RESEARCH ARTICLE

10.1002/2013JC009470

Eddies and an extreme water mass anomaly observed in the eastern south Pacific at the Stratus mooring

Lothar Stramma1, Robert A. Weller2, Rena Czeschel1, and Sebastien Bigorre2

1Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel, Germany, 2Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

Abstract In the tropical eastern South Pacific the Stratus Ocean Reference Station (ORS) (−20° S, 85.5° W) is located in the transition zone between the oxygen minimum zone (OMZ) and the well-oxygenated subtropical gyre. In February/March 2012, extremely anomalous water mass properties were observed in the thermocline at the Stratus ORS. The available eddy oxygen anomaly was −10.5 × 10\(^{16}\) \(\mu\)mol. This anomalous water was contained in an anticyclonic mode-water eddy crossing the mooring site. This eddy was absorbed at that time by an anticyclonic feature located south of the Stratus mooring. This was the largest water property anomaly observed at the mooring during the 13.5 month deployment period. The sea surface height anomaly (SSHA) of the strong mode-water eddy in February/March 2012 was weak, and while the lowest and highest SSHA were related to weak eddies, SSHA is found not to be sufficient to specify the eddy strength for subsurface-intensified eddies. Still, the anticyclonic eddy, and its related water mass characteristics, could be tracked backward in time in SSHA satellite data to a formation region in April 2011 off the Chilean coast. The resulting mean westward propagation velocity was 5.5 cm s\(^{-1}\). This extremely long-lived eddy carried the water characteristics from the near-coastal Chilean water to the open ocean. The water mass stayed isolated during the 11 month travel time due to high rotational speed of about 20 cm s\(^{-1}\) leading to almost zero oxygen in the subsurface layer of the anticyclonic mode-water eddy with indications of high primary production just below the mixed layer.

1. Introduction

We focus here on the eastern South Pacific off northern Chile and on observations collected from a mooring close to 20° S, 85.5° W, some 1500 km offshore. The eastern boundary region of the South Pacific draws interest from a number of perspectives. The coastal upwelling associated with the Trade Winds gives rise to a productive and economically important ecosystem. This coastal region is characterized by cool sea surface temperatures (SST) and by persistent low cloud cover [e.g., Colbo and Weller, 2007; Mechoso et al., 2014]. Off northern Chile, the surface layer of the ocean is relatively warm (Figure 1a) and salty, and evaporation dominates precipitation [e.g., Colbo and Weller, 2007; Mechoso et al., 2014]. In the ocean, below the surface layer of the South Pacific Eastern Subtropical Surface Water, there is a cool, fresh water layer [Subtropical Underwater, Fiedler and Talley, 2006] and then below is a subsurface layer (South Pacific Eastern Subtropical Mode Water) with particularly low oxygen concentration that also extends offshore at depths of 100–900 m.

The desire to understand and accurately model the physical and biogeochemical dynamics of this region has motivated a number of studies. Targets of the VOCALS program (VAMOS Ocean Cloud Atmosphere Land Study, part of the Variability of the American Monsoon Systems component of CLIVAR, the Climate Variability and Predictability research program of the World Climate Research Programme) and its collaborative field campaign in the region at around 20° S were improved understanding of the processes that both control SST and the amount and type of cloud in the region [Mechoso et al., 2014]. In the oceanographic components of this campaign, there was a particular focus on the role of eddies. Some work suggested that westward propagating eddies play a role in cooling and freshening the warm, salty surface mixed layer [Colbo and Weller, 2007]. Colas et al. [2012] concluded the eddy contribution to the heat balance was substantial, with cyclonic eddies influencing the surface layer and anticyclonic eddies influencing the subsurface. Eddy buoyancy fluxes are shoreward and upward in the upper ocean and serve to balance mean offshore air-sea heating and coastal upwelling [Colas et al., 2013]. Work by Holte et al. [2013], however, stated that eddies are not as important to the upper-ocean heat budget as Colbo and Weller [2007] suggested. Still, work continues on the roles that eddies play in the region, including the possibility that eddies
may enhance the vertical mixing of the surface layer with the mode water below. Observations carried out in VOCALS also, for example, investigated the possibility that plankton carried westward offshore by eddies leads to increased levels of dimethylsulfide (DMS) and in turn to cloud nucleation particles that promoted the formation of the Stratus clouds [Yang et al., 2011].

There is also interest in considering the role of different processes in maintaining the oxygen minimum zones (OMZs) in the eastern South Pacific. Layers with particularly low oxygen concentrations, or OMZs, are located in the eastern tropical oceans at depths of 100–900 m [e.g., Karstensen et al., 2008]. OMZs play an essential role in the global nitrogen cycle, in which various chemical species, according to their degree of oxidation and different bacterial processes, participate [Paulmier and Ruiz-Pino, 2009]. OMZs are of special interest due to their influence on the ecosystem [Bertrand et al., 2011] and because model results [e.g., Bopp et al., 2002; Matear and Hirst, 2003] predict an increase of low oxygen layers in the future. Observations [e.g., Stramma et al., 2008] show decreasing oxygen over the last 50 years, especially for the tropical oceans while in the subtropical regions areas with increasing oxygen exist [Stramma et al., 2010b]. In the eastern tropical Pacific, eastward zonal currents [e.g., Kessler, 2006] could be important in resupplying oxygen to the OMZs [Stramma et al., 2010a]. At 400 m depth the South Equatorial Current in the northern part of the South Pacific subtropical gyre is well visible northward to about 10°S, but influenced by eddies [Czeschel et al., 2011]. Model results indicate that eddies are the main component in the redistribution of oxygen in the center and on the poleward side of the eastern South Pacific OMZ (N. Gruber, personal communication, 2012), leading to an eddy-induced transport of nutrients from the nearshore environment to the open ocean [Gruber et al., 2011].

Our understanding of oceanic mesoscale variability provides a context for considering the role of eddies. Mesoscale variability occurs as linear Rossby waves and as nonlinear vortices or eddies. In contrast to linear waves, nonlinear vortices can transport momentum, heat, mass, and the chemical constituents of seawater, and therefore contribute to the large-scale water mass distribution [e.g., Chelton et al., 2007]. The degree of nonlinearity of a mesoscale feature is characterized by the ratio of the rotational fluid speed U (swirl velocity) to the translation speed c of the feature. When U/c > 1, the feature is nonlinear, which allows it to maintain a coherent structure as it propagates [e.g., Flierl, 1981; Chelton et al., 2011a]. Two types of anticyclonic eddies exist: “regular” anticyclones in which the isopycnals in the eddy are depressed for the entire eddy extent (referred to as anticyclones in the following) and mode-water eddies in which a thick lens of water deepens the main thermocline while shoaling the seasonal thermocline [McGillicuddy et al., 2007]. The interaction of the eddy surface currents with the wind-driven flow generates Ekman upwelling in anticyclones and Ekman downwelling in cyclones during the formation and intensification stages. The combination of the shoaling seasonal pycnocline and the Ekman upwelling for anticyclonic mode-water eddies enhances biological activity in mode-water eddies [e.g., Dewar and Flierl, 1987; Ledwell et al., 2008]. Isopleths of
nutrients and chlorophyll-a generally lie on isopycnal surfaces. This suggests that physics is controlling the availability of nutrients to the euphotic layer and where phytoplankton can thrive [Dickey et al., 2008].

Mode-water eddies derive their name from the thick lens of uniform water as the term mode water identifies a water mass characterized by its vertical homogeneity [McCormick, 1982]. Because the geostrophic velocities are dominated by depressions of the main pycnocline, the direction of rotation in mode-water eddies is the same as in anticyclones. However, displacement of the seasonal pycnocline is upward and tends to upwell nutrients into the euphotic zone [McGillicuddy et al., 2007], yielding a layer of high chlorophyll concentration [Ledwell et al., 2008]. Early investigations of a mode-water eddy in 1981 in the California Current examined their dynamics [Simpson et al., 1984], surface manifestation [Koblinsky et al., 1984], chemical structure [Simpson, 1984], and plankton distribution [Haury, 2004]. As part of VOCALS, three anticyclonic eddies in the eastern tropical South Pacific near 20°S were studied; two featured depressed near-surface isopycnals whereas one exhibited doming isopycnals [Holte et al., 2013]. To the south of this region several anticyclonic subthermocline eddies with a subsurface radial velocity maximum have also been described [Johnson and McTaggart, 2010].

Using 15 years of satellite altimetry, an analysis of the mean eddy properties offshore the Peruvian coast found many eddies in this region, most frequently off Chimbote (9°S) and south of San Juan (15°S) [Chaigneau et al., 2008]. The most eddies were seen between 15°S and 18°S, east of 90°W. From a survey in November 2012 the parameter distribution of nutrients in three particular eddies off southern Peru at ~16°45’S was described [Stramma et al., 2013]. A similar survey exists for near-shelf eddies off central-southern Chile [Morales et al., 2012]. Using a combination of Argo float profiles and satellite data the three-dimensional mean eddy structure of the eastern South Pacific was described for the temperature, salinity, density, and geostrophic velocity field of cyclonic as well as anticyclonic eddies [Chaigneau et al., 2011].

Cyclonic eddies are strongest at about 150 m depth while the core of anticyclonic eddies is located at ~400 m depth within the 26.0–26.8 kg m⁻³ density layer; these anticyclonic eddies are likely to be shed by the subsurface poleward Peru-Chile Undercurrent [Johnson and McTaggart, 2010; Chaigneau et al., 2011]. In the North Pacific at the Hawaii Ocean Time-series site (HOTS, ~23°N, 158°W) extremely anomalous water mass properties were observed in January 2001, consistent with a subsmesoscale vortex, possibly a remnant of a mesoscale eddy [Lukas and Santiago-Mandujano, 2001].

In this study, we make use of time series collected from a mooring deployed at about 20°S, 85.5°W known as the Stratus Ocean Reference Station (ORS). The Stratus ORS is located south of the OMZ (Figure 1b) at the northern end of the subtropical gyre. A hydrographic section along 88°W taken in 1993 provides spatial context for discussion of the eastern South Pacific near the Stratus mooring. From this section, a thick layer of extremely low oxygen content centered roughly at σ₀ = 26.6–27.0 kg m⁻³ was found with particularly low oxygen content north of the location of the Stratus ORS, between 3°S and 17.5°S [Tsuchiya and Talley, 1998]. The climatological eddy frequency at the Stratus location is about 25% and low compared to the regions closer to southern Peru with eddy frequencies of up to 50% with the number of cyclonic and anticyclonic eddies about the same and with amplitudes in sea surface height of up to 5 cm [Chaigneau et al., 2008]. As the eddies predominantly move westward with small poleward displacements for cyclonic and equatorward components for anticyclonic eddies [Chaigneau et al., 2008], the formation region of eddies observed at the Stratus ORS will be preferentially off northern Chile.

Here we use a recent, comprehensive Stratus ORS data set that includes observations of dissolved oxygen as well as of temperature, salinity, and velocity together with altimeter sea surface height anomaly (SSHA) data to describe eddies in the region, focusing on those observed by the Stratus ORS. In particular, we describe a strong anticyclonic eddy observed at the Stratus ORS, the path of that eddy, and the anomalous water carried westward by that eddy. This contributes to a better understanding of the redistribution of water masses in the OMZ and the role of eddies in that redistribution.

2. Data

Since October 2000, the Stratus ORS has been maintained at about 20°S, 85.5°W to collect an accurate record of surface meteorology and air-sea fluxes of heat, freshwater, and momentum [Colbo and Weller, 2009], to examine the variability of sea-surface temperature, and to observe the temporal evolution of the vertical structure of the upper ocean [Colbo and Weller, 2007]. For more specific details on the mooring and
instrumentation, including preparation, deployment, recovery, and data processing, see Appendix A. The data set we are discussing here comes from the 11th deployment of the Stratus mooring, the first in which oxygen sensors were deployed. The eleventh mooring (Stratus 11) was deployed on 6 April 2011 on RV Moana Wave at 19°41’S, 85°34’W and was recovered on 29 May 2012 on RV Melville. Ten oxygen sensors were deployed to observe the oxygen field in the upper ocean. As on earlier deployments velocity, temperature, and salinity were recorded and the combined data set (Table 1) was used.

In April 2011, eight floats with Aanderaa oxygen sensors were deployed at about 20°S east of 85°W. One of these floats (float WMO 6900873) with a parking depth at 1000 m and profiling every 10 days was located in the anticyclonic mode-water eddy described here between 12 July and 30 October 2011 and will be used to investigate the subsurface distribution when in the eddy. Unfortunately due to a float programming error in the oxygen recording software (the highest values of the B-phase were not resolved) the lowest oxygen values could not be recorded, and the oxygen record has to be taken from a deeper layer with slightly higher oxygen values.

Aviso satellite derived SSHA data were obtained and used to document the path of the strong anticyclonic eddy. Most SSHA data used in this study are delayed time products and combine all available satellite data. The weekly data are resampled on a 0.25° × 0.25° grid, projected on the mean day of the 7 day period; they are calculated with respect to a 7 year mean. In addition, near real-time daily data were used to examine the SSHA at the Stratus location (http://www.aviso.oceanobs.com). To facilitate eddy identification, the Aviso SSHA fields were spatially high-pass filtered in two dimensions to remove variability with wavelengths larger than 20° of longitude by 10° of latitude [Chelton et al., 2011b]. The mean climatological parameter distributions were derived with ocean data view using the World Ocean Atlas 2009 [e.g., Boyer et al., 2009].

3. Eddy Observations

3.1. Stratus Mooring Observations

For the Stratus 11 deployment, the SSHA at the mooring shows enhanced high-pass filtered SSHA from October to December 2011 with a maximum of 7 cm in early November 2011 and another relative high SSHA in February and March 2012 with 1 cm followed by the lowest SSHA of ~9.5 cm in April 2012 (Figure

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Instrument</th>
<th>Oxygen</th>
<th>Velocity</th>
<th>Other Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Nortek</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RCM 11</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Microcat</td>
<td>no</td>
<td>T (SBE 37)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RCM 11</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SBE 39</td>
<td>no</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>32.5</td>
<td>RCM 11</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>SBE 39</td>
<td>no</td>
<td>T (SBE 39)</td>
<td>1.5 m below</td>
</tr>
<tr>
<td>45</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T (SBE 39) 1.5 m below</td>
</tr>
<tr>
<td>62.5</td>
<td>Microcat</td>
<td>no</td>
<td>T (SBE 37)</td>
<td></td>
</tr>
<tr>
<td>87.3</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>(O2 stopped 26 Jan 2012)</td>
</tr>
<tr>
<td>135</td>
<td>Workhorse</td>
<td>yes</td>
<td>(stopped 30 Dec 2011)</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>(O2 stopped 5 Apr 2012)</td>
</tr>
<tr>
<td>160</td>
<td>Microcat</td>
<td>no</td>
<td>T,S (SBE 37)</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T (SBE 39) 1.5 m below</td>
</tr>
<tr>
<td>290</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T,S (Microcat) 5 m below</td>
</tr>
<tr>
<td>320</td>
<td>VMCM</td>
<td>yes</td>
<td></td>
<td>T (stopped 17 Apr 2012)</td>
</tr>
<tr>
<td>322</td>
<td>Oxygen-logger</td>
<td>Optode</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>349</td>
<td>VMCM</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>353</td>
<td>Oxygen-logger</td>
<td>Optode</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T,S (Microcat) 1 m below</td>
</tr>
<tr>
<td>450</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T,S (Microcat) 1 m below</td>
</tr>
<tr>
<td>601</td>
<td>SeaGuard</td>
<td>Optode</td>
<td>yes</td>
<td>T,S (Microcat) 1 m below</td>
</tr>
<tr>
<td>803</td>
<td>VMCM</td>
<td>yes</td>
<td></td>
<td>T (stopped 30 Nov 2011)</td>
</tr>
</tbody>
</table>
2a). These SSHA extrema are related to eddies evident in the contoured velocity data (Figure 2b) and reflected in the potential density contour plot (Figure 2c). Different to the weak SSHA signal in February/March 2012, the geopotential anomaly for the subsurface layer 295–451 m shows the largest signal in February/March 2012 for the entire mooring period (Figure 2a). Although the strong northward velocity component lasts until 4 April, the passage of the strong eddy across the mooring occurred from 9 February 2012 to 24 March 2012. The start on 9 February is marked by the onset of strong subsurface southward velocity. The end on 24 March is linked to changes in density in the upper 250 m. The northward velocity after 24 March is caused by a cyclonic eddy that follows the anticyclonic eddy. The density below 250 m returns on 24 March to a value close to that on 9 February.

The covariabilities of the moored temperature, salinity, oxygen, and density time series for two depths layers 160 and 401 m were investigated further to search for possible eddy signals (Figure 3). The SSHA anomaly in March 2012 is related to a large salinity increase of about 0.2 at 401 m depth and strong oxygen
decrease at 145 and 400 m depths to near zero oxygen values (Figure 3). At 145 m depth, the oxygen anomaly is larger than 200 \(\mu \text{mol L}^{-1} \). The SSHA shows an anticyclonic feature at this time at the mooring, which is the only eddy-related feature during the 13.5 month deployment period with strong subsurface salinity and oxygen anomalies. The correlation coefficient for the Stratus 11 time period between temperature and salinity at 160 m and at 401 m depth within 95% confidence is 0.94 with no time shift.

The density distribution at the mooring site for the 13 month deployment period (Figure 2c) shows the unique characteristics of the anticyclonic feature in March 2012. While the density variability of other anomalies in the Stratus mooring records (Figure 2c) deviates only upward or downward, the eddy in March...
2012 shows a deepening of the isopycnals below 250 m depth and an uplift above 250 m depth, the typical distribution of a mode-water eddy.

The temperature, oxygen, and velocity time series for 1 January to 1 May 2012 at the Stratus mooring show the passage of the anticyclonic eddy from mid-February to mid-March in all records between 45 and 601 m depth (Figure 4). In the mixed layer at 45 m depth, the oxygen record shows no decrease with the lowest oxygen at about 250 m but instead an increase of oxygen up to 310 m mol L\(^{-1}\). The related velocity vectors at 45 m as well as velocity vectors from current meters at 13, 20, and 32.5 m (not shown in Figure 4c) show the rotation of the anticyclonic eddy although weakening in the surface layer (Figure 5). All oxygen records between 145 and 450 m depth decrease to minima of between 1.25 and 0.01 m mol L\(^{-1}\) in early March 2012 for the unfiltered data (not shown) while the 145 m depth record showed high variability leading to a 90 h filtered minimum of 12.8 m mol L\(^{-1}\). Only at 601 m depth is the decrease in oxygen weak with the lowest oxygen value of 46.7 m mol L\(^{-1}\), the anticyclonic signal in the velocity is weak there as well.

The contour plot of meridional velocity (Figure 2b) for the entire Stratus 11 deployment period shows the unusual situation in February/March 2012. The strongest meridional subsurface velocities were connected to the anticyclone in February/March 2012. The strong southward and northward velocities cover the entire depth layer between 100 and 600 m and no similar feature was present during the entire deployment period. The superimposed oxygen records for 145 and 400 m depths show the decrease to almost zero oxygen when the core of the anticyclone passed, e.g., when the meridional velocity component changed direction. The highest swirl velocity was measured between 200 and 400 m and the swirl velocity of the anticyclone was larger than 10 cm s\(^{-1}\) between the sea surface and 600 m depth (Figure 5).
The high SSHA from October to December 2011 at the Stratus ORS with a maximum of 7 cm is related to high salinity and temperature values at 160 m depth and slightly increased salinity and temperature values at 401 m depth, with slight covariability in oxygen. A slight decrease in oxygen at 400 m is visible (Figure 3) and the isopycnal distribution for this time period shows a small deepening between 100 and 400 m depth (Figure 2c), a typical displacement of isopycnals for an anticyclonic eddy. According to the SSHA and the velocity and density distribution at the Stratus location (Figure 2) the anticyclonic feature dominates this region from early September to the end of January. The SSHA shows a large area influenced by several anticyclonic features at this time period. The observed swirl velocities at the Stratus mooring for September to December 2011 are similar to the anticyclone in February–March 2012 in the upper 200 m (Figure 5); however, swirl velocity is low below 200 m depth. Hence, this anticyclonic feature at the end of 2011 has a small degree of nonlinearity below 200 m depth and a coherent structure was present mainly in the upper 200 m. Despite the large SSHA from October 2011 to the end of December 2011 (Figure 2) the eddy has only weak water mass characteristic anomalies.

The lowest SSHA of −9.5 cm in April 2012 is connected to low temperature and salinity at 160 and 401 m depths and high oxygen at 145 and 400 m depths (Figure 3). The density distribution shows an uplift of the isopycnals from 40 to 450 m depth (Figure 2c), the signature of a cyclonic eddy following the anticyclone which passed by in March 2012. The related northward flow is associated with the strong anticyclone. The southward flow in late April 2012 is weak compared to the swirl velocity of the anticyclone (Figure 5). Nevertheless, that southward flow is visible down to 601 m in April 2012 and increasing oxygen is observed for the records at 290 to 601 m depths (Figures 4b and 4c), associated with the weak cyclonic eddy.

3.2. Eddy Path

From altimeter data, it is possible to follow the path of the anticyclonic eddy observed in March 2012 at the Stratus mooring and thus to track the path backward in time to the formation region. On 8 February 2012, the mode-water eddy has a weak SSHA southeast of the Stratus mooring and is already connected to a larger SSHA signal to the south. On 29 February, the mode-water eddy was close to the mooring location, with the center located south of the Stratus mooring (Figure 6). The satellite data show that the surface eddy signal in SSHA disappeared at about 21 March 2012 in a strong anticyclonic feature located to the south of the Stratus mooring (Figure 6), hence the observation at the Stratus site was near the end of the lifetime of the anticyclonic eddy visible as SSHA and the path could not be followed forward in time. The anticyclonic eddy has a relatively weak signal in sea surface height anomaly figures caused by the density structure in this mode-water eddy leading to weaker surface velocities (Figure 2b). Although the locations of the eddy on the satellite maps were at times unclear, it seems certain that the anticyclonic eddy began its travel in April 2011 at the Chilean coast (Figure 7). The eddy could be tracked back to a location at 21.25°S, 72°W on 25 May 2011. Two eddies located at 19.75°S, 70.75°W and 22.5°S, 71°W on 20 April 2011 merged at the end of May 2011 at 21.25°S; 72°W, hence, two options for the origin of the eddy exist. With the lifetime of 11 months this eddy belongs to the longest-lived eddies in this region.

The mean salinity on $\sigma_{0} = 26.65$ kg m$^{-3}$ (Figure 7a) is about 34.64 at the Stratus site and close to 34.75 near the Chilean shelf at the indicated two eddy formation locations. In the Stratus salinity record at 401 m depth in early March 2012 the salinity is about 34.75 (Figure 3). Hence, the salinity observed in the eddy in early
March 2012 supports the satellite-based choice of a formation region on the Chilean shelf. The oxygen drops to 0.16 μmol L$^{-1}$ in early March 2012 at the Stratus mooring in 401 m while on the mean oxygen distribution $\sigma_0 = 26.65$ kg m$^{-3}$ at the formation region is 10–15 μmol L$^{-1}$ (Figures 1b and 7c), but this might be biased high due to the interpolation schemes to derive the mean field. An oxygen utilization from biogeochemistry of about 10 μM near the coast at 21°S [Paulmier et al., 2006] could cause a reduction in oxygen.

The climatological mean salinity on the density $\sigma_0 = 26.9$ kg m$^{-3}$ typical for the mooring location at 401 m depth is about 34.55 and was measured before and after the passage of the anticyclonic eddy. Similarly, the oxygen at this density layer is about 40 μmol L$^{-1}$ and hence similar to the measurements at 401 m depths before and after the passage of the eddy (Figures 4b and 4c). In addition, temperature reaches about 10.6°C at Stratus at 401 m depth in March 2012 which is similar to 10.6°C at the coast off Chile on the density $\sigma_0 = 26.65$ kg m$^{-3}$ (Figure 7b) while the mean temperature at the Stratus location is 8.1°C on the density $\sigma_0 = 26.9$ kg m$^{-3}$ in agreement with the temperatures measured at 401 m depth before and after the passage of the eddy. Hence, the observations of temperature, salinity, and oxygen and the known mean property maps also support the formation region of the anticyclonic eddy as being on the Chilean shelf. The water off northern Chile is of tropical origin carried by the Peru-Chile Undercurrent southward [e.g., Hormazabal et al., 2013].

The 315 day (20 April 2011 to 29 February 2012) displacement of 14.5° from 71°W to 85.5°W results in a mean westward translation velocity of $c = 5.5$ cm s$^{-1}$. With the rotational speed U reaching 20 cm s$^{-1}$ at depths between 50 and 400 m, (Figures 2b and 5) the anticyclonic eddy is nonlinear ($U/c > 1$), which allows it to maintain a coherent structure as it propagates. The rotational speed of 20 cm s$^{-1}$ is higher than the 8 cm s$^{-1}$ described for the mean eddies which is based on the assumption of zero velocity at 1000 m depth [Chaigneau et al., 2011]. Near 1000 m depth temperature and salinity measurements resulted in an increase in temperature and decrease in salinity when the anticyclone passed the mooring. As there is an increase of salinity with depth near 1000 m related to the salinity minimum at about 700 m from the Antarctic Intermediate Water [e.g., Tsuchiya and Talley, 1998] the vertical displacement of isopycnals in an anticyclone at 1000 m depth should be related to decreasing salinity. Although there was no current meter near 1000 m, the depth temperature and salinity records indicate that the eddy extended deeper than 1000 m, hence a velocity reference at 1000 m depth leads to reduced rotational speed.

One of eight floats with oxygen sensors deployed in April 2011 at ~20°S east of 85°W with a parking depth of 1000 m and profiling every 10 days was trapped according to the SSHA images in the strong anticyclonic mode-water eddy from 12 July at 22.5°S, 75°W to 30 October 2011 at 21.5°S, 79°W (Figure 8a). The eddy moved about 430 km westward in this time period which leads to a velocity of 4.6 cm s$^{-1}$, a little slower.
than the 5.5 cm s$^{-1}$ estimated from the SSHA field for the entire lifetime. In this period, the float data show enhanced geopotential anomalies in the layer 450 to 250 m depth (Figure 8b). When the float stayed in the eddy, the density at 400 m decreased by about 0.1 kg m$^{-3}$ while the salinity and temperature at 400 m increased by about 1°C and 0.1. Due to a float programming error the lowest oxygen concentrations could not be recorded completely, therefore the oxygen distribution has to be presented at 475 m depth (Figure 8f) where the oxygen decreases by more than 20 µmol L$^{-1}$. The extremes for density, salinity, temperature, and oxygen at the Stratus mooring (Figure 4) were slightly higher, as the float was primarily located north of the eddy center and probably did not reach the core of the anticyclonic mode-water eddy, although the eddy core crossed to south of the mooring.

4. Discussion and Conclusion
At the northern boundary of the South Pacific subtropical gyre below the saline, warm and nutrient poor South Pacific Eastern Subtropical Surface Water (STSW), South Pacific Eastern Subtropical Mode Water (SPESMW) is located above the salinity minimum of the Antarctic Intermediate Water (AAIW) [Fiedler and Talley, 2006]. As SPESMW is formed in the southern subtropical gyre it has relatively low temperatures, low salinity, and high oxygen. The Peru Chile Undercurrent (PCUC) transports Equatorial Subsurface Waters (ESSW) southward, which is characterized by a subsurface salinity maximum, relatively warm subsurface waters, low oxygen concentrations, and high nutrient concentrations. Mode water or (intrathermocline eddies) formed off Chile are represented by subsurface lenses of saline, oxygen-deficient waters which are linked to the ESSW [Hormazabal et al., 2013]. Our investigation shows that the strong water mass anomaly observed at the Stratus ORS in the eastern South Pacific in February/March 2012 was carried by an anticyclonic eddy. The density distribution reveals that it is a mode-water eddy with a thick lens of water that deepens the main thermocline. From SSHA satellite data and
The temperature and salinity values on density surfaces it could be determined that the eddy originated about 11 months earlier off the Chilean coast, probably at 22.5°C, 71°CW. An eddy formed at 19.75°C, 70.75°CW merged in May 2011 with the eddy formed at 22.5°C, 71°CW making the exact formation location of

Figure 8. Observations from Argo floats showing: (a) float paths (circles) and the eddy path (triangles) color coded by time with symbols color filled at the time when the float was in the anticyclonic mode-water eddy; the Stratus mooring location is shown by an X, and time series of: (b) geopotential anomaly for the layer 450 to 250 m depth), (c) density at 400 m depth, (d) salinity at 400 m depth, (e) temperature at 400 m depth, and (f) oxygen at 475 m depth from a profiling float deployed on 2 April 2011 at 19.78°C, 76.49°CW. Vertical dashed lines mark the period when the float was in the anticyclonic mode-water eddy, from 12 July 2011 at 22.5°C, 75°CW to 30 October 2011 at 21.5°C, 79°CW.

the temperature and salinity values on density surfaces it could be determined that the eddy originated about 11 months earlier off the Chilean coast, probably at 22.5°C, 71°CW. An eddy formed at 19.75°C, 70.75°CW merged in May 2011 with the eddy formed at 22.5°C, 71°CW making the exact formation location of
The strong anticyclone ambiguous. The higher temperature and salinity and the low oxygen probably identify ESSW being transported by the mode-water eddy.

Eddies generated south of 15°S have a mean lifetime of 50–60 days with about 3 out of 1000 eddies having a lifespan of 10 months [Chaigneau et al., 2008, Figure 5a]. Anticyclonic eddies move northwestward with a latitude displacement of 1.5° in 180 days [Chaigneau et al., 2008]. The coastal eddy at 22.5°S with a northward shift of 2.5° in 11 months would better match the typical northward displacement of anticyclonic eddies than the coastal eddy starting at 19.75°S with a slight mean southward shift on its way to the Stratus location. Examining all satellite sea surface temperature (SST) records along the eddy track, no significant temperature signature was found to further aid tracking. An earlier examination of surface drifter and Argo floats showed small SST signatures, for anticyclonic eddies, +0.2°C, and for cyclonic eddies, −0.2°C [Holte et al. 2013]; hence, it is not surprising that the eddy could not be followed in SST data.

The 315 day displacement of 14.5° from 71°W to 85.5°W results in a mean westward velocity of 5.5 cm s⁻¹ and fits the typical westward propagation of 3–6 cm s⁻¹ in the eastern South Pacific [Chaigneau et al., 2008] which is close to about 5 cm s⁻¹ at 20°S [Chaigneau and Pizarro, 2005, Figure 3]. The anticyclonic velocity signature is seen in all current meter instruments between 13 and 601 m depth, while the oxygen drops to near zero for all oxygen records between 145 and 450 m depth. The maximum swirl velocity (meridional velocity component) reach more than 20 cm s⁻¹ (Figure 4) and hence is much stronger than the described mean meridional velocity of up to 8 cm s⁻¹, which was derived with the assumption of zero velocity at 1000 m depth for the geostrophic component [Chaigneau et al., 2011, Figure 5].

For the mean anticyclonic eddies between 10°S and 30°S Chaigneau et al. [2011] computed the available heat anomalies (AHA) and available salt anomalies (ASA) relative to a climatological mean. Stramma et al. [2013] used the same method but relative to profiles located outside the eddy to compute AHA and ASA for the eddies observed in November 2012 in the open ocean and near the shelf off Peru at about 16°45’S. Using the same method [Chaigneau et al., 2011] the AHA, ASA and the available oxygen anomaly (AOA) for the eddy observed in February/March 2012 at the Stratus ORS were computed relative to the mean profiles on 9 February and 24 March 2012. For comparison also the AOA was computed for the two anticyclonic eddies in November 2012 at about 16°45’S (Table 2).

Table 2. Comparisons of Properties and Anomalies of Mean Anticyclonic Eddies Between the Mode-Water Eddy at the Stratus Mooring in February/March 2012, Two Eddies at About 16°45’S in November 2012 Relative to Profiles Close to the Eddy [Stramma et al., 2013], and the Mean Values for 10°S to 30°S Relative to a Climatological Mean [Chaigneau et al., 2011]a

<table>
<thead>
<tr>
<th></th>
<th>Feb–Mar 2012</th>
<th>Open Ocean</th>
<th>Near-Shelf</th>
<th>Eastern Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical extent (m)</td>
<td>45–600</td>
<td>0–600</td>
<td>0–600</td>
<td>0–540</td>
</tr>
<tr>
<td>Radius (km)</td>
<td>38</td>
<td>48.8</td>
<td>52</td>
<td>57.6</td>
</tr>
<tr>
<td>Volume (>10¹² m³)</td>
<td>2.5</td>
<td>4.7</td>
<td>5.2</td>
<td>5.5</td>
</tr>
<tr>
<td>AHA (>10¹⁸ J)</td>
<td>5.8</td>
<td>3.7</td>
<td>17.7</td>
<td>8.7</td>
</tr>
<tr>
<td>ASA (>10¹⁵ kg)</td>
<td>19.3</td>
<td>18.7</td>
<td>36.6</td>
<td>23.8</td>
</tr>
<tr>
<td>AOA (>10¹⁶ μmol)</td>
<td>−10.5</td>
<td>−7.6</td>
<td>−10.0</td>
<td></td>
</tr>
</tbody>
</table>

aAvailable heat anomaly (AHA) and available salt anomaly (ASA) within one eddy are computed following Chaigneau et al. [2011] however relative to profiles close to the eddy instead of the mean climatology, and the same method was used to compute the available oxygen anomaly (AOA).
oxygen anomalies probably underestimate the anomalies. Nevertheless, it is of interest to attempt to quantify the available anomaly in the eddy.

The observed changes of 2°C in temperature and 0.2 in salinity at 401 m depth (Figure 3) are about twice as large as the described mean differences [Chaigneau et al., 2011, Figure 5] and should be related to the strong differences in temperature and salinity between the formation region and the eventual location at ~85.5°W. The fact that the eddy maintained the original temperature and salinity values indicated that the water trapped in the eddy stayed isolated from the surrounding water masses. The high U/c ratio of this eddy shows that there is trapped fluid within the eddy interior and that water from the Chilean shelf region is carried into the open ocean to the Stratus site. The isolated water mass and the shoaling of the seasonal pycnocline by this anticyclonic mode-water eddy could lead to high productivity and oversaturated oxygen in the near surface layer and a reduction to almost zero oxygen in the subsurface layer of the anticyclonic eddy by the remineralization of organic material by bacteria and zooplankton during the 11 month travel time leading to the extremely low oxygen values between 145 and 450 m depth.

The increase of oxygen at 45 m depth at the time when the anticyclone passed by might be related to the mode-water type structure of the anticyclone. The uplift of the near surface isopycnals upwells a significant fraction of the nutrients required to sustain primary production to the near surface layer and generates extraordinary diatom blooms with highest chlorophyll values in the upper ocean while remineralization of the biomass in the thermocline strongly reduces the oxygen level [McGillicuddy et al., 2007]. At the surface no chlorophyll signals could be determined in chlorophyll satellite data; however, the chlorophyll a signal is expected at the base of the surface mixed layer [McGillicuddy et al., 2007].

No chlorophyll or biological measurements were made on Stratus 11; however, there is indirect evidence for enhanced primary production. The temperature records in the upper 35 m show the late summer warming from January to March 2012 (Figure 4a). Below the warming surface layer the temperatures at 46.5 and 62.5 m decrease from 10 February to early March 2012 by 0.9 and 0.3°C, respectively, due to the uplift of the mode-water anticyclone. Although the upper 35 m is warming and as a result the stronger vertical density gradient should oppose downward mixing of oxygen from the surface, the oxygen increases beginning in early February 2012. At that time the oxygen saturation exceeds 100%, most likely due to intense oxygen production by a diatom bloom. The extremely low oxygen in the layer 145–450 m might be caused by oxygen consumption due to remineralization of the sinking biomass in the isolated water body of the anticyclone.

The acoustic backscatter signal strength from the acoustic current meter at 45 m (Figure 9) indicates high zooplankton abundance from mid-February to mid-March 2012. The signal strength increases from early February to mid-March, which might be related to enhanced zooplankton abundance [e.g., Heywood et al., 1991], although some enhanced biomass of highly migratory pelagic fish can be carried by mode-water eddies [Hormazabal et al., 2013]. The indicated zooplankton appearance in the backscatter signal strength takes place at the same time as the chlorophyll increase as indicated by the oxygen increase without a
lagged delay. In the Atlantic a lag for the passage of two eddies was described for the Bermuda Testbed Mooring, however, the lags were only 0 and 2 days (Jiang et al., 2007). The unfiltered oxygen record shows a diurnal cycle with lower oxygen at night when no photosynthesis takes place. At night the backscatter signal strength increases showing the diurnal migration of the zooplankton. In mid-February and mid-March 2012 the oxygen records show higher diurnal variability (Figure 9) probably caused by mixing within the strong northward velocity components of the eddy swirl velocity with enhanced turbulence at these two time periods. There was also a temperature increase below 35 m depth (Figure 4a) in mid-February and mid-March 2012, as at this depth the cores of the mode-water eddy as well as of the cyclonic eddy in late March 2012 have lower temperatures, while the outer regions of the eddies show normal, relatively higher temperatures. Certainly the mode-water eddy started with low oxygen when it was formed off Chile. No data are available to show enhanced primary production when the eddy moved westward. At the Stratus ORS there are indications of enhanced primary production, hence we expect that the eddy was formed with a low-oxygen load, which was maintained at a low oxygen level due to primary production as expected for mode-water anticyclones.

The SSHA maximum in October to December 2011 (Figure 3) was related to an anticyclonic eddy and the minimum in April 2012 to a strong cyclonic eddy (Figure 6). Despite the large SSHA, the swirl velocity of the eddy in late 2011 was only larger than 10 cm s^{-1} in the upper 200 m and less than 15 cm s^{-1} below 300 m in late March and April 2012. The related geostrophic sea surface swirl velocity derived from the SSHA satellite data is weaker than the subsurface swirl velocity (Figure 5). These eddies with strong SSHA signals had weak water mass anomalies, while the strong mode-water anticyclone only had a weak SSHA signature but strong subsurface swirl velocities and water mass anomalies. Therefore, SSHA alone is not sufficient to specify the eddy strength and in situ measurements are needed.

Appendix A: Mooring and Instrument Details

The Stratus mooring is called the Stratus Ocean Reference Station (ORS) and is typically serviced once a year. The Stratus ORS is a surface mooring with a 3 m diameter buoy that carries meteorological systems. The Stratus ORS is supported by the United States National Oceanic and Atmospheric (NOAA) Climate Observation Program. Initially, in the early years of the mooring deployment, there was limited instrumentation on the mooring line to the upper 300 m; it was not equipped until recently to observe eddies and their vertical structure. Later, however, in recognition of the dominance of the eddy variability, where velocities can exceed 60 cm s^{-1} in contrast with mean flows of only several cm s^{-1}, and of the fresh mode water below the surface layer, deeper sensors were added to better observe the eddies and resolve the vertical
structure. Most recently, collaboration between the authors of this paper and interest in the OMZ has lead to the addition of Aanderaa Seaguard current meters with optodes and also stand alone optodes. The surface mooring uses chain and wire rope in the upper 2000 m of the mooring; and the instrument array in the upper part of the mooring is always close to vertical.

Ten oxygen sensors were deployed to observe the oxygen field in the upper ocean. The seven optodes moored below 200 m depth recorded the entire deployment period while the instruments at 45, 87.3, and 145 m failed either in January or April 2012. The optodes on the Aanderaa Seaguard deployed by WHOI were not independently calibrated; the manufacturer’s calibrations were used. The oxygen loggers deployed by GEOMAR at 322 and 353 m depth were calibrated by the manufacturer and further refined by a calibration made in the Atlantic Ocean on cruises which took place prior to the deployment in the Pacific Ocean Stratus mooring. Three Aanderaa RCM 11 current meters were deployed at 13, 20, and 32.5 m. VMCMs (Vector Measuring Current Meters) were also deployed as indicated in Table 1.

The RCM current meters agree well with the VMCMs, as long as the VMCM propeller sensors are not fouled by fishing line or degraded by biofouling, the records were truncated. Noisy velocity data from comparisons were used to check the quality of the velocity data. When mechanical current meters were with instrument intercomparisons to identify and resolve biases and drifts in temperature and salinity. Inter-comparisons were used to check the quality of the velocity data. When mechanical current meters were fouled by fishing line or degraded by biofouling, the records were truncated. Noisy velocity data from acoustic profilers were rejected.

Acknowledgments

Financial support was received through Woods Hole Oceanographic Institution (R.A.W. and R.C.), the Stratus Ocean Reference Station is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program (NA09OAR4320129). This work is a contribution of the DFG-supported project SFB754 (http://www.sfb754.de) which is supported by the Deutsche Forschungsgemeinschaft. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso with support from CNES.

References

