An FSK Telemetry Module for Vector Measuring Current Meters

by

Paul D. Fucile and James R. Valdes

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

December 1987

Technical Report

Funding was provided by the Office of Naval Research under contract Number N00014-84-C-0134, NR 083-400.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-87-55.

Approved for publication; distribution unlimited.

Approved for Distribution:

Robert C. Beardsley, Chairman
Department of Physical Oceanography
Table of Contents

1.0 Abstract 1
2.0 Description Of Technique 2
3.0 Description Of Hardware 3
4.0 Software 14
5.0 Installation and Tuning Procedures 17
6.0 Parts List and Component Placement 20
7.0 Recommendations 22
8.0 References 23

Appendix A: VMCM Preprocessor Assembly Listing 24
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>MODEM and Cable Interface</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>VMCM FSK SAIL MODEM Preprocessor</td>
<td>5</td>
</tr>
<tr>
<td>3.3</td>
<td>SAIL Address Switch Setting, Cable Connection, and Card Placement</td>
<td>6</td>
</tr>
<tr>
<td>3.4</td>
<td>Preprocessor to VMCM Connections</td>
<td>7</td>
</tr>
<tr>
<td>3.5</td>
<td>VMCM Backplane Modification</td>
<td>8</td>
</tr>
<tr>
<td>3.6</td>
<td>Component Placement (Components)</td>
<td>10</td>
</tr>
<tr>
<td>3.7</td>
<td>Component Placement (Caps, Jumpers)</td>
<td>11</td>
</tr>
<tr>
<td>3.8</td>
<td>PC Layout Top</td>
<td>12</td>
</tr>
<tr>
<td>3.9</td>
<td>PC Layout Bottom</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>VMCM SAIL FSK Preprocessor Flowchart</td>
<td>15</td>
</tr>
<tr>
<td>5.1</td>
<td>Carrier Detect and Data Signals</td>
<td>19</td>
</tr>
</tbody>
</table>
1.0 Abstract:

The EG&G Vector Measuring Current Meter (VMCM) used in mooring work provides a 20 ma Serial ASCII Instrumentation Loop (SAIL) communication system. A projected application of the VMCM is to have a surface mooring communicate with a series of VMCMs via a Frequency Shift Keying (FSK) link. While an FSK modem can communicate with the VMCM, a problem exists with the general operation of the VMCM. If the VMCM is addressed to dump data, it remains on until the unit is re-addressed. If a failure in the link occurs, then the VMCM stays on in a higher power mode and the batteries will be depleted early.

The insertion of a processing block between the modem and the VMCM provides a way to look at incoming data, qualify it and re-transmit it to the VMCM. The VMCM will reply and the preprocessor can channel the data to the modem. In the event of a VMCM malfunction, the preprocessor has a timeout function and will turn off the carrier keeping the line quiet.
2.0 Description of Technique:

An application of this instrument is to have a master controlling computer mounted on a surface float. Typically 4 or more VMCMs will be supported on a power bearing cable. Impressed on the power cable will be the FSK signal. At regular intervals the top unit will interrogate the lower units using the SAIL protocol.

When a carrier is not present on the line, the lower units remain in a sleep mode. When a carrier appears, the preprocessing units only will wake up for operation. With FSK communications data is impressed upon a carrier generated by the transmitting unit. The receivers must have their carrier off when listening. It is important that the carrier is generated for a short period prior to transmission so the receiving modems can phase lock on the signal.

The FSK protocol requires that the controller establish a carrier and then send the interrogation request. If the preprocessor recognizes the address as its own, it re-transmits it to the VMCM. All the other VMCMs on the line will remain quiet. The activated VMCM will be operating in the record buffer dump or "R" mode. Each time a new set of data becomes available, it is transferred to this buffer. When requested by "R" the buffer is normally sent via the SAIL 20 ma current loop. The preprocessor follows the logic level of this signal and transmits it via the modem to the surface.

After all activity in the VMCM has ended, the preprocessor has a software timeout function that sends an end of transmission character (ETX 03H), places the VMCM in its low power mode, and then shuts itself down. If the VMCM should hang up or develop an error during transmission, this timer will time out and shut the system down.
3.0 Description of Hardware:

The FSK SAIL Preprocessor card contains two sections, the FSK modem that provides logic level and FSK I/O and the microprocessor (uP) section that handles logical functions.

The FSK modem is based on the RELAYS Listening Station (RLS) modem. A single FSK line and 4 data I/O/control lines are provided in addition to a +5 volt supply and ground. The modem is shown in Figure 3.1.

With XMIT bar high the modem is in the receive mode. When a carrier is present, carrier detect goes high. Data out is a logic level high for a break condition. With XMIT bar low, the modem generates a carrier, carrier detect goes high, and data can be impressed on the carrier with a logic high being a break (low) condition.

The second part is the uP that controls the modem and communicates with the VMCM. It is based on the 146805E2 low power uP and in this configuration features 2K of ROM, a 2.4576 mHz clock, and reset on power up. It is shown in Figure 3.2.

The CPU will start operation 500 uSec after power has been established by the RC network driving CPU pin 1. The crystal frequency selected for the uP is based on the requirement to generate a 153.6 kHz timebase for the modem. A CD4040BE divides the uP Clock (uClock) by 16 down to the modem Clock (mClock). An 8 pole single throw DIP switch connected to Port A is used to set the SAIL address in the range of 00 to FF. The common side of the switches is driven by PB5 to reduce power consumption at the pull down resistors on Port A. When reading the SAIL address switches, PB5 is raised, Port A is read, and PB5 is lowered. Otherwise the worst case dissipation would be 133 uWatts. The switch positions are shown in Figure 3.3.

The modem control lines SDO, SDA, XMIT bar, and Carrier Detect are wired directly to the uP. The Carrier Detect is used to generate the interrupt to wake up the uP. The 146805E2 requires a low level to generate interrupts, so an XOR gate is set as an inverter to provide the correct logic level.

Communication with the VMCM is made by two serial I/O lines. The serial data from the VMCM is taken directly from the VMCM UART (SDO). By placing an open collector NPN transistor in parallel with the output NPN of the 20 ma current loop optoisolator, SAIL commands can be sent to the VMCM using logic levels. A software UART is used in the 146805E2. The VMCM SDI is driven by PB6. Operation of the 20 ma loop is allowed for diagnostic purposes when a carrier is not present. All signal connections to the preprocessor and the VMCM are shown in Figure 3.4. Backplane cut and jumper modifications are shown in Figure 3.5.
Suggested Penetration

Sea com dual sail penetrator

Dwg 0 6620-001

Place dip switch with T0Y position towards CPU

Component positions are shown for reference only.

High order address

Low order address

Low high

Sail address switch

Pressure housing penetrations and backplane connections

Top

Conductivity (opt)

Motor interface

ADC

Transport

Microprocessor

Serial interface

Sail FSK preprocessor

Compass interface

Compass analog

Card placement

Woods Hole Oceanographic Institution
Department of Physical Oceanography

Sail address switch setting, cable connection, and card placement

Contract 18/1984.46
Code no.

Paul D. Fucile
Date 10/25/87
Side B

Dwg no.

Switch

1 of 1

A
ALL COMPONENTS ARE REFERENCED TO
EG&G VMCM HARDWARE MANUAL
SERIAL CARD

TO PIN 14, U4

TO PIN 11, U3

VMCM SDI - TO CPU
NPN COLLECTOR AT
EDGE CONNECTOR 35

VMCM SDO - TO CPU PIN 29
(PB7) AT EDGE CONNECTOR 33

Figure 3.4 Preprocessor to VMCM Connections
------ JUMPER WIRE

X FOIL CUT

FIGURE 3.5 VMCM BACKPLANE MODIFICATION
The program is held in a 27C16 EPROM. The 146805E2 also provides 64 RAM locations for variables. Component placement is shown in Figures 3.6 and 3.7. The FSK board mounts in position J8 and placement is shown in Figure 3.3. Foil patterns are shown in Figures 3.8 and 3.9.
CAPACITOR, UNDERBOARD JUMPERS

CAPACITORS PLACED ON TOP

J2 (UNDERNEATH)

J1 (UNDERNEATH)

C11

C12

C13

C14

U1

U5

U6

U8

Q6

D7

Figure 3.7 Component Placement
4.0 Software:

The Software for the preprocessor is best described in terms of a flowchart and an assembly listing. Before describing the flowchart, some operational considerations should be mentioned. The 146805E2 supports low power STOP and WAIT commands. These commands allow the uClock to be stopped or removed from the uP architecture respectively. To simplify hardware, a software UART is being used for reception and transmission of 300 Baud data. The program must have features that prevent either the uP or VMCM from staying on in the event of a communications failure. The modem default must always be in the receive mode. Diagnostics should be available for other program development.

The flowchart is shown in Figure 4.1. On power up the two I/O ports data direction registers are set, Baud rate values are placed in RAM, the stack pointer is reset, and a "*" is sent via FSK out the modem indicating a good power up. After this the 146805E2 enters its lowest power mode by shutting off the carrier and the clock. On the detection of an FSK carrier a hardware interrupt occurs. The clock starts and the program vectors off to ROM location 1840H to start subroutine SALREC to qualify a valid SAIL address. If a different address is received or if a carrier drop is detected momentarily, then the 146805E2 returns to sleep.

Two timing registers are used to prevent the processor from staying on in the event of a modem or VMCM glitch. The subroutine MGET increments a counter while waiting for the first incoming character, otherwise the software UART would remain cycling continuously looking for the start bit. If a valid address occurs, then the carrier is turned on looking up to establish a good carrier in the line. The address is then regenerated along with the delimiter to the VMCM. The VMCM will reply with a string of data followed by a carriage return/line feed.

The transfer of data from the VMCM to the modem is performed by following the transitions at the SDO of the VMCM. The VMCM UART must see the data it transmits, so the transitions are sent to the VMCM SDI. The subroutine CIRCLE performs this function. While this routine is CIRCling, a counter register is being incremented. The maximum timeout is in the order of 600 mS. This is intended to prevent glitches in the VMCM data stream from hanging up the preprocessor. After the data transfer and clock timeout, the preprocessor is ready to enter a sleeping mode. An ETX (03H) is sent via FSK out the modem, the carrier is turned off looking up, and the NPN transistor in parallel with the SAIL 20 ma optoisolator is placed in a high impedance state. The STOP command is given and the preprocessor enters its low power mode.

The utilities used in this program are a subset of the ONSET 6805 monitor. These utilities are copyright protected and are used with the permission of Onset Computer Corporation. This includes the software UART, string handlers, and memory value handlers. The only utilities used in the FSK portion of the program are the UART GET and SEND routines. These routines have
also been modified and also appear as MGET and MSSEND.

A change in the hardware reset vector will cause the program to start in the monitor mode for diagnostics. The serial communications for the monitor are handled through the communications port PB7 and PB6. The monitor allows for memory location changes, data dumps, and execution of programs from RAM or ROM.

The assembly listing is given in Appendix A.
5.0 Installation and Tuning Procedures

The modem on the preprocessor requires tuning before installation. The equipment required includes:

A) Dual Power Supply
B) Frequency Counter
C) Storage Oscilloscope
D) FSK Deck Box
E) Decade Resistance Box
F) Terminal, 300 BAUD
G) Digital Voltmeter
H) Signal Generator, 1700 Hz.

Prior to powering up, a digital voltmeter set in the 200 mV range should be placed across the 2.7 Ohm sense resistor to monitor board current. The board should not exceed 3.7 mA (10 mV). Nominal current with the microprocessor installed and the board in the STOP mode is 2 mA (5.4 mV) and 10 mA (27 mV) when active.

Remove the 146805E2 microprocessor prior to tuning. Using a logic clip bring pin 8, IC7 high through a 10K 1/4W resistor to V+. This brings XMIT bar high.

5.1 Set Power Supply to +5.00 Volts and +2.90 Volts

5.2 Apply 5 Volts at V+ (pin 5) and GND (pin 1) of the Board.

5.3 Using a 16 Pin IC Clip on IC9 (4046), ground pin 9.

5.4 Install Decade Resistance Box in place of R54 (GND and Pin 12, IC9). Set at approximately 400K.

5.5 Place input to Frequency Counter at pin 3, IC9.

5.6 Adjust Decade Box for frequency count of 500 Hz +/- 10 Hz. Let this run for 5 minutes to verify stability.

5.7 Install 1% resistor with Decade Box value in R54 position. (Note 2).

5.8 Measure frequency.

5.9 Power down, disconnect GND from IC 9 pin 9.

5.10 Install Decade Resistance Box in place of R55 (GND and pin 11, IC9).

5.11 Power up, and apply +2.90 Volts to IC9, pin 9. Adjust Decade Resistance Box for a frequency of 1700 Hz +/- 10 Hz at pin 3, IC9.

5.12 Install 1% resistor with Decade Box value in R55 position. (Note 1).
5.13 Measure frequency.

5.14 Procedure for testing FSK serial data and tuning amplifiers follows.

5.15 Connect the signal generator to pins 33 (signal) and 35 (GND) of the modem board. Set the generator to 1700 Hz with an output voltage of 200 mV p-p.

5.16 Power up board.

5.17 Using the decade resistor box, select R37 for a symmetrical output at IC5, pin 10 (LM 346).

5.18 Install 1% resistor in R37 position. (Note 3).

5.19 Connect FSK Deck Box in place of the signal generator. Type a capital "U" on the terminal and verify a 5 Volt square wave is present at IC5, pin 10.

5.20 Set positive supply at 5.5 Volts.

5.21 With the storage oscilloscope, monitor IC5, pin 7. Send a "U" on the terminal and adjust R43 for a rising edge on the carrier detect. Continue to adjust R43 until carrier detect fails and set at midrange.

5.22 With the storage oscilloscope, monitor IC5, pin 1. Send a "U" on the terminal and adjust R44 for a square wave output on the data line. Continue to adjust R44 until data fails and set to midrange.

5.23 Refer to Figure 5.1 for the relationships between carrier and data.

5.24 Test modem operation over input voltage range of 4.9 to 6.3 Volts. Trim R44 (data) for optimum response over this range. Note: The limiting factor is the 4046 PLL which is not rated for operation below 5.0 Volts.

5.25 Insert the microprocessor on the Modem board and install in a modified VMCM using an extender card.

5.26 Turn on power. The Modem should send a "*" to the terminal via the FSK port.

5.27 Connect the DVM across the 2.7 Ohm sense resistor. Send the instrument address followed by the delimiter "R". The instrument should respond with its data buffer. The voltage across the 2.7 Ohm resistor is an indication of the board current. Verify that it returns to the prior quiescent value after sending the data and timing out (around 5 seconds). Note: The instrument address and "R" delimiter must be entered within a 2 second period or the program will time out.
Figure 5.1
Carrier Detect and Data Signals
6.0 Parts List and Component Placement

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTORS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Ohm 5% 1/4W</td>
<td>10</td>
<td>R10, R12 - R20</td>
</tr>
<tr>
<td>4.7K 5% 1/4W</td>
<td>1</td>
<td>R7</td>
</tr>
<tr>
<td>10K 5% 1/4W</td>
<td>3</td>
<td>R22, R23, R24 (option)</td>
</tr>
<tr>
<td>10M 5% 1/4W</td>
<td>2</td>
<td>R34, R6</td>
</tr>
<tr>
<td>1M 5% 1/4W</td>
<td>2</td>
<td>R26, R31</td>
</tr>
<tr>
<td>5.1K 1% 1/8W</td>
<td>2</td>
<td>R27, R28</td>
</tr>
<tr>
<td>3.3K 5% 1/4W</td>
<td>1</td>
<td>R29</td>
</tr>
<tr>
<td>51 Ohm 5% 1/4W</td>
<td>2</td>
<td>R35, R30</td>
</tr>
<tr>
<td>33K 5% 1/4W</td>
<td>1</td>
<td>R38</td>
</tr>
<tr>
<td>499K 1% 1/4W</td>
<td>3</td>
<td>R32, R33, R36</td>
</tr>
<tr>
<td>825K 1% 1/4W</td>
<td>1</td>
<td>R53</td>
</tr>
<tr>
<td>4.7M 5% 1/4W</td>
<td>1</td>
<td>R5</td>
</tr>
<tr>
<td>1.5M 5% 1/4W</td>
<td>2</td>
<td>R48, R50</td>
</tr>
<tr>
<td>562K 5% 1/4W</td>
<td>1</td>
<td>R49</td>
</tr>
<tr>
<td>7.5M 5% 1/4W</td>
<td>1</td>
<td>R45</td>
</tr>
<tr>
<td>200K 5% 1/4W</td>
<td>1</td>
<td>R42</td>
</tr>
<tr>
<td>470K 5% 1/4W</td>
<td>1</td>
<td>R41</td>
</tr>
<tr>
<td>6.8M 5% 1/4W</td>
<td>1</td>
<td>R40</td>
</tr>
<tr>
<td>270K 5% 1/4W</td>
<td>1</td>
<td>R51</td>
</tr>
<tr>
<td>562K 1% 1/8W</td>
<td>1</td>
<td>R52</td>
</tr>
<tr>
<td>820K 1% 1/8W</td>
<td>1</td>
<td>R39</td>
</tr>
<tr>
<td>1M 1% 1/8W</td>
<td>1</td>
<td>R47</td>
</tr>
<tr>
<td>100K 1% 1/8W</td>
<td>1</td>
<td>R46</td>
</tr>
<tr>
<td>SELECT 1% 1/8W</td>
<td>3</td>
<td>R37, R54, R55</td>
</tr>
<tr>
<td>2.7 Ohm 5% 1/4W</td>
<td>1</td>
<td>Rsense</td>
</tr>
<tr>
<td>10 PIN RES SIP 9-1M NETWORK</td>
<td>2</td>
<td>SIP1, SIP2</td>
</tr>
<tr>
<td>TEN TURN TRIMPOT 200K</td>
<td>2</td>
<td>R43, R44</td>
</tr>
</tbody>
</table>

SEMI-GONDUCTORS		
2.4576 MHz (CRYSTEK)	1	XTAL
1N914 DIODE	3	D8, D9, D7
2N3094 TRANSISTOR	1	Q8
2N2907 TRANSISTOR	1	Q6
2N2222 TRANSISTOR	1	Q7

<p>| CAPACITORS | | |
| 22pF CM05ED 220J03 MICA | 2 | C1, C2 |
| 50uF @6v CDENLW50-6 | 1 | C3, ELECTROLYTIC |
| 0.001uF POLYCARB 10% | 1 | C19 |
| 0.0012uF POLYCARB 10% | 1 | C18 |</p>
<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0022uF POLYCARB 10%</td>
<td>1</td>
<td>C21</td>
</tr>
<tr>
<td>0.022uF WHITE POLYCARB 10%</td>
<td>1</td>
<td>C17</td>
</tr>
<tr>
<td>4.7uF CERAMIC</td>
<td>4</td>
<td>C13,C14,C11,C12</td>
</tr>
<tr>
<td>1.0uF CK05 CERAMIC</td>
<td>1</td>
<td>C20</td>
</tr>
<tr>
<td>0.01uF CK05 CERAMIC</td>
<td>1</td>
<td>C15</td>
</tr>
<tr>
<td>0.022uF CK05 CERAMIC</td>
<td>1</td>
<td>C16</td>
</tr>
<tr>
<td>0.1uF CK05 CERAMIC</td>
<td>1</td>
<td>C4</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4011BFX</td>
<td>1</td>
<td>U1</td>
</tr>
<tr>
<td>CD4013BE</td>
<td>2</td>
<td>U2,U6</td>
</tr>
<tr>
<td>CD40103BE</td>
<td>1</td>
<td>U3</td>
</tr>
<tr>
<td>CD4040BE</td>
<td>1</td>
<td>U4</td>
</tr>
<tr>
<td>LM346J</td>
<td>1</td>
<td>U5</td>
</tr>
<tr>
<td>CD4070BE</td>
<td>1</td>
<td>U7</td>
</tr>
<tr>
<td>MC146805E2</td>
<td>1</td>
<td>U8</td>
</tr>
<tr>
<td>CD4046BF</td>
<td>1</td>
<td>U9</td>
</tr>
<tr>
<td>27C16</td>
<td>1</td>
<td>U11</td>
</tr>
<tr>
<td>CD74HC573E</td>
<td>1</td>
<td>U12</td>
</tr>
</tbody>
</table>

JUMPERS

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN 5, U8 to PIN 9, U1</td>
<td>1</td>
<td>J1</td>
</tr>
<tr>
<td>PIN 4, U8 to PIN 8, U1</td>
<td>1</td>
<td>J2</td>
</tr>
<tr>
<td>PIN 1, U7 to PIN 12, U1</td>
<td>1</td>
<td>J3</td>
</tr>
<tr>
<td>PIN 3, U7 to PIN 2, U8</td>
<td>1</td>
<td>J4</td>
</tr>
<tr>
<td>R42-R41 NODE to R15-C17 NODE</td>
<td>1</td>
<td>J5</td>
</tr>
<tr>
<td>16 PIN DIPSWITCH</td>
<td>1</td>
<td>SW1 (U10)</td>
</tr>
</tbody>
</table>

EG&G Serial Card Jumpers:
All IC numbers refer to EG&G VMCM Hardware Manual designations.
Use #30 Gauge Kynar or similar wire.

J35 to Pin 10, U7 R11 node
J37 to Pin 13, U4 and Pin 6, U12

Make connections to resistors.
7.0 Recommendations

During the development of this board, two software changes have been discussed. The first is to replace the simple "*" instrument on greeting with a longer stream indicating SAIL switch setting, software version, and an instrument title. The second is to place parity with the data. This would involve storing the data as it comes in from the VMCM and regenerating this stream with the addition of parity bits. The problem with this method is there is a limit on memory space, and two bytes would have to be stored in one memory location. Presently the clear reception of the ETX at the end of the stream qualifies the data.

A use for the remaining port pin PB4, would be to determine if the program is going to be operational or diagnostic on power up. With this pin low (normal condition) the program would vector to the FSK program. If the pin was tied high and the system was reset, it would enter the diagnostic mode. This would include strings that can be sent out the FSK port, and other modem tuning related operations.

A hardware reduction scheme would be to have the software generate the FSK data. This would require the data to be stored prior to transmission. Then the microprocessor could generate the FSK frequencies.
8.0 References

8.2 Onset Computer Corporation, 199 Main Street, North Falmouth, Mass. 02556. (617) 563-2267.

; FILE - "VMCM5.ASM"
; PROGRAM FOR WHOI SAIL VMCM INTERFACE
; LAST ENTRY ON AUGUST 13, 1987
; ADDITIONAL CLEANUP ON NOV 23, 1987
; PAUL D. FUCILE, PHYSICAL OCEANOGRAPHY, WHOI
; THIS VERSION QUALIFIES THE "R" DELIMITER AND
; TRANSMITS AN ETX AT THE END OF A TRANSMISSION
; THIS PROGRAM USES A SOFTWARE TIMEOUT, UART,
; AND IMPLICIT OPERATIONS
; MARCH 17, 1986 - ONSET MONITOR ROUTINES
; APPENDED FOR VMCM WORK WITH PERMISSION
; MONITOR COPYRIGHT - ONSET COMPUTER CORPORATION

; ESTABLISH FIRST PAGE VARIABLES

0000 ADATA EQU 00H
0001 BDATA EQU 01H
000D CR EQU 0DH
000A LF EQU 0AH
0008 TDATA EQU 8 ; TIMER DATA PORT
0009 TCNTRL EQU 9 ; TIMER CONTROL PORT
0010 TIMA EQU 10H ; TEMP STORAGE FOR TIMER COUNT
0011 TIMB EQU TIMA+1
0012 TTIMA EQU TIMB+1
0013 TTIMB EQU TTIMA+1
0014 TEMP1 EQU TTIMB+1 ; TEMPORARY DATA STORAGE
0015 TEMP2 EQU TEMP1+1
0016 TEMP3 EQU TEMP2+1
0017 TEMP4 EQU TEMP3+1 ; 10H THROUGH 22H USED
0018 TEMP5 EQU TEMP4+1
0019 PROG1 EQU TEMP5+1 ; 10 BYTE STORAGE FOR CODE
001D PROG2 EQU PROG1+4 ; 4 BYTE PROGRAM STORAGE
0021 PROG3 EQU PROG2+4
0023 PROG4 EQU PROG3+2 ; PROG4 USES 2 BYTES

002A SAILHI EQU 2AH
002B SAILLO EQU 2BH
002C VCNTHI EQU 2CH
002D VCNTL0 EQU 2DH
002E DLMTR EQU 2EH ; DELIMITER AFTER VALID ADDRESS
002F CNTRHI EQU 2FH
0030 TYM1 EQU 30H
0031 TYM2 EQU 31H
0032 TYMTST EQU 32H
0033 TRYTST EQU 33H
0034 TWYTST EQU 34H

DISABLE OPSYN SEI ; DISABLE INTERRUPTS
ENABLE OPSYN CLI ; ENABLE INTERRUPTS
SLEEP OPSYN STOP ; TURN PROCESSOR OFF
1800 ORG 1800H ;START OF VMCM PROGRAM
1800 CD18E3 JSR CONFIG ;CONFIGURE I/O
1803 CD18DA JSR BDSET ;SET BAUD RATE TO 300
1806 CD18F0 JSR READ ;READ SAIL ADDRESS SWITCHES
1809 9C RSP ;RESET STACK POINTER
180A A62A LDA #'*' ;SAYS HELLO TO SURFACE
180C CD196F JSR MSEND
180F 9A ENABLE
1810 8E SLEEP
1840 ORG 1840H ;HARDWARE INT ROUTINE
1840 9C RSP
1841 1401 BSET 2,1 ;MAKE SURE MODEM IS LISTENING
1843 3F30 CLR TYM1
1845 3F31 CLR TYM2
1847 CD1926 SALREC: JSR MGET ;LOOK FOR VALID SAIL ADDRESS
184A A123 CMP #'#' ;LOOK FOR SAILHI
184C 26F9 BNE SALREC
184E CD1926 SAL2: JSR MGET ;LOOK FOR SAILHI
1851 B12A CMP SAILHI
1853 2707 BEQ SAL3
1855 A123 CMP #'#' ;LOOK FOR SAILLO
1857 26E9 BNE SALREC
1859 CC184E JMP SAL2
185C CD1926 SAL3: JSR MGET ;LOOK FOR SAILLO
185F B12B CMP SAILLO
1861 2707 BEQ SAL4
1863 A123 CMP #'#' ;GET VMCM DELIMITER (R,D,...)
1865 26E9 BNE SALREC
1867 CC184E JMP SAL2
186A CD1926 SAL4: JSR MGET ;STORE IT AWAY
186D B72E STA DLTR ;QUALIFY 'R' IMPLICITLY
186F A152 CMP #'R' ;VALIDATE REGISTRATION
1871 2707 BEQ SAL5
1873 A123 CMP #'#' ;VALIDATE REGISTRATION
1875 26D0 BNE SALREC
1877 CC184E JMP SAL2
187A CD190B SAL5: JSR VMCMON ;TURN VMCM ON
187D 1501 BCLR 2,1 ;TURN CARRIER ON LOOKING UP
187F 3F32 CLR TYMTST ;TWO TRY REGISTER
1881 3F34 CLR TWYTST
1883 3F33 CLR TRYTST
1885 CD1911 SSON: JSR SAILON ;SEND GOOD SAIL ADDRESS THROUGH
1888 1C01 BSET 6,1 ;SEND DATA TO SURFACE
188A 3F30 CLR TYM1

25
188C 3F31

188E 3C30 CIRCLE: INC TYM1
1890 B630 LDA TYM1
1892 A1FF CMP #0FFH
1894 2608 BNE Q3
1896 3C31 INC TYM2
1898 B631 LDA TYM2
189A A140 CMP #40H
189C 271F BEQ QUIT

189E 0F01ED Q3: BRCLR 7,1,CIRCLE
18A1 1D01 BCLR 6,1
18A3 1301 BCLR 1,1
18A5 0E01FD CIR2: BRSET 7,1,CIR2
18A8 1C01 BSET 6,1
18AA 1201 BSET 1,1
18AC 3F30 CLR TYM1
18AE 3F31 CLR TYM2

18B0 3C32 INC TYMTST
18B2 A63C LDA #60 ;60 DECIMAL TRANSITIONS QUALIFY
18B4 B132 CMP TYMTST ;AS A RESPONSE
18B6 2602 BNE WIT7
18B8 3C33 INC TRYST
18BA CC188E WIT7: JMP CIRCLE ;WAIT FOR NEXT RS-232 TRANSITION

18BD 3C34 QUIT: INC TWSTT
18BF B634 LDA TWSTT
18C1 A104 CMP #04H ;CHANGED FROM TWO TO FOUR
18C3 2709 BEQ QUIT5

18C5 A600 LDA #00H ;60 DECIMAL TRANSITIONS QUALIFY
18C7 B133 CMP TRYST ;AS A RESPONSE
18C9 26F2 BNE QUIT
18CB CC1885 JMP SON

18CE A603 QUIT5: LDA #03H ;SEND ETX BEFORE SHUTTING DOWN
18D0 CD196F JSR MSEND ;JUNE 10 ADDITION

18D3 1401 QUIT6: BSET 2,1
18D5 2EF0 BIL QUIT6 ;JUNE 19 ADDITION
18D7 1D01 BCLR 6,1 ;ALLOW 20 mA SAIL AFTER TIMEOUT
18D9 8E SLEEP

;VMCM SUBROUTINES ARE CONTAINED HERE

18DA A600 BDSET: LDA #00H ;SET BAUD RATE FOR 300
18DC B710 STA TIMA ;AT 2.4576 MHZ
18DE A6CC LDA #0CCH
18E0 B711 STA TIMB
18E2 81 RTS

26
CONFIG: ;SET UP PORTS
;LISTING PORT PIN FUNCTIONS
;PORT A LINES ARE SAIL ADDRESSES HIGH TO LOW IN ORDER
;PB0 - FSK SAIL MODEM SDI (TIED TO IRQ) (IN)
;PB1 - FSK SAIL MODEM SDO (OUT)
;PB2 - XMIT BAR TO MODEM (OUT)
;PB3 - FSK CARRIER DETECT (IN)
;PB4 - NO CONNECTION - PAD PROVIDED (IN)
;PB5 - SAIL ADDRESS SWITCH POWER (OUT)
;PB6 - TO CURRENT LOOP SAIL CONTROL AND SDI (OUT) (VMCM)
;PB7 - FROM CURRENT LOOP SAIL SDO (IN) (VMCM)

18E3 A666 LDA #66H
18E5 B705 STA 5 ;SET OUTPUT LINES HIGH TO START
18E7 A606 LDA #06H
18E9 B701 STA 1 ;EXCEPT OPTO NPN SWITCH
18EB A600 LDA #00H
18ED B704 STA 4 ;PORT A ALL IN
18EF 81 RTS

18F0 1A01 READ: BSET 5,1 ;READ SAIL ADDRESS SWITCHES
18F2 9D NOP
18F3 9D NOP
18F4 B600 LDA ADATA
18F6 B72B STA SAILLO
18F8 1B01 BCLR 5,1
18FA 44 LSRA
18FB 44 LSRA
18FC 44 LSRA
18FD 44 LSRA
18FE AB30 ADD #30H ;MAKE ASCII EQUIVALENT
1900 B72A STA SAILHI
1902 A60F LDA #0FH ;MASK LOW SAIL ADDRESS
1904 B42B AND SAILLO
1906 AB30 ADD #30H ;MAKE ASCII EQUIVALENT
1908 B72B STA SAILLO
190A 81 RTS
190B A623 VMCMON: LDA "##" ;THIS WAKES THE VMCM UP
190D CD1F29 JSR SEND
1910 81 RTS
1911 A623 SAILON: LDA "##" ;RE-TRANSMIT ACCESS CODE TO VMCM
1913 CD1F29 JSR SEND
1916 B62A LDA SAILHI
1918 CD1F29 JSR SEND
191B B62B LDA SAILLO
191D CD1F29 JSR SEND
1920 B62E LDA DLMTR
1922 CD1F29 JSR SEND
1925 81 RTS
1926 3F30 MGET: CLR TYM1 ;FSK MODEM UART RECEIVE ROUTINE
1928 3F31 CLR TYM2 ;RAISE XMIT BAR

27
192A 3C30 MGET1: INC TYM1 ;WAIT FOR START BIT AND TIMEOUT
192C B630 LDA TYM1
192E A1FF CMP #OFFH
1930 2608 BNE MGETX
1932 3C31 INC TYM2
1934 B631 LDA TYM2
1936 A1FF CMP #OFFH
1938 272E BEQ QUIT2 ;IF TIMEOUT GOTO SLEEP
193A 0001ED MGETX: BRSET 0,1,MGET1 ;WAITING FOR START BIT
193D BE10 LDX TIMA
193F B611 LDA TIMB ;WAIT 1/2 BIT CELL
1941 57 ASRX
1942 46 RORA ;DIVIDE BY 2
1943 A005 SUB #5 ;TIMING COMPENSATION
1945 2501 BCS MGET01
1947 5C INCX
1948 4C MGET01: INCA
1949 4A MGET02: DECA
194A 9D NOP
194B 26FC BNE MGET02
194D 5A DECX
194E 26F9 BNE MGET02
1950 AE80 LDX #80H ;BIT IN D7 IS FLAG
1952 CD1F55 MGET3: JSR TIMIN3 ;1 BIT CELL WAIT
1955 54 LSRX ;MOVE OVER FOR NEXT BIT
1956 250B BCS MGET4
1958 9D NOP
1959 9F TXA
195A 010102 BRCLR 0,1,MGET2 ;ADD NOTHING IF CLEAR
195D AB80 ADD #80H ;PUT IN BIT IF NOT
195F 97 MGET2: TAX
1960 9D NOP
1961 20EF BRA MGET3 ;QUIT WHEN ALL 7 DONE
1963 CD1F4D MGET4: JSR TIMIN1 ;WAIT ONE MORE CELL
1966 9F TXA
1967 81 MGET6: RTS
1968 1401 QUIT2: BSET 2,1 ;IF TIMOUT OCCURS, THEN
196A 2EFC BIL QUIT2
196C 1D01 BCLR 6,1 ;GOTO SLEEP
196E 8E SLEEP ;5 BIT DELAY
196F MSEND: ;FSK MODEM UART TRANSMIT ROUTINE
196F B715 STA TEMP2 ;SAVE CHARACTER
1971 1501 BCLR 2,1 ;LOWER XMIT BAR
1973 CD1F4D JSR TIMIN1
1976 CD1F4D JSR TIMIN1

28
1979 CD1F4D JSR TIMIN1
197C CD1F4D JSR TIMIN1
197F CD1F4D JSR TIMIN1
1982 B615 LDA TEMP2

1984 1301 BCLR 1,1
1986 AA80 ORA #80H
1988 97 TAX
1989 CD1F55 JSR TIMIN3
 ;WAIT FOR TIMEOUT
198C 54 LSRX
198D 270A BEQ MSEND3
198F 2404 BCC MSEND2
1991 1201 BSET 1,1
1993 20F4 BRA MSEND1
 ;SET TRANSMITTED BIT
1995 1301 MSEND2: BCLR 1,1
1997 20F0 BRA MSEND1
 ;CLEAR TRANSMITTED BIT
1999 1301 MSEND3: BCLR 1,1
199B CD1F51 JSR TIMIN2
199E 1201 BSET 1,1
19A0 CD1F4D JSR TIMIN1
19A3 B615 LDA TEMP2
19A5 1401 BSET 2,1
19A7 81 RTS
 ;FOR STOP BIT
 ;WAIT FOR STOP BIT END
 ;RECOVER CHARACTER
 ;RAISE XMIT BAR
 ;MODIFIED GET ROUTINE
19A8 0E01FD VGET: BRSET 7,1,VGET
19AB B610 LDX TIMA
19AD B611 LDA TIMB
19AF 57 ASRX
19B0 46 RORA
19B1 A005 SUB #5
19B3 2501 BCS VGX1
19B5 5C INCX
19B6 4C VGX1: INCA
19B7 4A VGX2: DECA
19B8 9D NOP
19B9 26FC BNE VGX2
19BB 5A DECX
19BC 26F9 BNE VGX2
19BE AE80 LDX #80H
19C0 CD1F55 VG3: JSR TIMIN3
19C3 54 LSRX
19C4 250B BCS VG4
19C6 9D NOP
19C7 9F TXA
19C8 0F0102 BRCLR 7,1,VG2
19CB 880 ADD #80H
19CD 97 VG2: TAX
19CE 9D NOP
19CF 20EF BRA VG3
19D1 CD1F4D VG4: JSR TIMIN1
19D4 9F TXA
19D5 81 VG6: RTS
 ;MODIFIED FOR LOWER CASE CHARS
19D6 0E01FD EGET: BRSET 7,1,EGET ;MODIFIED GET ROUTINE ECHOES
19D9 BE10 LDX TIMA ;CHARACTERS IMMEDIATELY
19DB B611 LDA TIMB
19DD 57 ASRX
19DE 46 RORA
19DF 46 RORA
19E0 46 RORA
19E1 A005 SUB #5
19E3 2501 BCS EGX1
19E5 5C INCX
19E6 4C EGX1: INCA
19E7 4A EGX2: DECA
19E8 9D NOP
19E9 26FC BNE EGX2
19EB 5A DECK
19EC 26F9 BNE EGX2 ;ADDED STATEMENT
19EE 1D01 BCLR 6,1
19F0 AE80 LDX #80H
19F2 CD1F55 EG3: JSR TIMIN3
19F5 54 LSRX
19F6 2512 BCS EG4
19F8 9D NOP
19F9 9F TXA
19FA 0F0107 BRCLR 7,1,EG2 ;ADDED STATEMENTS
19FD AB80 ADD #80H
19FF 1D01 BCLR 6,1
1A01 CC1A06 JMP EG9
1A04 1C01 EG2: BSET 6,1
1A06 97 EG9: TAX
1A07 9D NOP
1A08 20E8 BRA EG3
1A0A 1C01 EG4: BSET 6,1
1A0C CD1F4D JSR TIMIN1
1A0F 1D01 BCLR 6,1 ;ATTEMPT TO ADD STOP BIT
1A11 9F TXA ;MODIFIED FOR LOWER CASE CHARS
1A12 81 EG6: RTS

1D00 ORG 1D00H ;START OF MONITOR ROM

;MONITOR OPERATIONS
;THIS MONITOR DETERMINES BAUD RATE BY TIMING A
;CARRIAGE RETURN ON A RESET. THE OPERATORS ARE:
;D - DISPLAY 16 MEMORY LOCATIONS FROM STARTING
;ADDRESS FROM XXXX
;S - SUBSTITUTE MEMORY LOCATION (A %CR% DOES
;NOT ALTER MEMORY)
;G - GO, EXECUTE A PROGRAM RESIDING AT XXXX
;TO EXIT AN OPERATOR, ENTER A DECIMAL POINT "." OR RESET

;SET UP PORTS - ALWAYS COPY SUBROUTINE 'CONFIG' SETUP

1D00 A666 START: LDA #66H ;SET DATA DIRECTION OF PORT B
STA 5 ;TO 01100110 1 = OUTPUT
LDA #46H ;SET OUTPUT LINES HIGH TO START
STA 1 ;AND XMIT BAR ALSO
LDA #00H ;SET DDR OF PORT A TO ALL IN
STA 4

JSR BDSET ;FOR 300 BAUD - COMMENTED OUT
JSR RATSET ;AUTO BAUD SETTING ROUTINE

LDA #HIGH SIGNON
LDA #LOW SIGNON

JSR SNDSTG
JMP MONITR

SIGNON: DB '*VMCM SAIL PREPROCESSOR*$'

MONITR: RSP ;RESET STACK
JSR CRLF ;EACH NEW COMMAND STARTS WITH
LDA #'!'; (RET), '!' ;
JSR SEND

GET ;GO THROUGH LIST

SIGN10: JSR

DOTD: CMP #'D'
BNE DOTG
JMP DISP

CMP #'G'
BNE DOTS
JMP GOTO

CMP #'S'
BNE SIGN10
JMP SUBST

DISP: JSR PREP ;ECHO COMMAND, GET ADDRESS
DISP0: JSR SNDAD ;SHOW ADDRESS FIRST
JSR SND2SP
LDA #16 ;SET UP LOOP COUNTER
STA TEMP4 ;USE TEMP4
JSR SAVAD

DISP1: JSR GETM
JSR SNDBY
JSR SNDSP
JSR INCAD
DEC TEMP4 ;LOOP TILL BYTES SHOWN
BNE DISP1
JSR SND2SP ;ADD 2 SPACES
JSR RECAD ;RECOVER ADDRESS FROM PROG4
LDA #16
STA TEMP4 ;RESET COUNTER
JSR GETM ;GET BYTE AGAIN
CMP #20H ;SHOW THEM AS ASCII CHARACTERS
BCC DISP2 ;UNLESS CONTROL
LDA #'.' ;-SHOW THOSE AS '.'
CMP #7FH
BCS DISP4
1D8A A62E LDA #','
1D8C CD1F29 JSR SEND
1D8F CD1E35 JSR INCAD
1D92 3A17 DEC TEMP4 ;DO TILL DONE
1D94 26E7 BNE DISP3
1D96 CD1DF5 JSR CRLF
1D99 CD1EFB JSR GET ;ESCAPE ON INCOMING '.'
1D9C A12E CMP #','
1D9E 26B6 BNE DISPO
1DA0 CC1D32 JMP MONITR

1DA3 CD1DE0 GOTO: JSR PREP ;ECHO COMMAND, GET ADDRESS
1DA6 CD1E6A JSR SNDAD ;SHOW ADDRESS FIRST
1DA9 CD1DF5 JSR CRLF ;GO AFTER CR
1DAC CD1E45 JSR GOMEM

1DAF CD1DE0 SUBST: JSR PREP ;ECHO COMMAND, GET ADDRESS
1DB2 CD1E6A SUBST1: JSR SNDAD ;SHOW ADDRESS FIRST
1DB5 CD1DEA JSR SND2SP ;THEN 2 SPACES
1DB8 CD1E4D JSR GETM ;GET BYTE
1DBB CD1E58 JSR SAVAD ;SAVE PROG1 ADDR IN PROG4 ADDR
1DBE B71B STA PROG1+2 ;FOR DEFAULT START OF GETAD1
1DC0 CD1E75 JSR SNDBY ;SHOW IT
1DC3 CD1DEA JSR SND2SP ;ADD 2 SPACES
1DC6 CD1E96 JSR GETAD1 ;GET NEW VALUE
1DC9 B61B LDA PROG1+2 ;GET DATA
1DCA CD1E61 JSR RECAD ;BRING BACK ADDRESS
1DCE CD1E49 JSR PUTM ;INSTALL NEW BYTE
1DD1 CD1DF5 JSR CRLF
1DD4 CD1E35 JSR INCAD
1DD7 20D9 BRA SUBST1

;*************MISC GENERAL SUBROUTINES***************

1DD9 CD1F29 ECHO: JSR SEND ;ECHO INCOMING CHARACTER
1DDC CD1DF5 JSR CRLF
1DDF 81 RTS

1DE0 CD1DD9 PREP: JSR ECHO
1DE3 CD1E92 JSR GETAD ;GET ADDRESS TO PROG1+1
1DE6 CD1DF5 JSR CRLF ;& PROG+2
1DE9 81 RTS

1DEA A620 SND2SP: LDA #','
1DEC CD1F29 JSR SEND
1DEF A620 SNDSP: LDA #','
1DF1 CD1F29 JSR SEND
1DF4 81 RTS

1DF5 A60D CRLF: LDA #ODH
1DF7 CD1F29 JSR SEND

32
LDA #0AH
JSR SEND
LDX #100

CRLF1: LDA #167 ;ABOUT A 10 MS DELAY
CRLF2: DECA ;INNER LOOP IS 1.001 MS
BNE CRLF2
DECX
BNE CRLF1

;SNDSTG SENDS STRING LOCATED ATXA TILL $ IS FOUND

1E0A B71F SNDSTG: STA PROG2+2
1EOC BF1E STX PROG2+1
1E0E A6C6 SNDST0: LDA #0C6H ;PUT LOAD INSTRUCTION IN PROG2
1E10 B71D STA PROG2
1E12 A681 LDA #81H ;PUT RETURN INSTRUCTION IN TOO
1E14 B720 STA PROG2+3
1E16 BD1D SNDST1: JSR PROG2 ;GET BYTE
1E18 3C1F INC PROG2+2 ;INCREMENT POINTER
1E1A 2602 BNE SNDST4 ;GET NEXT IF NO CARRY
1E1C 3C1E INC PROG2+1 ;INC REST OF POINTER IF CARRY
1E1E A124 SNDST4: CMP #'$'
1E20 2601 BNE SNDST2
1E22 81 RTS
1E23 A10A SNDST2: CMP #0AH ;SKIP LINE FEED
1E25 27EF BEQ SNDST1
1E27 A10D CMP #0DH ;DO CR WITH SUBROUTINE CRLF
1E29 2605 BNE SNDST3
1E2B CD1F5 JSR CRLF
1E2E 20E6 BRA SNDST1
1E30 CD1F29 SNDST3: JSR SEND
1E33 20E1 BRA SNDST1

INCAD: INC PROG1+2 ;INCREMENT ADDRESS POINTER
1E37 2602 BNE INCAD1
1E39 3C1A INC PROG1+1
1E3B 81 INCAD1: RTS

1E3C 3D1B DECAD: TST PROG1+2
1E3E 2602 BNE DECAD1
1E40 3A1A DEC PROG1+1
1E42 3A1B DECAD1: DEC PROG1+2 ;DECREMENT ADDRESS POINTER
1E44 81 RTS

1E45 AECC GOMEM: LDX #OCCH ;EXTENDED JMP
1E47 2006 BRA MEM
1E49 AEC7 PUTM: LDX #OC7H ;PREP FOR MOV M,A INSTRUCTION
1E4B 2002 BRA MEM
1E4D AE6C GETM: LDX #0C6H ;PUT LOAD INSTRUCTION IN PROG1
1E4F BF19 MEM: STX PROG1
1E51 AE81 LDX #81H ;PUT RETURN INSTRUCTION IN TOO
1E53 BF1C STX PROG1+3
1E55 BD19 JSR PROG1 ;AND PROG1+2
1E57 81 RTS

1E58 BE1A SAVAD: LDX PROG1+1
1E5A BF23 STX PROG4
1E5C BE1B LDX PROG1+2
1E5E BF24 STX PROG4+1
1E60 81 RTS

1E61 BE23 RECAD: LDX PROG4
1E63 BF1A STX PROG1+1
1E65 BE24 LDX PROG4+1
1E67 BF1B STX PROG1+2
1E69 81 RTS

;SNDAD SENDS ADDRESS IN PROG1+1 AND PROG1+2
;SNDBY SENDS BYTE IN A
;SNDNIB SENDS NIBBLE IN A

1E6A B61A SNDAD: LDA PROG1+1
1E6C CD1E75 JSR SNDBY
1E6F B61B LDA PROG1+2
1E71 CD1E75 JSR SNDBY
1E74 81 RTS

1E75 B716 SNDBY: STA TEMP3 ;KEEP COPY IN TEMP3
1E77 44 LSRA
1E78 44 LSRA
1E79 44 LSRA
1E7A 44 LSRA
1E7B CD1E84 JSR SNDNIB
1E7E B616 LDA TEMP3
1E80 CD1E84 JSR SNDNIB
1E83 81 RTS

1E84 A40F SNDNIB: AND #OFH ;GET 0-9 FIRST
1E86 AB30 ADD #'0'
1E88 A13A CMP #9+1
1E8A 2502 BCS SNDNII ;NOW LETTERS
1E8C AB07 ADD #'A'-9'-1
1E8E CD1F29 SNDNII: JSR SEND
1E91 81 RTS

;THIS SUBROUTINE GETS AN ADDRESS FROM THE TERMINAL
;ADDRESS IS IN PROG1+1 AND PROG1+2 AT COMPLETION
;NUMBER ROLLS OVER SO ONLY LAST 4 DIGITS ARE ACCEPTED
1E92 3F1A GETAD: CLR PROG1+1 ; 2- BYTE ACCUMULATOR
1E94 3F1B CLR PROG1+2 ; GETS DEFAULT ADDRESS OF 0
1E96 CD1EAC GETAD1: JSR GETNIB ; GET NIBBLE
1E99 5D TSTX ; LOOK FOR FLAG
1E9A 2601 BNE GETAD2
1E9C 81 RTS ; QUIT WHEN ZERO FLAG FOUND
1E9D AE04 GETAD2: LDX #4
1E9F 381B GETAD3: LSL PROG1+2 ; MAKE ROOM FOR NEW NIBBLE
1EA1 391A ROL PROG1+1
1EA3 5A DECK ; BY MOVING OVER 4 BITS
1EA4 26F9 BNE GETAD3
1EA6 BB1B ADD PROG1+2 ; ADD IN NEWCOMER
1EAA B71B STA PROG1+2
1EAC 20EA BRA GETAD1

1EAE CD1EFB GETNIB: JSR GET ; GET INCOMING CHARACTER
1EAF 97 TAX ; HIDE IT IN X
1EB0 A10D CMP #0DH ; LOOK FOR CARRIAGE RETURN
1EB2 272A BEQ GETN1
1EB4 A12E CMP #',.'
1EB6 260B BNE GETN2
1EB8 C6020B LDA 020BH
1EBB A47F AND #7FH ; CLEAR CLOCK SET BIT
1EBD C7020B STA 020BH ; IN CASE OF EXIT FROM CKSET
1EC0 CC1D32 JMP MONITR
1EC3 A030 GETN2: SUB #0'0'; LOOK FOR NUMBERS FIRST
1EC5 25E5 BCS GETNIB
1EC7 A10A CMP #10 ; DONE IF 0-9
1EC9 2508 BCS GETN3
1ECB A007 SUB #A'-9'-1 ; NOW LOOK FOR LETTERS
1ECD 25DD BCS GETNIB ; TRY AGAIN IF NOT A-F
1ECE A110 CMP #16
1ED1 24D9 BCC GETNIB
1ED3 B716 GETN3: STA TEMP3
1ED5 9F TXA ; MOVE NUMBER BACK
1ED6 CD1F29 JSR SEND
1ED9 B616 LDA TEMP3
1EDB AEFF LDX #OFFH ; CLEAR RETURN FLAG
1EED 81 RTS

1EE0 CD1EFE GETN1: CLRX ; RETURN FLAG
1EEF 81 RTS

1EE0 CD1EFE GETHX: JSR GETHX1 ; GET BYTE FROM TWO
1EE3 48 ASLA ; INCOMING CHARACTERS
1EE4 48 ASLA
1EE5 48 ASLA
1EE6 48 ASLA
1EE7 B718 STA TEMP5
1EE9 CD1EFE JSR GETHX1
1EEC BB18 ADD TEMP5

35
1EEF 81 RTS
1EEF CD1E9B GETHXI: JSR GET ; GET HEX NUMBER FROM UART
1EF2 A030 SUB # '0' ; BYTE COMING IN IN ASCII
1EF4 A10A CMP # 10
1EF6 2502 BCS GETHX2
1EF8 A007 SUB # A' - '9' - 1
1EFA 81 GETHX2: RTS

******************* UART SUBROUTINES *******************

; ENTER OR EXIT WITH BYTE TO BE SENT IN ACCUMULATOR
; SENDS 7 BITS WITH NO PARITY
; RECEIVES ONLY 7 BITS
; WORKS WITH RATES 50 TO 9600 BAUD
; GET BRINGS CHARACTER IN FROM UART
; SEND SENDS CHARACTER OUT UART
; RASET SETS UART RATE

1EFB 0E01FD GET: BRSET 7, 1, GET ; WAIT FOR START BIT
1EFE BE10 LDX TIMA ; WAIT 1/2 BIT CELL
1F00 B611 LDA TIMB
1F02 57 ASRX
1F03 46 RORA ; DIVIDE BY 2
1F04 A005 SUB # 5 ; TIMING COMPENSATION
1F06 2501 BCS GET01
1F08 5C INCX
1F09 4C GET01: INCA
1F0A 4A GET02: DECA
1F0B 9D NOP
1F0C 26FC BNE GET02
1F0E 5A DECK
1F0F 26FB BNE GET02
1F11 AE80 LDX # 80H ; BIT IN D7 IS FLAG
1F13 CD1F55 GET3: JSR TIMIN3 ; 1 BIT CELL WAIT
1F16 54 LSRX ; MOVE OVER FOR NEXT BIT
1F17 250B BCS GET4
1F19 9D NOP
1F1A 9F TXA
1F1B 0F0102 BRCLR 7, 1, GET2 ; ADD NOTHING IF CLEAR
1F1E AB80 ADD # 80H ; PUT IN BIT IF NOT
1F20 97 GET2: TAX
1F21 9D NOP
1F22 20EF BRA GET3 ; QUIT WHEN ALL 7 DONE
1F24 CD1F4D GET4: JSR TIMIN1 ; WAIT ONE MORE CELL
1F27 9F TXA
1F28 81 GET6: RTS

36
1F29 B715 SEND: STA TEMP2 ;SAVE CHARACTER
1F2B 1D01 BCLR 6,1 ;SET START BIT
1F2D AA80 ORA #80H ;LAST BIT FLAG
1F2F 97 TAX
1F30 CD1F55 SEND1: JSR TIMIN3 ;WAIT FOR TIMEOUT
1F33 54 LSRX ;GET NEXT BIT
1F34 270A BEQ SEND3 ;DONE IF ACCUMULATOR
1F36 2404 BCC SEND2 ;IS ZERO
1F38 1C01 BSET 6,1 ;SET TRANSMITTED BIT
1F3A 20F4 BRA SEND1
1F3C 1D01 SEND2: BCLR 6,1 ;CLEAR TRANSMITTED BIT
1F3E 20F0 BRA SEND1
1F40 1D01 SEND3: BCLR 6,1 ;FOR STOP BIT
1F42 CD1F51 JSR TIMIN2 ;WAIT FOR END OF STOP BIT
1F45 1C01 BSET 6,1
1F47 CD1F4D JSR TIMIN1
1F4A B615 LDA TEMP2 ;RECOVER CHARACTER
1F4C 81 RTS
1F4D A608 TIMIN1: LDA #8 ;BASIC TIMING ROUTINE
1F4F 2006 BRA TIMING
1F51 A609 TIMIN2: LDA #9
1F53 2002 BRA TIMING
1F55 A60A TIMIN3: LDA #10
1F57 B713 TIMING: STA TTIMB
1F59 B610 LDA TIMA
1F5B B712 STA TTIMA
1F5D B611 LDA TIMB
1F5F B013 SUB TTIMB
1F61 B713 STA TTIMB
1F63 2502 BCS TIMXX
1F65 3C12 TIMXY: INC TTIMA
1F67 3C13 TIMXX: INC TTIMB
1F69 3A13 TIMX: DEC TTIMB
1F6B 26FC BNE TIMX
1F6D 3A12 DEC TTIMA
1F6F 26F8 BNE TIMX
1F71 81 RTS
1F72 B610 TIMIN5: LDA TIMA
1F74 B712 STA TTIMA
1F76 B611 LDA TIMB
1F78 A00D SUB #13
1F7A B713 STA TTIMB
1F7C 2402 BCC TIMX1
1F7E 3A12 DEC TTIMA
1F80 3712 TIMX1: ASR TTIMA
1F82 3613 ROR TTIMB
1F84 20DF BRA TIMXY

;UART RATE SETTING ROUTINE: GOOD FOR 50 - 9600 BAUD
1F86 3F10 RATSET: CLR TIMA ;ZERO COUNTERS
1F88 3F11 CLR TIMB
1F8A 0E01FD RATS1: BRSET 7,1,RATS1 ;WAIT FOR INCOMING
1F8D ;START BIT
1F98 3C11 RATS2: INC TIMB
1F9F 2602 BNE RATS4
1F91 3C10 INC TIMA
1F93 5C RATS4: INCX ;IGNORED: CORRECTS TIMING
1F94 0F01F6 BRCLR 7,1,RATS2 ;WAIT FOR STOP BIT END
1F97 1F99 3910 RATS5: LSL TIMB ;IF SLOW RATE NEED NOT CORRECT
1F9B 2611 ROL TIMA
1F9D B611 BNE RATS7
1F9F 97 LDA TIMB ;CORRECT HIGHEST RATES
1FA0 A115 TAX
1FA2 2408 CMP #21
1FA4 AE11 BCC RATS6
1FA6 A10F LDX #17
1FA8 2402 CMP #15 ;CORRECT 7200 & 9600 BAUD
1FAC AE0D BCC RATS6
1FEE BF11 LDX #13
1FAB 81 RATS6: STX TIMB ;STASH IT IN SAFE HIDDING
1FAE 81 RATS7: RTS

;INTERRUPT AND RESET VECTORS.

1FF6 ORG 1FF6H
1FF6 1B00 DB 1BH,00H ;HIGH,LOW WAIT TIMER
1FF8 1B03 DB 1BH,03H ;HIGH,LOW TIMER INT
1FFA 1840 DB 18H,40H ;HIGH,LOW HARDWARE INT
1FFC 1809 DB 18H,09H ;HIGH,LOW SOFTWARE INT
1FFE 1800 DB 18H,00H ;ROM START FROM RESET
0000 END

38
Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92039

Hancock Library of Biology &
Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International
Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

Library
Physical Oceanographic Laboratory
Nova University
8000 N. Ocean Drive
Dania, FL 33304

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library
Skidaway Institute of Oceanography
P.O. Box 13687
Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Library
Chesapeake Bay Institute
4800 Atwell Road
Shady Side, MD 20876

MIT Libraries
Serial Journal Room 14E-210
Cambridge, MA 02139

Director, Ralph M. Parsons Laboratory
Room 48-311
MIT
Cambridge, MA 02139

Marine Resources Information Center
Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological
Observatory
Colombia University
Palisades, NY 10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Bay St. Louis
NSTL, MS 39522-5001
An FSK Telemetry Module for Vector Measuring Current Meters

Paul D. Fucile and James R. Valdes

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Office of Naval Research
Environmental Sciences Directorate
Arlington, Virginia 22217

The EG&G Vector Measuring Current Meter (VMCM) used in mooring work provides a 20 ma Serial ASCII Instrumentation Loop (SAIL) communication system. A projected application of the VMCM is to have a surface mooring communicate with a series of VMCMs via a Frequency Shift Keying (FSK) link. While an FSK modem can communicate with the VMCM, a problem exists with the general operation of the VMCM. If the VMCM is addressed to dump data, it remains on until the unit is re-addressed. If a failure in the link occurs, then the VMCM stays on in a higher power mode and the batteries will be depleted early.

The insertion of a processing block between the modem and the VMCM provides a way to look at incoming data, qualify it and re-transmit it to the VMCM. The VMCM will reply and the preprocessor can channel the data to the modem. In the event of a VMCM malfunction, the preprocessor has a timeout function and will turn off the carrier keeping the line quiet.

1. Vector Measuring Current Meter
2. FSK SAIL Communications
3. Telemetry Buoy