezRAD (Toonen et al.

2013), the “size.select” function of the software package

SimRAD (Lepais and Weir 2014) constitutes a valuable com-

plementary study design tool. If a new genome assembly be-

comes available for the target species and/or the researcher

wishes to evaluate an additional restriction enzyme, PredRAD

can be utilized with these data to quantify the number of

cleavage sites and the recovery potential, as well as to esti-

mate the probability of the new RS based on genome com-

position models.

In the scenario that the genome sequence of the species of

interest is not available, the genome size and restriction RS

probability for the enzyme(s) of interest can be estimated to

obtain an approximation of RS frequencies (absolute num-

bers). Our observations demonstrate that a genome size

range can be estimated by applying linear regression models

to the number of markers obtained in an empirical RAD-seq

experiment using a restriction enzyme targeting a neutral RS

(e.g., EcoRI, NsilI, NspI, PciI; we advise caution using 4-cutter

enzymes as in some taxa they can have cleavage frequencies

that may effectively lead to sequencing the whole genome

through RAD-seq [i.e., more than one cleavage site per 100

bp]). Alternatively, genome size can also be estimated via flow

cytometry and/or Feulgen densitometry (Vinogradov 1994;

Hardie et al. 2002; Dolezel et al. 2007) for comparison. A

range of restriction RS probabilities can be obtained through

genome composition models using parameters estimated

from nongenomic reduced representation data sets, such as

transcriptomes, neutral RAD-seq data sets, or even partial

genome sequences, for the species of interest. Nongenomic

data sets from closely related species could also be used to

estimate these parameters, although the effect of evolution-

ary divergence on compositional differences warrants further

exploration. Similarly, examination of other restriction en-

zymes with diverse RSs, in addition to the ones examined in

this study, promises great potential to identify “gold stan-

dard” sets of enzymes for groups of taxa, with the goal of

obtaining neutral RAD-seq datasets.

Although genome size and the relative frequency (proba-

bility) of restriction RSs are arguably the main determinant

factors influencing the number of RAD tag markers that can

be obtained experimentally, there are other factors that need
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to be considered during study design and data analysis steps.

These include the following: genome differences among indi-

viduals; level of heterozygosity; the amount of methylation

and other DNA modifications in the genome; the sensitivity

of a particular cleavage enzyme to methylation and other DNA

modifications; the efficiency of the enzymatic digestion; the

number of repetitive regions and gene duplicates present in

the target genome; the quality of library preparation and se-

quencing; the amount of sequencing; sequencing and library

preparation biases; and the parameters used to clean, cluster,

and analyze the data, among others, see Davey et al. (2013),

Catchen et al. (2013), DaCosta and Sorenson (2014), and

Mastretta-Yanes et al. (2014) for further discussions.

Conclusions

In this study, we performed systematic in silico genome-wide

surveys of genome compositions and RSs, for diverse and

commonly used type II restriction enzymes across the eukary-

otic tree of life. Our observations reveal that RS frequencies for

a given restriction enzyme are strikingly variable among broad

eukaryotic taxonomic groups, being largely determined by

phylogenetic relatedness. We demonstrate that genome

sizes can be predicted from cleavage frequency data obtained

with restriction enzymes targeting neutral RSs. Stochastic

models based on genomic compositions are also effective

tools to accurately calculate probabilities of RSs across taxa,

and can be applied to species for which reduced representa-

tion genomic data are available (including transcriptomes and

neutral RAD-seq datasets). The results from this study and the

software developed from it will help guide the design of any

study using RAD sequencing and related methods. As more

genome assemblies become available in underrepresented

taxonomic groups, the patterns of compositional biases and

restriction site frequencies across the eukaryotic tree of life will

become clearer and will improve our understanding of

genome evolution.
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Appendix

A. Genomic Composition Patterns
across the Eukaryotic Tree of Life

The odds ratios proposed by Burge et al. (1992) were used to

estimate compositional biases of dinucleotides (eq. 5) and

trinucleotides (eq. 6) across genomes. as follows:

r�XY ¼
f �XY

f �Xf �Y
ð5Þ

g�XYZ ¼
f �XYZf �X f �Y f �Z
f �XY f �YZf �XNZ

ð6Þ

where f �X is the relative frequency of the mononucleotide X,

f �XY is the relative frequency of the dinucleotide XY, and f �XYZ is

the relative frequency of the trinucleotide XYZ. All frequencies

take into account the antiparallel structure of dsDNA. N repre-

sents any mononucleotide. Both dinucleotides and trinucleo-

tides are considered significantly underrepresented if the odds

ratio is �0.78, significantly overrepresented if �1.23, and

equal to expectation if equal to 1 (Karlin et al. 1998).

Our surveys of whole and draft genome sequence assem-

blies indicate that there are significant compositional biases for

most dinucleotides and trinucleotides across the eukaryotes.

Many of these biases are significant only within individual

species scattered throughout the eukaryotic tree of life.

However, there are several particular dinuclotides and trinu-

cleotides that show significant biases across the eukaryotic

tree of life. The dinucleotides CG, GC, TA, and CA/TG, and

the trinucleotides CTA/TAG, AAA/TTT, TAA/TTA, and CCA/

TGG show the most conspicuous bias patterns. Our observa-

tion that these biases are highly variable among broad taxo-

nomic groups but generally similar within is congruent with

findings from previous studies (Gentles and Karlin 2001). The

most obvious biases across taxa are observed in the gnatos-

tomate vertebrates; however, this is most likely due to ram-

pant undersampling in most other groups of eukaryotes

(vertebrate genome assemblies represent 21% of all the

taxa in this study).

B. Dinucleotide Compositional Biases

Dinucleotide odds ratios (r�XY ) (Burge et al. 1992), a measure-

ment of relative dinucleotide abundances given observed

component frequencies used to explore genomic composi-

tional biases, revealed significant compositional biases for all

possible dinucleotides (supplementary fig. S9, Supplementary

Material online). The dinucleotide compositional biases were

highly variable among broad taxonomic groups (e.g., core

eudicot plants) but generally similar within. Two dinucleotide

complementary pairs, CG/GC and AT/TA, had highly dissimilar

relative frequencies between the members of each pair. The

largest biases were for CG, being significantly underrepre-

sented in groups like core eudicot plants (r�CG = 0.68 ± 0.11),

gnathostomate vertebrates (r�CG =0.32 ± 0.12), the

Pucciniales rust fungi (r�CG = 0.66 ± 0.08), gastropod mollusks

(r�CG = 0.68, SD = 0.01), the Trebouxiophyceae green algae

(r�CG = 0.61 ± 0.19), and the Saccharomycetales yeast

(r�CG = 0.78 ± 0.17). CG was significantly overrepresented in

groups like the Apocrita insects (r�CG = 1.59 ± 0.18). The com-

plementary dinucleotide GC was not particularly underrepre-

sented in any broad taxonomic group, but tended toward

overrepresentation in ecdysozoan invertebrates

(r�GC = 1.24 ± 0.12), being significant in several arthropod

and nematode species. Other taxa that showed significant

overrepresentation of GC dinucleotides included the

Trebouxiophyceae (r�GC = 1.39 ± 0.04) and microsporidia

fungi (r�GC = 1.28 ± 0.17). Relative abundances of the dinu-

cleotide AT were within expectations for all eukaryotes,

except for the fungus Sporobolomyces roseus (r�AT = 0.78).

Contrastingly, the TA dinucleotide tended toward underre-

presentation throughout the eukaryotes (r�AT = 0.8 ± 0.13),

except in a few hypocreomycetid fungal species, for which

it was significantly underrepresented. The TA dinucleotide

was significantly underrepresented in trypanosomatids

(r�TA = 0.59 ± 0.03), choanoflagellids (r�TA = 0.43 ± 0.09),

chlorophytes (r�TA = 0.62 ± 0.15), and stramenopiles

(r�TA = 0.70 ± 0.07), and marginally underrepresented in

most euteleostei fish (r�TA = 0.77 ± 0.04), archosaurs

(r�TA = 0.76 ± 0.03), and the Basidiomycota (r�TA =

0.74 ± 0.09), among others.

The remaining dinucleotides had identical relative frequen-

cies between the members of each complementary pair. The

dinucleotide pair GG/CC was marginally underrepresented in

most eukaryotes (r�GG=CC = 0.88 ± 0.15). In the Sarcopterygii

vertebrates (r�GG=CC = 1.02 ± 0.06) and embryophyte plants

(r�GG=CC = 1.03 ± 0.07), GG/CC relative frequencies closely

conformed to expectation, whereby GG/CC was significantly

overrepresented in handful of isolated ecdysozoan, microspor-

idia, and alveolate species, and significantly underrepresented

in chlorophytes (r�GG=CC = 0.72, SD = 0.11), oomycetes

(r�GG=CC = 0.71 ± 0.05), and in several species of the

Basidiomycota and the Dothideomycetes. Only the choano-

flagellate Salpingoeca and the green alga Asterochloris
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presented a marginally significant bias for the dinucleotide

pair AA/TT (r�AA=TT = 0.77 and 0.75, respectively). Similarly,

Salpingoeca was the only taxon to show a significant bias

for AC/GT (r�AC=GT = 1.42). Dinucleotide pair CA/TG was

among the pairs with largest biases. Significant overrepresen

tation of CA/TG was found in several groups with large CG

underrepresentation such as gnathostomates (r�CA=TG =

1.31 ± 0.05), gastropods (r�CA=TG =1.29 ± 0.05), the

Pucciniales (r�CA=TG = 1.27 ± 0.02), the Trebouxiophyceae

(r�CA=TG = 1.62 ± 0.14), as well as several species of core eudi-

cots and the Saccharomycetales. Other groups with signifi-

cant CA/TG overrepresentation include onchocercid

nematodes (r�CA=TG = 1.26 ± 0.01), the Ustilaginomycotina

fungi (r�CA=TG = 1.28 ± 0.05), trypanosomatids (r�CA=TG =

1.25 ± 0.04), and amoebozoans (r�CA=TG = 1.33 ± 0.06).

Overrepresentation biases for the AG/CT dinucleotide pair

were only present in amniotes (r�AG=CT = 1.26 ± 0.02), the

Sporidiobolales fungi (r�AG=CT = 1.24 ± 0.01), and oxytrichid

alveolates (r�AG=CT = 1.24 ± 0.04), and other isolated species.

Most of these taxa also had large CG underrepresentation.

Finally, most eukaryotes had GA/TC relative frequencies that

conformed to expectations, except for few scattered species

and small groups such as the Microbotryomycetes fungi

(r�GA=TC = 1.45 ± 0.13), the Mamiellales green algae

(r�GA=TC = 1.40 ± 0.08), and the Eimeriorina alveolates

(r�GA=TC = 1.26 ± 0.02).

Biases in most of these dinucleotides are likely linked to

important biological processes. Notably, the underrepresented

dinucleotide CG is a widely known target for methylation

related to transcriptional regulation (Bird 1980) and retrotran-

sposon inactivation (Yoder et al. 1997) in vertebrates and

eudicots. The corresponding overrepresentation of AG/CT

fits the classic model of “methylation-deamination-mutation”

by which a methylated cytosine in the CG pair tends to dea-

minate when unpaired and mutate into a thymidine with a

corresponding CA complement. Interestingly, CG and GC

dinucleotides are significantly overrepresented in several

groups of apocritic insects, as well as in some fungi and

single-cell eukaryotes. CG is not a primary target for methyla-

tion in Drosophila (Lyko et al. 2000), instead CT, and in lesser

degree CA and CC, are methylated in higher proportion.

None of these dinucleotide pairs is significantly underrepre-

sented in apocritic insects. The widespread TA underrepresen-

tation has been traditionally attributed to stop codon biases,

thermodynamic instability, and susceptibility of UA to cleavage

by RNAses in RNA transcripts (Beutler et al. 1989).

C. Trinucleotide Compositional Biases

Trinucleotide odds ratios (g�XYZ ) (Burge et al. 1992) are another

important measurement used to explore genomic composi-

tional biases. Among the examined taxa, these ratios revealed

compositional biases for most possible trinucleotides (supple-

mentary fig. S10, Supplementary Material online). However,

most of these biases were only significant in scattered indivi-

dual species (supplementary fig. S11, Supplementary Material

online). Among the trinucleotide pairs with significant under-

representation, CTA/TAG and CGA/TCG showed the most

definite broad taxonomic patterns. CTA/TAG was significantly

underrepresented in most taxa, except for groups like com-

melinid plants (monocots) (g�CTA=TAG = 0.87 ± 0.03), most core

eudicots (g�CTA=TAG = 0.81 ± 0.02), eleutherozoans (g�CTA=TAG

= 0.82± 0.01), molluscs (g�CTA=TAG = 0.83 ± 0.01), and

gnathostomates (g�CTA=TAG = 0.82 ± 0.02)—exclusive of the

chimaera Callorhinchus milii. Contrastingly, the trinucleotide

CGA/TCG was only significantly underrepresented in most

tetrapod vertebrates (g�CGA=TCG = 0.82 ± 0.02)—exclusive of

muroid rodents, bovid ruminants, and the Afrotheria—a

group containing aarvdvarks, hyraxes, and elephants.

The largest and more widespread overrepresentation

biases were for the trinucleotide pair AAA/TTT, being signifi-

cant in most eukaryotes, except for the majority of the Dikarya

fungi (g�AAA=TTT = 1.18 ± 0.07). The trinucleotide pairs TAA/TTA

and AAT/ATT were significantly overrepresented in many

metazoan taxa, particularly in the Neopterygii vertebrates

(g�TAA=TTA = 1.3 ± 0.05 and g�AAT=ATT = 1.26 ± 0.05, respec-

tively). AAG/CTT was significantly overrepresented in the

Bacillariophyta diatoms (g�AAG=CTT = 1.24 ± 0.03), oomycetes

(g�AAG=CTT = 1.28 ± 0.02), and the Saccharomycetales

(g�AAG=CTT = 1.26 ± 0.04). Finally, CCA/TTG was significantly

overrepresented in several tetrapod groups, including the

Laurasiatheria—exclusive of the Chiroptera (g�CCA=TTG =

1.25 ± 0.02)—and Hominoidea (g�CCA=TTG = 1.23 ± 0.004).

The biases in CTA/TAG have been widely attributed to the

stop codon nature of UAG. However, the trinucleotides cor-

responding to the other stop codons (Burge et al. 1992), UAA

and UGA, are overrepresented or not biased across eukar-

yotes. The reasons behind other cases of trinucleotide biases

are less understood.
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