Dataset: pteropod respiration

Version date: 26 July 2016

Project:
Horizontal and Vertical Distribution of Thecosome Pteropods in Relation to Carbonate Chemistry in the Northwest Atlantic and Northeast Pacific (OAPS)
Principal Investigator: [Dr Gareth Lawson](Woods Hole Oceanographic Institution, WHOI)
Scientist: [Dr Amy Maas](Woods Hole Oceanographic Institution, WHOI BCO-DMO)
Contact: [Dr Amy Maas](Woods Hole Oceanographic Institution, WHOI)
BCO-DMO Data Manager: [Nancy Copley](Woods Hole Oceanographic Institution, WHOI BCO-DMO)

Validated: Yes
Data version: 2
Version Date: 07/26/2016
Restricted: no
Data URL: http://www.bco-dmo.org/dataset/3766/data
Current State: Final no updates expected

Brief Description: Respiration rates of thecosome pteropod exposed to various O2 and CO2 concentrations

Acquisition Description

At sea, animals were captured for physiological experiments using a 1 m diameter, 150 µm (in 2011) or 335 µm (in 2012) mesh Reeve net trawl, or a 1 m² MOCNESS tow with 150 µm mesh nets. Pteropods were placed in filtered seawater at densities of < 30 individuals liter⁻¹ and acclimated for at least 8 hours at 20°C, 15°C or 10°C in temperature controlled waterbaths. After acclimation, individuals that were in good condition were put into glass syringe respiration chambers with a known volume of 0.2 micron filtered seawater for at least four hours.

In 2012 on cruise NH1208, an experiment was conducted to determine whether antibiotics changed the metabolic rate of the pteropods. In this experiment water was treated with 25mg each of Streptomycin and Ampicillin liter⁻¹ or without antibiotics.

Unless otherwise explicitly stated, the water contained 25mg each of Streptomycin and Ampicillin liter⁻¹, to prevent bacterial growth, and was bubbled with certified gas mixes to achieve normal air saturated (21% O2, 380 ppm CO2), high CO2 (21% O2, 800 ppm CO2), low O2 (10% O2, 380 ppm CO2) or low O2 high CO2 (10% O2, 800 ppm CO2) conditions. Bubbling of 10% O2 achieved a mean initial O2 concentration of 10-13% in low O2 treatments.

During all experiments, we simultaneously ran a control syringe (without an animal) to monitor background respiration of microbes. At the conclusion of the experiments, we measured the O2 level by withdrawing a sample of water from the chamber using a 500 µL airtight Hamilton syringe and injected past a Clarke-type O2 electrode (#1302) and meter (#782) in a water-jacketed injection port (#MC100, Strathkelvin Instruments, North Lanarkshire, United Kingdom;
Marsh and Manahan, 1999). Our resulting O2 consumption rates are reported in µmoles g⁻¹ h⁻¹ (wet mass). Notes on carbonate chemistry and net profiles are in the cruise report.

Processing Description

Individuals in normoxic treatments that consumed more than 70% of the oxygen in the chamber were excluded from further analyses. Oxygen consumption was calculated by subtracting experimental O2 from control O2.

BCO-DMO Processing:

version 2 [2016-07-26] replaced version 1 [2012-11-06]: NH1208 longitude values were corrected to negative degrees.

- added conventional header with dataset name, PI name, version date, reference information
- renamed parameters to BCO-DMO standard

More Information about this dataset

Funding Sources

<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Award Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF Ocean Sciences</td>
<td>OCE-1041068</td>
</tr>
</tbody>
</table>

Deployments

<table>
<thead>
<tr>
<th>Deployment Synonyms</th>
<th>Start Date</th>
<th>Platform</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH1208</td>
<td>09 Aug 2012</td>
<td>R/V New Horizon</td>
<td>Dr Gareth Lawson (Chief Scientist)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr Gareth Lawson (Chief Scientist)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr Peter H. Wiebe (Co-Principal Investigator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dr Zhaohui Wang (Co-Principal Investigator)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ms Dicky Allison (BCO-DMO Data Manager)</td>
</tr>
<tr>
<td>OC473</td>
<td>07 Aug 2011</td>
<td>R/V Oceanus</td>
<td>data info</td>
</tr>
</tbody>
</table>

Field Names List

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>species</td>
<td>taxonomic genus and species name</td>
<td>text</td>
</tr>
<tr>
<td>exp_type</td>
<td>treatment</td>
<td>text</td>
</tr>
<tr>
<td>temp</td>
<td>temperature</td>
<td>Celsius</td>
</tr>
<tr>
<td>date_local</td>
<td>date in local time</td>
<td>yyyymmdd</td>
</tr>
<tr>
<td>tow</td>
<td>tow type and number including net number for MOCNESS tow if available</td>
<td>text</td>
</tr>
<tr>
<td>weight_g</td>
<td>wet weight</td>
<td>grams</td>
</tr>
<tr>
<td>sample_volume</td>
<td>volume of incubation chamber</td>
<td>liters</td>
</tr>
<tr>
<td>time_elapsed</td>
<td>incubation duration</td>
<td>hours</td>
</tr>
<tr>
<td>O2_control</td>
<td>concentration of O2 in experimental chamber after incubation</td>
<td>micromoles O2</td>
</tr>
<tr>
<td>O2_expt</td>
<td>concentration of O2 in control chamber after incubation</td>
<td>micromoles O2</td>
</tr>
<tr>
<td>O2_respir</td>
<td>change in O2 concentration in the water attributable to organismal respiration (Control minus Measurement)</td>
<td>micromoles O2/liter</td>
</tr>
<tr>
<td>resp_rate</td>
<td>rate of O2 consumed by the organism per gram of the organism per hour</td>
<td>micromoles O2/gram hour</td>
</tr>
<tr>
<td>comments_expt</td>
<td>comments pertaining to the final condition of specimens after incubation</td>
<td>text</td>
</tr>
<tr>
<td>cruise_id</td>
<td>cruise identification</td>
<td></td>
</tr>
</tbody>
</table>

Instruments List

1. MOCNESS:

Short name: MOCNESS

PI supplied instrument name: MOCNESS

Dataset-specific description:
MOCNESS-1 m^2 with 150 micron mesh.

Generic description:

The Multiple Opening/Closing Net and Environmental Sensing System or MOCNESS is a family of net systems based on the Tucker Trawl principle. There are currently 8 different sizes of MOCNESS in existence which are designed for capture of different size ranges of zooplankton and micro-nekton. Each system is designated according to the size of the net mouth opening and in two cases, the number of nets it carries. The original MOCNESS (Wiebe et al, 1976) was a redesigned and improved version of a system described by Frost and McCrone (1974). (from MOCNESS manual) This designation is used when the specific type of MOCNESS (number and size of nets) was not specified by the contributing investigator.

2. **Reeve Net:**

 Short name: Reeve Net

 PI supplied instrument name: Reeve Net

 Dataset-specific description:

 1 m diameter, 150 um (in 2011) or 335 um (in 2012) mesh Reeve net trawl

 Generic description:

 A Reeve Net is a conventional ring net with a very large acrylic cylindrical cod-end (30 liters) designed to collect fragile gelatinous animals. The net is lowered to a particular depth and then hauled slowly back to the surface (5-10 m/min). Reeve (1981) also described a double net system with no bridle and flotation at the net mouth that is attached to a roller mechanism that rides on a tow wire. The roller system is locked in place by a pressure release device. Once below a set pressure, the roller and nets are released and they float slowly up the wire, gently collecting the zooplankton, without being influenced by the motion of the vessel and associated vertical wire movements. (from Wiebe and Benfield, 2003)

3. **Oxygen Microelectrode Sensor:**

 Short name: O2 microsensor
PI supplied instrument name: Oxygen Microelectrode Sensor

Dataset-specific description:

Clarke-type O2 electrode (#1302) and meter (#782) in a water-jacketed injection port (#MC100, Strathkelvin Instruments, North Lanarkshire, United Kingdom; Marsh and Manahan, 1999)

Generic description:

A miniaturized Clark-type dissolved oxygen instrument, including glass micro-sensors with minute tips (diameters ranging from 1 to 800 um). A gold or platinum sensing cathode is polarized against an internal reference and, driven by external partial pressure, oxygen from the environment penetrates through the sensor tip membrane and is reduced at the sensing cathode surface. A picoammeter converts the resulting reduction current to a signal. The size of the signal generated by the electrode is proportional to the flux of oxygen molecules to the cathode. The sensor also includes a polarized guard cathode, which scavenges oxygen in the electrolyte, thus minimizing zero-current and pre-polarization time. With the addition of a meter and a sample chamber, the respiration of a small specimen can be measured. Example: Strathkelvin Inst. http://www.strathkelvin.com