Gross and net production during the spring bloom along the Western Antarctic Peninsula

Johanna A.L. Goldman¹, Sven A. Kranz¹,⁴, Jodi N. Young¹, Philippe D. Tortell², Rachel H.R. Stanley³, Michael L. Bender¹, Francois M.M. Morel¹.

Corresponding author: Johanna A.L. Goldman, email: johannag@princeton.edu, Phone: 609-258-2612

¹ Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
² Department of Earth, Ocean and Atmospheric Sciences, Dept. of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
³ Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
⁴ Present address: Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, 32306, USA

Word count:
Total 6303
Introduction 730
Material and methods 1738
Results 2568
Discussion 1122
Acknowledgements 145
4 Figures (Figures 1 and 2 in colors)

Supporting information:
Word count: 1550
6 Figures, 3 Tables, 4 Notes
Summary

- This study explores some of the physiological mechanisms responsible for high productivity near the shelf in the Western Antarctic Peninsula despite a short growing season and cold temperature.
- We measured gross and net primary production at Palmer Station during the summer 2012/2013 via three different techniques: 1) incubation with H$_2^{18}$O; 2) incubation with 14CO$_2$; and 3) *in situ* measurements of O$_2$/Ar and triple oxygen isotope. Additional laboratory experiments were performed with the psychrophilic diatom *Fragilariopsis cylindrus*.
- During the spring bloom, which accounted for more than half of the seasonal gross production at Palmer Station, the ratio of net to gross production reached a maximum greater than ~60%, among the highest ever reported. The use of multiple-techniques showed that these high ratios resulted from low heterotrophic respiration and very low daylight autotrophic respiration. Laboratory experiments revealed a similar ratio of net to gross O$_2$ production in *F. cylindrus* and provided the first experimental evidence for an important level of cyclic electron flow (CEF) in this organism.
- The low ratio of community respiration to gross primary production observed during the bloom at Palmer Station may be characteristic of high latitude coastal ecosystems and partially supported by a very active CEF in psychrophilic phytoplankton.

Key words: cold adaptation, cyclic electron flow, *Fragilariopsis cylindrus*, gross production, net community production, respiration, Western Antarctic Peninsula.
The Western Antarctic Peninsula (WAP) is among the most productive regions in the Southern Ocean (Arrigo et al., 2008a; Arrigo et al., 2008b), where spring phytoplankton blooms result in a large Net Community Production (NCP= photosynthesis minus respiration) supporting an abundant and diverse ecosystem (Ducklow et al., 2007). Over the past several decades, the WAP has also experienced some of the most extreme atmospheric warming on the planet (IPCC, Parry (2007)) with a concomitant rise of more than 1°C in sea surface temperature since the 1950s (Meredith & King, 2005). Significant research to date has focused on determining the effects of rising temperature on the magnitude of the spring bloom (e.g. Montes-Hugo et al. (2009)) but there is limited understanding of the mechanisms that control the rates of carbon fixation and consumption in these waters.

Photochemical reactions are nearly temperature independent and phytoplankton have developed several adaptive mechanisms to mitigate the effect of low temperature on the photosynthetic electron transport chain (see reviews by Mock and Hoch (2005), Morgan-Kiss et al. (2006) and Dolhi et al. (2013)). As a result, the light reaction of photosynthesis is little affected by low temperature under nutrient replete conditions. For the dark reaction, the reduced catalytic rates of various enzymes in the Calvin cycle at cold temperature can be partially compensated by the increased solubility of CO₂ over O₂ in water, an efficient carbon concentrating mechanism (Kranz et al., accepted), and an increase in the cellular concentration of key enzymes, including Ribulose-1,5-bisphosphate carboxylase oxygenase, Rubisco (Young et al., accepted). In contrast, respiratory processes have been reported to be highly sensitive to the change in temperature. Large decreases in respiration rate with decreasing temperature have been shown in previous studies of individual phytoplankton and macro-algae (Staehr & Birkeland, 2006; Padilla-Gamino & Carpenter, 2007) as well as in
numerous ecosystems (Valentini et al., 2000; Regaudie-de-Gioux & Duarte, 2012; Yvon-Durocher et al., 2012). It is unclear why phytoplankton growing at a given growth rate would need less energy from respiration at low than at higher temperature. One possibility is that psychrophilic phytoplankton may take advantage of the maintenance of the high activity of their photosystems to generate ATP via the photosynthetic apparatus.

In this study we used three different techniques to study primary production and respiration in the WAP (LTER-station B, Palmer station, Latitude: -64.7795; Longitude: -64.0725, sampling depth: 10m, total depth ~70m; Fig. S1) during the austral summer of 2012/2013. Comparing the results of three techniques provides insights into some of the mechanisms that control the primary productivity in the WAP. Two of these techniques are bottle incubations that measure production from the light reaction of photosynthesis ($H_2^{18}O$ incubation) or the dark reaction of photosynthesis ($^{14}CO_2$ incubation). In addition, measurements of biologically-derived O_2 supersaturation as well as of the isotopic composition of the O_2 pool, from in situ sample collection, allowed us to derive time-integrated ratios of Net/Gross production (the “triple oxygen isotope technique”; Luz and Barkan (2000); Prokopenko et al. (2011); Juranek and Quay (2013)). To further explore the underlying physiological processes, laboratory experiments were conducted with the model psychrophilic diatom *Fragilariopsis cylindrus*, including measurements of net and gross photosynthesis, respiration and cyclic electron flow.

Materials and methods

Field sampling and incubation experiments. Sampling took place twice weekly in the morning at LTER-station B (Latitude: -64.7795; Longitude: -64.0725; total depth ~70m). Water from 10m depth was collected (monsoon pump; Waterra WSP-SS-80-
NC) and dispensed into acid washed (10% HCl) containers, rinsed thoroughly with MilliQ and on site water, for transport back to the shore-based laboratories. Back at shore, all containers were kept in a cold room (2°C) until processing, which typically occurred within 1 -2 hours of sample collection. Incubation experiments (described below) were conducted on sub-samples placed in a flow-through seawater tank shaded with neutral density screening to reduce irradiance by 50% (LEE filters 209 0.3ND). A continuous flow of seawater pumped from the shore (10m depth) was used for temperature control.

Pigment measurements and identification.
A known volume of sample (0.2-1L) was collected in duplicate and filtered onto a glass fiber filter (Whatman GF/F, nominal pore size= 0.7µm). After overnight extraction in 90% acetone at -20°C, chlorophyll a (Chl a) concentration for each duplicate was determined with a fluorometer (Turner Designs 10-AU), measuring the un-acidified and acidified sample to correct for phaeopigments (Welschmeyer, 1994). For pigment identification (chlorophyll and carotenoids), one liter of seawater was filtered under low light onto a GF/F, wrapped in aluminum foil, flash frozen in liquid nitrogen and subsequently stored at -80°C. Phytoplankton species composition for the three major taxa (diatoms, *Phaeocystis*, and cryptophytes) was determined from the abundance of the pigments fucoxanthin, 19’ hexanoyloxyfucoxanthin and alloxanthin (Everitt *et al.*, 1990; Arrigo *et al.*, 2000). Quantification of pigments was conducted using HPLC analysis at the Estuarine Ecology Lab (University of South Carolina) following the protocol described in Pinckney *et al.* (1998).

Seawater Hydrography and meteorological measurements.
The Palmer station Long Term Ecological Research (PAL-LTER) program conducted regular depth profiles of temperature and salinity at LTER-station B using a Seabird SBE 19plus Seacat Profiler. These depth profile (Fig. S2) measurements were made within 1 – 2 hours of our regular
sampling times. Seawater density (Fig. S3) was computed from salinity and temperature using the TEOS-10 seawater equation of state (http://www.teos-10.org/software.htm). Surface PAR levels (i.e. irradiance between 400 and 700 nm wavelength) were measured by the Palmer Station Terra Laboratory using a LI-COR LI-190SA quantum sensor. Wind-speed data were obtained from the meteorological sensors on top of the Palmer Station Terra Laboratory.

O₂ measurements.
Dissolved \([O_2] \) was measured by Winkler titration. Seawater was collected with a Go-flo bottle and transferred directly to Winkler bottles, taking care to avoid bubbles and to seal samples and reagents with no headspace. Samples for each sampling day were taken in duplicate. Titrations were performed using an amperometric oxygen titrator designed by Dr. Chris Langdon (Langdon, 1984; Culberson & Huang, 1987). The instrumental precision of the measurements is ± 2 µmol L\(^{-1}\) but the average precision of the duplicate was ± 4 µmol L\(^{-1}\).

H\(^{18}\)O₂ incubations.
Gas tight bottles (145 ml, Pyrex) were rinsed and filled with collected seawater from the carboys. One bottle was set aside for immediate transfer (initial sample) while two bottles were spiked with 125µL H\(_2\)\(^{18}\)O (Medical Isotopes, 97.6%) for a final enrichment of 412.4‰. The two experimental bottles were incubated for 4 to 8 hours in the aquarium tank outside the station. For our laboratory experiments we followed the same procedure but duplicate bottles were taken for immediate transfer (initial samples) and duplicate bottles were incubated in an illuminated incubator (150 µE m\(^{-2}\) s\(^{-1}\)) at 0.5°C. The samples were subsequently transferred into custom-made 500mL flasks equipped with Louwers-Hapert valves (LH flask), that had been previously spiked with 100µL of saturated HgCl\(_2\), dried, and evacuated (~1.5 mTorr= ~0.2Pa). The LH flasks were then analyzed back in the laboratory at Princeton within 6 months. Prior to analysis, the liquid phase was first
equilibrated, and then carefully drained. LH flasks were then put in a freezing bath and the gas in each flask transferred into a stainless steel tube kept in a liquid helium tank. Each tube was allowed to warm up for one hour before analysis in a Delta Plus XP mass spectrometer for dO2/Ar, d18O and d15N (see Emerson et al. (1995)). The increase of [18O16O] provides a measurement of Gross photosynthesis (GP) in the bottle, while the change in [O2] during the incubation provides the net production in the light in the bottle (NBP). The difference of the two gives respiration in the light in the bottle. The errors were calculated as standard deviation of the duplicates. The values were converted from oxygen evolution to carbon fixation using a photosynthetic quotient (PQ) based on C/N ratios from Young et al. (accepted) and derived from electrons balance:

\[\text{PQ} = \frac{\text{mol } O_2}{\text{mol } C} = \frac{1}{2} \frac{\text{mol } e^-}{\text{mol } C} = 1 + 2 \times \frac{N}{C}. \]

This equation assumes all nitrogen source is NO3⁻ and an average photosynthetic product of CH2+3N/C ONN/C.

All the measurements and values used can be found in Table S1.

14C incubations.

We used a 14C-based incubation approach to measure C fixation rates by phytoplankton assemblages. Samples were incubated in polycarbonate bottles (125 ml), with varying amounts for NaH14CO3 in the flow-through seawater tank. Triplicate samples for Gross Primary Production (GPP) measurements were spiked with 10 µCi H14CO3⁻ and incubated in the tank for 2h. Both incubations were initiated at midday. Triplicate samples for Net Primary Production (NPP) were spiked with 5 µCi H14CO3⁻ and incubated for 24h. In addition to the six NPP and GPP bottles, two bottles were used as controls and spiked with 5 µCi H14CO3⁻: one bottle was filtered immediately after addition (blank), while the other was incubated in the dark for 24h in the seawater tank (negative control). To quantify total 14C activity for specific activity calculations, a subsample (125 µl) was collected from each bottle after the incubation.
period. Subsequently, samples were filtered onto a 0.7µm glass fiber filter, which was placed into 20mL scintillation vials and acidified with 6N HCl for at least 24h. Radioactivity in the samples was measured by scintillation counting on a Beckman-Coulter Liquid Scintillation counter (LSC 6500), using a standard quench curve correction to derive disintegrations per minute. The errors were calculated as standard deviation of the triplicate. An estimation of the correction for respiration of unlabeled carbon during the 24h experiment was also calculated (see Notes S1).

In situ measurement of ΔO₂/Ar and triple oxygen isotopes. Samples were collected with a Go-flo bottle and transferred immediately into a 500mL custom-made pre-evacuated and pre-poisoned bottles with Louwers-Hapert (LH) valves (Emerson *et al.*, 1995). Great care was taken during the sample collection process to avoid entrainment of atmospheric oxygen. The samples were stored at ambient temperature and analyzed at Woods Hole Oceanographic Institution within 6 months. Analysis followed the method of Barkan and Luz (2003) with the modification that the GC column was 5.3 m and held at -3 °C, and that each sample was collected on a cryogenic trap at <10°K which was then warmed to room temperature and directly released into an isotope ratio mass spectrometer. The ratio O₂/Ar reflects the mass balance between NCP and gas exchange (Craig & Hayward, 1987; Emerson *et al.*, 1991), while the triple oxygen isotope measurement reflects the mass balance between GPP and gas exchange (using the equation described in Prokopenko *et al.* (2011)). The details of this approach have been described previously (Luz & Barkan, 2000; Reuer *et al.*, 2007) and are explained in Supplementary notes S2. Values for NCP and GPP were converted from µmol O₂ m⁻² d⁻¹ to µmol O₂ L⁻¹ d⁻¹ using the computed mixed layer depth (derived from a density difference criterion of 0.125 kg m⁻³) or our sampling depth of 10m, whichever was greater.
Bacterial productivity and respiration.

30mL bottles were filled with seawater sub-samples. Triplicate control bottles were immediately spiked with 200µL formalin (37% formaldehyde) to stop biological activity. All bottles were then spiked with 50µL ³H-thymidine. The biologically active bottles (in triplicate) were then incubated in the outdoor seawater tank for 2h. At the end of the incubation, biological activity was stopped by adding 200 µL formalin. A subsample was taken from all bottles for specific activity determination, while the remaining volume was filtered on a 0.2µM cellulose nitrate filter. The filters were dried overnight, dissolved in ethyl acetate, and counted on a Beckman-Coulter Liquid Scintillation counter (LSC 6500), with quench correction. Following (Kirchman et al., 1982), the uptake rate of labelled compound v(t) is assumed proportional to the bacterial growth rate: v(t)= \frac{1}{C} \frac{dN(t)}{dt}, where N is the number of cells and the conversion factor C= 1.2 x 10^6 cells pmol\(^{-1}\) (Delille & Cahet, 1997). Bacterial production and respiration were calculated using an average value of 10 fgC cell\(^{-1}\) and a growth efficiency factor of 0.15 (Ducklow et al., 2012). Errors were calculated as standard deviation of the triplicates.

Laboratory culture experiments.

Fragilariopsis cylindrus (CCMP 1102) was grown in semi continuous batch culture using 0.2 µm filtered coastal seawater supplemented with Aquil nutrients (Sunda et al., 2005) under continuous light (c. 150 µE m\(^{-2}\) s\(^{-1}\)) at 0.5°C. Cells densities were counted with a Coulter Counter Z2 (Beckman Coulter Inc, Fullerton, CA). Cells were harvested during exponential phase after ~2 weeks of growth. Incubations with H\(_2\)\(^{18}\)O in the light were performed (as described above) to yield estimates of net and gross photosynthesis as well as respiration in the light. Additional incubations were performed in the dark to derive estimates of respiration in the dark from the change in O\(_2\) concentration.
Cyclic electron flow.

For the determination of relative cyclic electron transport rates, *Fragilariopsis cylindrus* cells in exponential growth were filtered gently and resuspended into Aquil medium with 20% w/w Ficoll. Following continuous illumination during which the redox state of P$_{700}$ in PSI reaches steady state, the reduction rate of P$_{700}$ was measured in the dark by fast spectrophotometry as the increase in absorbance at 700nm (JTS-10 spectrophotometer, BioLogic, France). The total number of PSI as well as the rate of their dark reduction, due to either cyclic or linear electron flow, was obtained by the technique reviewed in Alric (2010).

To discriminate between the cyclic and linear electron flow, the measurements were done under two different conditions: without any inhibitor and in the presence of DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea, 20µM) a specific inhibitor of PSII that blocks the linear flow of electrons going to PSI. To obtain the initial rate of P$_{700}$ reduction, the spectroscopic data were fitted with an exponential function and corrected for an instrumental artefact as explained in supplemental information (Notes S3).

RESULTS

Community composition and phytoplankton biomass

The near shore waters adjacent to Palmer station are typically ice-covered in the winter. During the austral spring 2012, the ice retreated at the end of October (≈ October 25th). A large bloom of phytoplankton was observed in late November-early December of 2012 (up to 45µg Chl a L$^{-1}$; Fig. 1a). Based on the analyses of three marker pigments (fucoxanthin, 19'-hexanoyloxyfucoxanthin, and alloxanthin, see Arrigo *et al.*, (2000)), the phytoplankton community at the beginning of the season was equally dominated by diatoms and Phaeocystis (Fig. 1a). As the diatom bloom developed, the Phaeocystis share of the community decreased and at the peak of the bloom the population was essentially all diatoms. The bloom was interrupted by a mixing event which
temporarily reduced the chlorophyll concentration down to 10 µg L⁻¹ (on December 4th). In mid-December, the bloom crashed and thereafter the phytoplankton population, then dominated by cryptophytes and *Phaeocystis*, was maintained around 1-3 µg Chl a L⁻¹. The abundance of macro-nutrients at the crash of the bloom and during the rest of the season (Fig. S4) suggests that the end of the bloom and thereafter control of the population was likely due to grazing (Tortell *et al.*, 2014). In early March, a smaller bloom of diatoms and *Phaeocystis* yielded chlorophyll concentration slightly above 6 µg L⁻¹.

Photosynthesis and respiration during daylight

To study photosynthesis and respiration in the light, incubations with H₂¹⁸O were performed weekly on water collected from LTER-station B, starting at midday and lasting 4 to 8h. The rates of both net and gross production in the bottle are given in unit of µmol L⁻¹ d⁻¹ but only pertain to the period of the incubation. These incubations thus included the daily irradiance peak around 3PM and were all done at saturating light. We observed no relationship between average PAR during the incubations and the Chl a–normalized photosynthetic rates (Fig. S5), suggesting that photoinhibition or light limitation were not occurring. Net bottle production in the light (NBPₗ), defined as the difference between photosynthetically produced oxygen and respiratory O₂ consumption by the autotrophs and heterotrophs in the bottle, was measured by ΔO₂, the difference between the final and the initial O₂ concentration in the incubation bottle. Early in the season (before Nov 14th), the incubations showed a net heterotrophy during daylight as shown by a slightly negative NBPₗ (Fig. 1b). This net heterotrophy was confirmed by in situ measurement of dO₂/Ar with a Membrane Inlet Mass Spectrometer (Tortell *et al.*, 2014). During the bloom (defined here as the period between November 19th and December 10th 2012 when the chlorophyll was above 5 µg Chl a L⁻¹), we measured a very high NBPₗ with a maximum > 90 µmol O₂ L⁻¹ d⁻¹ corresponding to > 65
µmol C L\(^{-1}\) d\(^{-1}\) (using an average photosynthetic quotient PQ=1.39; Fig. 1b). For the rest of the season, NBPL values less than 6 µmol C L\(^{-1}\) d\(^{-1}\) were obtained until the second bloom, when values increase to ~18 µmol C L\(^{-1}\) d\(^{-1}\).

In the same bottles, Gross Photosynthesis (GP; defined as the amount of oxygen produced from the splitting of water during photosynthesis) was also measured, independently of NBPL, as the increased concentration of \(^{18}\text{O}\)\(^{16}\text{O}\) in incubations with \(\text{H}_2^{18}\text{O}\) (see method). During most of the season the measured \(^{18}\text{O}\)-derived GP closely tracked the measured ΔO\(_2\) derived NBPL (Fig. 2a). The correlation between the two (0.89 ± 0.08; \(R^2=0.89\)) in these incubations is dominated by the high values during the bloom and indicates that during several hours at midday net production in the bottle was roughly 90% of GP. Thus respiration at midday during the bloom, calculated as the difference of GP minus NBPL during the incubation, was only ~10% of GP. This respiration includes respiration by autotrophs (mitochondrial respiration and photorespiration), respiration by heterotrophs (mainly bacteria, as larger heterotrophs are excluded from the incubation bottles) and potentially the reduction of \(O_2\) in the Mehler reaction. Bacterial respiration, derived from thymidine incorporation measured in separate 2h incubations at midday, was less than 2 µmol C L\(^{-1}\) d\(^{-1}\) during the season at 10m depth, except at the crash of the bloom when it increased to ~8 µmol C L\(^{-1}\) d\(^{-1}\) (Dec 14\(^{th}\), see Notes S4 and Fig. S6). After the crash of the first bloom, our ΔO\(_2\) measurements in the incubations revealed very low overall net production (see Table S1).

Gross photosynthesis in the \(^{18}\text{O}\) bottle incubations varied linearly with chlorophyll (Fig. 3) up to ~25 µg L\(^{-1}\). The slope of 3.0 µmol C µg Chl \(a\)\(^{-1}\) d\(^{-1}\) is similar to the values from the Antarctic reported by Westwood \textit{et al.} (2010) (4.1 ± 1.7 µmol C µg Chl \(a\)\(^{-1}\) d\(^{-1}\) between 0-25m) and by DiTullio \textit{et al.} (2003) (5.6 ± 4.6 µmol C µg Chl \(a\)\(^{-1}\) d\(^{-1}\) in the Antarctic zone). The linearity of Figure 3, despite the variability of the light intensity among
experiments (PAR ~200 to ~670 µE m^-2 s^-1), indicates that photosynthesis was likely light saturated during those incubations (see figure S5).

Photosynthesis and respiration during a light-dark cycle using 14C

In order to measure net and gross primary production during a full diel cycle, 2 and 24h 14CO2 uptake incubations were performed twice weekly starting around midday. Net Primary Production (NPP) measured in 24h experiments represents the gross carbon fixation minus DOC excretion and respiration by the autotrophs and heterotrophs present in the incubation bottles (excluding large zooplankton). A somewhat lower value for a net primary production NPP*, is obtained by subtracting from the measured NPP an estimate of the unlabeled carbon respired during the 24h incubation (see supplemental Note S1). Due to a mixing event (that was not captured by an 18O incubation) those incubations showed two peaks of high net production during the bloom (Fig. 1c), reaching up to 78 µmol C L^-1 d^-1 on December 10th. Differences in the relative values of net production measured by 14C and 18O incubations result, in part, from differences in the duration of light saturation during the two types of experiments. During the rest of the season the 14C based NPP values were generally less than 2 µmol C L^-1 d^-1.

The average ratio of 14C-NPP/18O- NBP ~0.79 during the bloom and 0.20 after the crash of the bloom, illustrates the fact that the two methods measure different processes (see below). The average ratio 18O-GP/14C NPP ~3.57 measured for the entire season up to the second bloom is similar to previously reported values in the laboratory (Halsey et al., 2013) and is within the range of the values reported from the field (Bender et al., 1999; Laws et al., 2000; Marra, 2007; Hamme et al., 2012).
Gross primary production (GPP), which represents the CO₂ fixed by the autotrophs into new biomass, was measured in separate bottles spiked with ¹⁴CO₂ and incubated at the same time and in the same tank as NPP but for only 2h at midday. The rates are given in µmol L⁻¹ d⁻¹ but only pertain to the 2h period of incubation. Surprisingly, some of the measurements at the beginning of the season and during the bloom gave GPP values that were lower than the NPP. Such ratios of ¹⁴C-NPP/¹⁴C-GPP > 1 have been observed previously (Robinson et al., 2009) and may reflect a reduced photosynthetic activity at midday.

Omitting the data where ¹⁴C GPP was lower than NPP, we observe a strong correlation between NPP and GPP (Fig. 2b) with a slope of 0.61±0.05 before/during the bloom and a slope of 0.54±0.07 afterward. Those slopes are somewhat lower when respiration of unlabeled carbon is taken into account (NPP* vs GPP: 0.54 before/during the bloom and 0.24 after the bloom). Those ratios of net production to gross photosynthesis are much lower than our value of ~0.9 from the ¹⁸O incubations obtained at midday. Part of the explanation is the difference in timing between the ¹⁸O and ¹⁴C incubations, with only the latter measurements including the dark portion of the day. Differences in the diel patterns of photosynthesis and respiration rates (Moline & Prezelin, 1996) would also lead to discrepancies between the two methods, as would excretion of some of the organic carbon (which is accounted for in the ¹⁸O but not in the ¹⁴C experiments).

Photosynthesis and respiration: time-integrated in situ measurements

The triple oxygen isotope method provides an in situ measure of time-integrated gross and net production of the whole community, without any exclusion or constraints linked to bottle incubations (Luz & Barkan, 2000). Net community production in this case is derived from the supersaturation of O₂ compared to Ar which represents the balance of photosynthesis, respiration and gas exchange (computed using a wind-speed dependent parameterization of mixed layer gas exchange)
coefficients according to Wanninkhof (1992)). Gross photosynthesis in
the mixed layer is calculated from the isotopic composition of the O₂
pool, which is determined by the gross O₂ fluxes associated with
photosynthesis (splitting of water) and air-sea exchange. The
calculations of NCP and GPP were made considering that the samples
were within the mixed layer and that oxygen was at steady state, except
during the peak of the bloom when the changing isotopic ratios were
taken into account in order to calculate rates without necessitating the
steady state assumption (Kaiser, 2011; Prokopenko et al., 2011). In
addition, the calculations of NCP and GPP during the bloom were made
considering that the sampling depth of 10m was either below the mixed
layer (as indicated by the density profiles; Fig. S2) or possibly within it
(as indicated by the Ekman depth; Brody and Lozier (2014)). Details of
the calculations to obtain NCP, GPP and their ratios, using different
hypothesis of steady state and mixed layer conditions, can be found in
Tables S2 and S3 and supplemental notes S2. No matter what the
method (i.e. steady-state or time-varying, within mixed layer or below
it), the rates of GPP and NCP during the bloom period are much higher
than the rates of GPP and NCP during the rest of the season.

Qualitatively, the triple oxygen isotope-derived NCP and GPP estimates
(Fig. 1d) resemble those from ¹⁴C incubations exhibiting two peaks
during the bloom and remaining low afterward (except for an
unexplained peak in GPP on January 8ᵗʰ). The absolute values in Fig. 1d
however are lower than in Fig. 1b,c. This is in part due to the inherent
time and space averaging of the triple oxygen isotope method, which
necessarily smooths out the high values. This integrated measure of
NCP demonstrates that the system never reached a sustained period of
net heterotrophy before or after the bloom with only a few values of
NCP slightly below zero.

The NCP/GPP ratio measured with the dO₂/Ar and triple oxygen isotope
technique started with values ~0.25 at the beginning of spring and
increased to values above 0.6 during the two peaks of the bloom (regardless of the assumption made regarding the depth of the mixed layer). These high ratios observed in both NCP/GPP from *in situ* measurements and NPP/GPP from 14C data, indicated that community respiration was largely controlled by the microorganisms that were sampled in the bottles, as opposed to large grazers that would have been excluded. Thymidine incorporation measurements indicate very low bacterial production and respiration before and during the bloom (Fig. S6), implying that much of the respiration was attributable to the phytoplankton. Just at the crash of the bloom the O$_2$ NCP/GPP decreased to low and possibly negative values as expected and confirmed by estimates of high bacterial respiration based on thymidine incorporation data (Fig. S6). During the rest of the season we observed a low positive NCP/GPP ratio ranging between ~-0.1 and ~0.1, much lower than the ratio of 0.54 obtained from the 14C data. This large difference likely reflects the activity of large grazers which are excluded from the 14C incubation bottles but keep the algal population and the net community production low (Tortell *et al.*, 2014). Our observations thus suggest that autotrophic respiration dominated community O$_2$ consumption during the pre-bloom and bloom phases of the seasonal cycle, while large grazers (*e.g.*, Krill) accounted for most of the community respiration during the later months.

Physiological data from the polar diatom *Fragilariopsis cylindrus*

Since diatoms were the major taxa during the bloom, we conducted experiments with the psychrophilic organism *Fragilariopsis cylindrus* in laboratory cultures maintained at 0.5°C under continuous light. H$_2^{18}$O incubations (~9h) on those light adapted cells gave values of 0.38 and 0.12 pmol O$_2$ cell$^{-1}$ d$^{-1}$ for gross photosynthesis and respiration in the light respectively, while incubations in the dark gave a value of 0.07 pmol O$_2$ cell$^{-1}$ d$^{-1}$ for respiration in the dark (Fig. 4a). Based on these data, we calculated a ratio for the daily integrated net and gross
production for a diel cycle with 20h/4h L/D (similar to the diel cycle
during the bloom) of NPs/GP of 0.65. This value represents an average
value for the light period since our cultures were grown under
continuous light and thus not synchronized to a diel cycle like the
community in the WAP. Nonetheless, this value is very close to the
values we obtained in the field during the bloom from in situ
measurements (Fig. 2c). To the extent that the ratio obtained with
F. cylindrus can be extrapolated to the diatoms in the WAP, these results
provide further evidence that the community respiration measured
during the bloom was dominated by the phytoplankton. This is
consistent with our estimations of low heterotrophic respiration in the
field based on thymidine incorporation rates (see above) and with
previous studies (Ducklow et al., 2012).

It has been suggested that cyclic electron flow (CEF) generates
substantial ATP in psychrophilic green algae from Antarctic lakes
(Morgan-Kiss et al., 2002; Dolhi et al., 2013). Such a mechanism could
help explain the very low respiration rates we observed at midday in the
field (with the H$_2^{18}$O incubations) as well as the previously reported high
concentration of ATP in psychrophilic organisms (Napolitano & Shain,
2005). In CEF, light absorption and charge separation in PSI is followed
by an electron transfer back to the b6f complex, via a ferredoxin, and
the beginning of a cycle through the plastoquinone pool (Falkowski &
Raven, 2007). Each cycle transports protons from the stroma to the
lumen, generating a proton gradient, which leads to the production of
ATP via the ATP synthase in the thylakoid membrane (see Eberhard et
al. (2008) for review). Re-reduction of PSI can occur through the linear
flow of electron from PSII or from CEF. Using laboratory cultures of F.
cylindrus, we obtained the first estimates of the relative importance of
CEF and linear electron flow in a psychrophilic diatom. The reduction
rates of the PSI pool in the presence and absence of DCMU (an inhibitor
of linear electron flow) were compared using a fast spectrophotometric
method (see Alric (2010) for review). The maintenance of a rapid reduction rate of PSI (~ 30 e- s-1) in \textit{F. cylindrus} (at 0\textdegree C) in the presence of DCMU (Fig. 4b) is indicative of an active CEF. In contrast, for \textit{T. weissflogii} at 25\textdegree C the electron flow decreased to low values in the presence of DCMU (< 15 e- s-1; Fig. 4b) indicating minimal CEF in this species under these conditions. Such low rate of PSI reduction in the presence of DCMU in \textit{T. weissflogii} could also result from the breakdown of starch to produce NADPH (Alric \textit{et al.} (2010)).

\textbf{DISCUSSION}

We used three different techniques to measure primary production during our field season: two in vitro techniques (18O incubations, 14C incubations) and one \textit{in situ} method (dO\textsubscript{2}/Ar and triple oxygen isotopes). These techniques measure different parameters over different time periods and provide complementary insights into the processes responsible for the metabolic balance of the planktonic ecosystem. Notably, all three methods demonstrated a high level of net production during the diatom spring bloom, which, although not atypical, appears to have been one of the largest on record during the 25 years of observation at the Palmer Station LTER site (http://oceaninformatics.ucsd.edu/datazoo/data/pallter/datasets).

According to the LTER data archive, there were 15 years between 1991 and 2011 when the chlorophyll concentrations exceeded 10 µg L-1, and 8 when they exceeded 30 µg L-1. During our field season, the chlorophyll concentration reached 45 µg L-1, concomitant with a gross production rate of 75 µmol C L-1 d-1 (Fig. 1b). Using the relationship derived between 18O-GP and chlorophyll (Fig. 3), we estimate that the bloom accounted for nearly 60% of the gross production during the entire summer season. This particular bloom provided an opportunity to better understand the processes that allow high primary productivity in very cold waters. Our data indicate that heterotrophic processes played a minimal role during the spring bloom and that all metabolic processes
were dominated by autotrophs. This explains why both 14C and the \textit{in situ} (dO$_2$/Ar and 17Δ) measurements, gave similarly high ratios of net/gross production, with maximum values of greater than 0.54. For comparison, most published ratios of net to gross production based on dO$_2$/Ar and 17Δ data in low temperature seawater are below 0.2 (Castro-Morales \textit{et al.}, 2013), (Juranek \textit{et al.}, 2012), with a few values above: 0.35 on average during spring bloom conditions in the subpolar North Atlantic Ocean (Quay \textit{et al.}, 2012), up to 0.43 in the WAP (Huang \textit{et al.}, 2012) and ~0.50 in the Bering Sea (Prokopenko \textit{et al.} 2011).

Taken at face value, the results of our 18O incubations during the bloom indicate that most of the electrons obtained from the splitting of water result in net carbon fixation during midday. This means that photorespiration and mitochondrial respiration, as well as the Mehler reaction, were kept to a minimum in the diatoms at Palmer station at midday. The extent of photorespiration depends on the relative affinity of Rubisco for CO$_2$ and O$_2$ which are competing for binding at the active site. As in higher plants, the O$_2$ turnover rate in the Rubisco of diatoms is slower than that of CO$_2$. The Rubisco of diatoms can also exhibit a half-saturation constant for oxygen up to 8 times that of higher plants (Badger \textit{et al.}, 1998). Further, it has been shown in plants (Tcherkez \textit{et al.}, 2006), and in phytoplankton (Haslam \textit{et al.}, 2005) that low temperature increases the specificity of Rubisco for CO$_2$ over O$_2$. Together with an efficient CCM in the cells (see Kranz \textit{et al.} (accepted)), the increased CO$_2$ specificity of Rubisco (Young \textit{et al.}, accepted) should act to maintain low photorespiration relative to C fixation in psychrophilic diatoms.

Cyclic electron flow, CEF, allows cells to produce ATP directly from sunlight without evolving oxygen or fixing carbon, and independently of mitochondrial respiration. To the extent that this mechanism for ATP production depends principally on photochemical processes, it should be less sensitive to temperature than the multiple enzymatic reactions
of the Krebs cycle. This requires that the activity of the enzymes involved in the CEF and ensuing ATP production be maintained high either by adaptation to cold or by a higher protein concentration. In particular the activity of the ATP synthase in the thylakoid membrane must be high enough. A significant role for cyclic electron flow has been reported previously in an Antarctic green alga from Lake Bonney (Dolhi et al., 2013). The Mehler reaction is in competition with the cyclic electron flow in PSI. Our 18O incubation data during the bloom imply that like photorespiration, mitochondrial respiration and the Mehler reaction are minimal at midday in Antarctic diatom; this may be associated with an intense CEF activity. Our laboratory experiment with *F. cylindrus* confirmed that this process is indeed physiologically important in this polar diatom. High intracellular ATP concentrations previously reported in two psychrophilic green algae (Napolitano & Shain, 2005) would also be consistent with a high CEF activity. Interestingly, in those psychrophilic species, ATP concentrations were reported to increase with decreasing temperature whereas the opposite trend is observed in mesophilic and thermophilic organisms.

The very low respiration measured during our 18O incubation during the bloom at midday (~10% of GP) is somewhat difficult to reconcile with the 14C incubation and *in situ* measurements that show net/gross ratio on the order of 0.6 (Fig. 2). If such a low respiration were maintained for the whole daylight period, it would mean that 30% of the photosynthate would have to be respired during the night to reconcile the numbers. This seems difficult considering that the night at Palmer lasted only 4h during the height of the phytoplankton bloom. Alternatively, respiration by autotrophs (or heterotrophs) may also have been higher during early and late daylight hours than during midday. This would be consistent with a scenario in which the cells exploit the high photon flux at midday to generate ATP through cyclic electron flow. Conceivably, an intense CEF activity at the expense of linear electron flow during periods of high light could also explain low GPP
measured in short term 14C experiments. Clearly, additional information on the diel cycle of photosynthesis and CEF activity of psychrophilic diatoms should help us understand how the ratio of net/gross photosynthesis varies in the course of a day.

From an ecological perspective, an important implication of our data is the low ratio of community respiration/ gross primary production during the diatom spring bloom at Palmer station. Based on our laboratory data with *F.cylindrus* we hypothesize that part of the reason why phytoplankton may be able to maintain relatively high productivity at low temperature even when their respiration rate falls (as it does at midday) is because they can generate ATP through cyclic electron flow. More generally the overall trend of decreasing R/P with decreasing temperature (Regaudie-de-Gioux & Duarte, 2012), that is a characteristic of ecosystems dominated by autotrophs results not just from the temperature-dependence of the rates of photochemical and biochemical reactions but must also reflect particular adaptive strategies, such as CEF and the change in the concentration and substrate affinity of key enzymes such as Rubisco (Young et al., accepted). A better understanding of these strategies would allow us to foresee the likely changes in the net productivity of marine ecosystems at high latitudes which are being subjected to rapid climate change.

Acknowledgments

We would like to acknowledge the exceptional assistance and support of the United States Antarctic Program support staff at Palmer station as well as the entire Palmer LTER science team. We are particularly thankful to Prof. Hugh Ducklow for his help with bacteria productivity measurements. We also thank Prof. John Dacey for his assistance during sampling, Stefanie Strebel for her assistance at Palmer station, and Zoe Sandwith for her assistance in measuring triple oxygen isotopes. We are very grateful to Prof. Paul Falkowski letting us use his facilities and instrument to measure cyclic electron flow, and to Dr. Benjamin Bailleul
for his expert advice and patient help for cyclic electron flow measurements. This study was supported by funds from the US National Science Foundation (Award numbers 1040965 and 1043593). Funding to PDT was provided by the Natural Science and Engineering Research Council of Canada.
References

Kranz SA, Young JN, Hopkinson BM, Goldman JA, Tortell PD, MM MF. accepted. Low temperature reduces the energetic requirement for the CO$_2$ concentrating mechanism in diatoms. *New Phytologist*.

Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O. 2009. Recent Changes in
Phytoplankton Communities Associated with Rapid Regional Climate Change Along the Western Antarctic Peninsula. *Science* 323(5920): 1470-1473.

Figure legends

Figure 1: (a) Chl a and community composition for three taxa during the season. Diatoms are represented by the purple area, *Phaeocystis* by the orange area, cryptophytes by the green area. All areas are extrapolated from discrete measurements. Chl a is represented by the dark green curve. Error bars represent standard deviation of duplicates. (b) Results from day-time incubations with H_2^{18}O. Blue circle: net bottle production in the light (NBP$_L$) defined as ($[\text{O}_2]_{\text{final}}$-$[\text{O}_2]_{\text{initial}}$). Green triangle: Gross Photosynthesis (GP) defined as the production rate of $^{18}\text{O}^{16}\text{O}$. Red downward triangle: respiration in the light (RL) defined as $R_L=\text{GP}-\text{NBP}_L$. Error bars represent standard deviation of duplicates. All rates are normalized for one day but only pertain to the period of incubation. The left and right axis are stoichiometrically equivalent with a photosynthetic quotient PQ=1.4. (c) Results from incubations with ^{14}C. Blue circle: net primary production (NPP), measured from 24h incubations. Green triangle: Gross Primary Production (GPP), measured from 2h incubations. GPP rates are normalized for one day but only pertain to the period of incubation. The values have been converted from carbon fixation to oxygen evolution using a PQ=1.4. Error bars represent standard deviation of triplicates. (d) Results from the *in situ* measurements. Blue: Net Community Production (NCP), derived from dO$_2$/Ar. Green: Gross Primary production (GPP), derived from triple oxygen isotope. Filled triangles and filled circle have been calculated assuming steady state conditions and that samples were within the mixed layer. For the two peaks of the bloom: open triangles and circles assume non steady-state and samples within the mixed layer. Filled downward triangles and squares assume non steady-state and samples below the mixed layer. No point is shown for Dec 5$^{\text{th}}$ as we could not account for the vertical mixing on that date. Error bars represent standard deviation of duplicates.
Figure 2: Relation between Gross Primary Production (GPP) and Net Community Production (NCP) studied with three different techniques. **Open circles**: values before and during the bloom. **Red filled circles**: values after the bloom. **Black filled circles**: are NCP/GPP ratios. (a) Incubations in the light only - $\Delta O_2/^{18}O$ method. The values have been converted from oxygen evolution to carbon fixation using a photosynthetic quotient $PQ=1.4$. Error bars represent standard deviation of duplicates. (b) Incubations during a light-dark cycle - ^{14}C method (24h and 2h incubations). The inset is a blow-up of the data obtained after the bloom. Error bars represent standard deviation of triplicates. (c) Ratio of NCP/GPP from in situ measurements (dO_2/Ar and $^{17}\Delta$). **Black circles** assume steady state and samples within the mixed layer. **Gray squares** assume non-steady state and samples below the mixed layer. **Blue triangles** assume non steady-state and samples above the mixed layer. Error bars represent standard deviation of duplicates.

Figure 3: Correlation of ^{18}O derived-Gross photosynthesis (converted in carbon unit using PQ values obtained for each samples as explained in material and methods) and Chl a. Error bars represent standard deviation of duplicates.

Figure 4: (a) Gross photosynthesis and respirations of *Fragilariopsis cylindrus*. Incubation with $H_2^{18}O$ gives gross photosynthesis and respiration in the light (mitochondrial respiration in the light + photorespiration). Incubation in the dark gives mitochondrial respiration in the dark. From those results we calculated a net photosynthesis over a light:dark diel cycle of 20:4. Error bars represent standard deviation of duplicates. (b) Relative electron flow
through PSI in the presence (white bars) and absence (black bars) of DCMU – comparison of *F. cylindrus* and *Thalassiosira weissflogii*. The maintenance of a high electron flow in the presence of DCMU in *F. cylindrus* is indicative of an active cyclic electron flow. Error bars represent standard deviation of duplicates.
Supplemental figures

Supplemental figure 1: map of the sampling region around Palmer station

Supplemental figure 2: Depth profiles of temperature, salinity and density at LTER-station B.

Supplemental figure 3: Mixed layer depths throughout the season determined by density profiles.

Supplemental figure 4: Concentrations of major nutrients throughout the season (CO$_2$ in µmol kg SW$^{-1}$ and NO$_3^-$, SiO$_2$, PO$_4^{3-}$ in µmol L$^{-1}$).

Supplemental figure 5: Chlorophyll a normalized gross photosynthesis (as measured with 18O incubations) versus the average PAR during the incubation.

Supplemental figure 6: Bacterial respiration during the season (10m depth, LTER - station B) measured with thymidine incorporation

Supplemental table 1: Summary of data from incubations with H$_2$18O.

Supplemental table 2: Summary of data to estimate Gross and Net production from dO$_2$/Ar and triple isotope composition

Supplemental table 3: Non steady states rates of Gross and Net community production assuming the samples are below or above the mixed layer.

Note S1: 14C net primary production – correction for the respiration (R) of the unlabelled carbon during the 24h incubations

Note S2: Determining GPP and NCP Rates from triple oxygen isotope and dO$_2$/Ar

Note S3: Electron flow measurements – correction of the artefact

Note S4 Bacteria productivity – thymidine measurements
(a) \(^{18}\text{O} \text{ NCP} \quad (\mu\text{mol C l}^{-1} \text{ d}^{-1})\)

\(^{18}\text{O} \text{ GP} \quad (\mu\text{mol C l}^{-1} \text{ d}^{-1})\)

\(m = 0.89\)

(b) \(^{14}\text{C} \text{ NPP} \quad (\mu\text{mol C l}^{-1} \text{ d}^{-1})\)

\(^{14}\text{C} \text{ GPP} \quad (\mu\text{mol C l}^{-1} \text{ d}^{-1})\)

\(m = 0.61\)

(c) NCP/GPP

Date

1-Nov 1-Dec 1-Jan 1-Feb 1-Mar
Gross photosynthesis [µmol C L⁻¹ d⁻¹]

Chl a [µg L⁻¹]

\[y = 3.0x \]

\[R^2 = 0.95 \]
(a) Gross Photosynthesis

- Respiration in the light
- Respiration in the dark
- Net photosynthesis for a diel cycle

(b) Comparison of electron fluxes between T. weissflogii and F. cylindrus