Record of seamount production and off-axis evolution
in the western North Atlantic Ocean, 25°25’-27°10’N

Gary E. Jaroslow
Sea Education Association, Woods Hole, Massachusetts

Deborah K. Smith and Brian E. Tucholke
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract. Using multibeam bathymetry, we identified 86 axial and 1290 off-axis seamounts
(near-circular volcanoes with heights > 70 m) in an area of 75,000 km² on the western flank of the
Mid-Atlantic Ridge (MAR), 25°25’N to 27°10’N, extending ~400 km from the inner rift valley
floor to ~29 Ma crust. Our study shows that seamounts are a common morphological feature of
the North Atlantic seafloor. Seamount-producing volcanism occurs primarily on the inner rift
valley floor, and few, if any, seamounts are formed on the rift valley walls or the ridge flank. The
high abundance of off-axis seamounts is consistent with 1-3 km wide sections of oceanic crust
being transferred intact from the axial valley to the ridge flank on crust >4 Ma. Significant
changes in seamount abundances, sizes, and shapes are attributed to the effects of faulting be-
tween ~0.6 and 2 m.y. off axis in the lower rift valley walls. Few seamounts are completely de-
stroyed by (inward facing) faults, and population abundances are similar to those on axis. How-
ever, faulting reduces the characteristic height of the seamount population significantly. In the
upper portions of the rift valley, on 2-4 Ma crust, crustal aging processes (sedimentation and mass
wasting), together with additional outward facing faults, destroy and degrade a significant number
of seamounts. Beyond the crest of the rift mountains (>4 Ma crust) faulting is no longer active,
and changes in the off-axis seamount population reflect crustal aging processes as well as tempo-
ral changes in seamount production that occurred at the ridge axis. Estimates of population den-
sity for off-axis seamounts show a positive correlation to crustal thickness inferred from analysis
of gravity data, suggesting that increased seamount production accompanies increased magma in-
put at the ridge axis. We find no systematic variations in seamount population density along iso-
chron within individual ridge segments. Possible explanations are that along-axis production of
seamounts is uniform or that seamount production is enhanced in some regions (e.g., segment
centers), but many seamounts do not meet our counting criteria because they are masked by
younger volcanic eruptions and low-relief flows.

1. Introduction

The connection between seamount volcanism and crustal ac-
cretion at mid-ocean ridges has been the subject of much discus-
sion. At fast spreading ridges such as the East Pacific Rise
(EPR), near-circular submarine volcanoes (seamounts) are found
only rarely at the rise axis but are abundant on the rise flanks
[e.g., Searle, 1983; Fornari et al., 1987; Batiza et al., 1989; Shen
et al., 1993; Scheirer and Macdonald, 1995; White et al., 1998],
and volcanism leading to the formation of seamounts on the
flanks of the EPR is thought to be separate from that occurring at
the rise axis [e.g., Scheirer and Macdonald, 1995]. In contrast,
seamounts on the slow spreading Mid-Atlantic Ridge (MAR) are
observed both at the axis and on the ridge flanks [e.g., Litvin and
Rudenko, 1973; Kong et al., 1988; Batiza et al., 1989; Epp and
Smoot, 1989; Smith and Cann, 1990, 1992; Sempéré et al., 1993;
Genie et al., 1995]. Most volcano construction is thought to oc-
cur at the MAR axis [Smith and Cann, 1990, 1992], but very lit-
tle is known about off-axis volcanism [e.g., Batiza et al., 1989;
Epp and Smoot, 1989], despite its importance to understanding
spatial and temporal supply of magma to the crust during its for-
mation and evolution. Moreover, the processes that modify axial
seamounts as they are transported to the ridge flanks are poorly
understood, and the resulting abundances, size distributions, and
locations of the volcanic edifice remnants have not been quanti-
fied.

To obtain a better understanding of the record of on-axis and
possible off-axis volcanism at the MAR, we analyzed an exten-
sive multibeam and sidescan sonar data set collected over the
western flank of the MAR between 25°25’ and 27°10’N, extend-
ing from the ridge axis to ~29 Ma crust ~400 km off axis (Figure
1). We quantified seamount population density and seamount
shapes within this region to examine (1) the character of
seamount production at the MAR axis, (2) the effects of tecton-
ish and crustal aging on the seamount population as crust is
transported off axis, (3) the existence of off-axis volcanism, and
(4) temporal variations in seamount generation. We also exam-
ined the relationship of seamount volcanism to intrasegment
tectonic setting and to both intrasegment and regional variation
in residual mantle Bouguer anomaly. Finally, because our study
area spans several ridge segments, we compared seamount

Copyright 2000 by the American Geophysical Union.
Paper number 1999JB900253.
0148-0227/00/1999JB900253$09.00
populations between adjacent segments to determine whether population variations are correlated from segment to segment.

2. Geological Background

The northern Mid-Atlantic Ridge is a slow spreading (≤ 15 mm/yr half-rate) ridge typically marked by a 1.5-3 km deep, 15-30 km wide axial rift valley. The rift valley commonly contains an axial volcanic ridge (AVR) that is several hundred meters high, several kilometers wide, and runs most of the length of individual ridge segments [Sempéré et al., 1993]. The AVR is considered to be the predominant site of volcanic activity within the rift valley [e.g., Ballard and van Andel, 1977]. Studies of seamount population density, distribution, and morphology on the rift valley floor [e.g., Smith and Cann, 1990, 1992] have led to a general model for eruptions at the MAR [e.g., Smith et al., 1995; Head et al., 1996]. In this model the AVR is formed both by low-relief flows from fissure eruptions and by other volcanic events that produce high relief. If the fissure eruption declines so as to form a number of discrete vents, a hummocky ridge is formed. Rapid evolution of a fissure eruption to a single vent forms a seamount. In an investigation of the seamount population on the inner rift valley floor of the MAR between 24° and 30°N, Smith and Cann [1990, 1992] identified >450 seamounts on the AVR summit, flanks, and flanking deeps. Their work demonstrated that seamount volcanism plays a major role in crustal construction.

Ridge segmentation is a fundamental feature of the MAR, and there is an orderly spatial pattern to magmatic and tectonic processes at the segment scale. At the ridge axis, for example, seafloor is shallower and crust is thicker at segment centers than at segment ends [e.g., Kuo and Forsyth, 1988; Lin et al., 1990; Tolstoy et al., 1993]. This pattern may be controlled by focusing of mantle upwelling and magmatic accretion near segment midpoints, as has been suggested by geodynamic experiments [Whitehead et al., 1984] and bathymetric and gravity observations [e.g., Kuo and Forsyth, 1988; Lin et al., 1990; Morris and Detrick, 1991; Blackman and Forsyth, 1992]. If so, then intrasegment patterns of construction and distribution of volcanic edifices might reflect this focusing. Studies of cross-isochron variations in residual gravity anomalies also suggest that episodic crustal thickening and thinning occurs with a period of roughly 2-3 m.y. [Lin et al., 1993; Pariso et al., 1995; Tucholke et al., 1997a], and this has been attributed to cyclic variations in melt input from the upwelling asthenosphere. Such temporally variable melt supply might also affect seamount distribution.

As seamounts are transported from the rift valley floor to the ridge flanks, they are likely to be affected by faulting in the rift valley walls. The walls of the MAR rift valley consist of a series of outward tilted fault blocks that are uplifted along inward facing normal faults; along the upper walls the mean topographic gradient is diminished by block rotation and limited extension along outward facing normal faults [Laughton and Searle, 1979]. Uplifted fault blocks reach depths as shallow as ~2000 m on 1.5-3.2 Ma crust to form the crest of the rift mountains. Older seafloor is considered to be the "ridge flank," and it progressively deepens with age, roughly following a square root of age relation [cf. Selcater and Wixon, 1986]. There is little, if any, faulting beyond the crest of the rift mountains [Jaroslow, 1997].

Along-isochron asymmetries in seafloor morphology and
crustal thickness due to segment-scale tectonic variations occur within segments, beginning immediately off axis. Shallow sea-
floor and exposures of lower crust and upper mantle rocks appear along the inside corners (IC) of spreading segments [Severing-
haus and Macdonald, 1988; Tucholke and Lin, 1994; Escartín
and Lin, 1995; Cann et al., 1997]. Elevated residual mantle
Bouger (RMBB) gravity values suggest the presence of thin
crust at inside corners relative to thick crust at segment centers
(SC) and outside corners (OC) [Tucholke and Lin, 1994; Parise
et al., 1995; Tucholke et al., 1997a]. IC crustal thinning is
thought to be caused by normal-sense, detachment faulting at the
ridge axis, with IC crust persistently forming the foothull of the
fault [Dick et al., 1981; Karson, 1990; Tucholke and Lin, 1994;
Cann et al., 1997; Blackman et al., 1998]. This asymmetric
section of young crust might significantly affect the off-axis dis-
tribution of seamounts that were created at the ridge axis.

The off-axis population of seamounts on the MAR has been
little studied and is poorly understood. A study of classified U.S.
Navy bathymetry by Epp and Smoot [1989] suggested that no
seamounts with relief greater than ~100 m would be found off
axis in the North Atlantic south of ~30°N. A study of the rift
valley and ridge flanks in the South Atlantic at 26°S by Battista
et al. [1989] documented 50 off-axis seamounts with heights ≥50 m
on ~1-7 Ma crust and 38 seamounts on crust younger than ~1
Ma. Battista et al. noted that the observed spatial density of the
seamount population (i.e., the number of seamounts per unit
area) decreases with increasing seafloor age, suggesting either
that seamounts are destroyed or buried during transport out of the
rift valley, or that the rate of seamount production on the rift
valley floor has varied with time. They also noted that relatively
fresh lavas were dredged from some off-axis seamounts, and they
interpreted this to mean that the ridge-flank seamounts probably
were formed outside the rift valley.

3. Study Area

The study area is located north of the Kane Fracture Zone
between 25°25' and 27°10'N and extends ~400 km west from the
ridge axis to 29 Ma crust (Figure 1). The regional rift valley ge-
ology has been reviewed by Sempéré et al. [1993], and the ridge
axis and ridge flank geology is also discussed by Tucholke et al.
[1997a].

Our study encompasses nine current and former spreading
segments (segments A-I, Figure 1). Segments A, E, G, H and I
are currently active segments with well-defined rift valleys hav-
ing relief of ~2500-2700 m. The inner rift valley floor in each of
these segments averages 7 km in width and generally is deline-
ated by opposing, inward facing bounding faults that have throws
of 200 m or more. The rift valley floor of segment G at 26°08'N
includes the trans-Atlantic geotraverse (TAG) hydrothermal
field, which has been the focus of intense geological and geo-
physical study [e.g., Rona et al., 1976; Temple et al., 1979; Kar-
sen and Rona, 1990; Kleinrock and Humphris, 1996].

Off axis the limits of ridge segments are defined mostly by
nontransform discontinuities with age offsets <1-2 m.y. (<30
km), although offset locally reaches 3 m.y. (58 km). Disconti-
nuities are marked by both offsets in magnetic anomalies and
relatively deep seafloor, and they rarely show ridge-normal sea-
floor structure. They are predominantly right-stepping, but north
of segment D they also have had short-lived left-stepping or zero
offsets [Tucholke et al., 1997a]. About 24-22 Ma a marked
counterclockwise change in relative plate motion occurred, ro-
tating the prevailing orientation of abyssal hills, faults, and mag-
netic anomalies from 024°-015°. Several changes in plate
boundary segmentation accompanied the rotation [Tucholke et
al., 1997a]. Segments C and D combined to form segment E, and
segment F split into segments G and H. Segment B sub-
sequently died out by 19 Ma. Segments E, G, and H have persisted
to the present. The along-isochron lengths of these segments
vary from ~35 to 100 km and have changed in response to along-
axis migration of the intervening discontinuities; segment E has
steadily shrunk to its present length of ~35 km.

Sediment cover is highly variable across the area, but nowhere
averages more than ~50 m thick, as determined from seismic re-
flection profiles [Jaroslow, 1997]. Sediment thicknesses aver-
gaged in 1 m.y. bins along isochrons increase to a maximum of 50
m on ~17 Ma crust and decrease to ~25 m on 28 Ma crust.
Locally, thick sediments are ponded in crustal depressions, notably
in the deep discontinuities between segments (~200-800 m) and
in ridge-parallel valleys between abyssal hills (~50-350 m). Ele-
vated basement between these isolated ponds rarely has sedi-
ts thicker than ~10-20 m.

4. Data and Methods

We combined two multibeam bathymetric data sets to obtain
nearly 100% bathymetric coverage of an ~75,000 km2 area of the
MAR and its western flank (Figure 1). SeaBeam bathymetry
data of Purdy et al. [1990] cover the rift valley and the rift
mountains to ~30 km off axis. Hydrosweep bathymetry collected
during Ewing cruise 9208 [Tucholke et al., 1992] provided off-
axis coverage westward to 26-29 Ma crust. Both data sets were
gridded at 200 m intervals using similar gridding and contouring
algorithms.

Seamounts were identified in 20 m contour bathymetric maps
as circular to subcircular topographic highs with plan view aspect
ratios of <2, following Smith and Cann's [1990, 1992] criteria for
seamount identification. An example of this identification is
shown in Figure 2. Smith and Cann [1990, 1992] identified features
on the inner rift valley floor with relief >50 m as seamounts. We increased this minimum height to 70 m so as to
identify seamounts more confidently in the faulted, irregularly
sedimented terrain of the rift mountains and the ridge flank.

For each seamount we recorded latitude, longitude, and mini-
mum depth of the seamount top and latitude, longitude, and wa-
ter depth of the end points of the minimum and maximum plan
view shape axes. The shape parameters derived from these
measurements are Dmax, the minimum basal diameter; Dmin, the
maximum basal diameter; Dmax/Dmin, the aspect ratio (elonga-
tion); θ, the strike of Dmax; D0, the average of the measured basal
diameters; z0, the average basal water depth, taken as the average
of the four basal depths recorded; h, seamount height, the differ-
cence between z0 and summit depth; and δ, the height-to-diameter
ratio of height divided by average basal diameter.

We use the methodology of Jordan et al. [1983] and Smith
and Jordan [1988] to characterize and objectively compare the
spatial density (number of seamounts per unit area) and charac-
teristic size of seamount populations. These studies examined
several models for seamount size distribution and considered that
the exponential model was a good approximation for the distri-
bution (see Jordan et al. [1983] and Smith and Jordan [1988] for
detailed discussion). Following these studies, we assume that the
seamount size distribution is nearly exponential over a large
range in heights. That is, the average number of seamounts with
summit height h ≥ H has the expected value

\[\n(\text{number of seamounts with height } h) = n \exp(-\frac{h}{H}) \]
where v_α is the average number of seamounts of all sizes per unit area and β is the characteristic height of the population. For this analysis we sorted seamounts into height bins of 25 m, starting with a minimum height of 70 m. Seamount populations in our study area are well characterized by the exponential model and can be described by the two parameters v_α and β. In the following discussion, instead of presenting v_α the expected number per unit area, we use v_α ("population density"), the expected number per 10^3 km2 ($v_\alpha = v_\alpha \times 10^3$). Uncertainties in the parameters are given as one standard deviation. In some instances, we also evaluated seamount population density as "observed population density," n/A (number per 10^3 km2); this was done where the seamount counts were too small to provide a statistically significant value for v_α (e.g., for small age bins within individual segments).

Figure 2. (left) Seamount picks (ovals) identified in bathymetry of ~2-3 Ma seafloor contoured at 20 m interval. Inward and outward facing ridge-parallel faults are shown by thick lines with ticks on the down faulted block. Crustal ages are indicated at gray lines. (right) NNW looking HMR1 sidescan sonar image of same region with seamounts indicated.

To investigate temporal changes in the population and shape parameters, seamounts were assigned the same age as the underlying crust, as dated from magnetic anomalies [Tucholke et al., 1997a]. Seamounts located on the inner rift valley floor are referred to as axial seamounts and have ages less than or equal to ~0.6 Ma; those located outside the inner rift valley floor are considered to be off-axis seamounts and range in age from ~0.6-29 Ma. We divided the off axis population into eight age bins as follows: 0.6-2 Ma, seamounts located off axis and generally on the lower walls of the rift valley; 2-4 Ma, seamounts on the upper walls of the rift valley and along the crest of the rift mountains; and six 4 m.y. intervals out to 28 Ma on the ridge flank. The age range of bins off axis was selected so as to be large enough to provide a statistically robust sample in each bin and yet small enough to highlight details of age-related variations in popula-

Table 1. Seamount Population Characteristics Sorted by Crustal Age

<table>
<thead>
<tr>
<th>Age, Ma</th>
<th>Number of Seamounts</th>
<th>Area, 10^3 km2</th>
<th>Characteristic Height β m</th>
<th>Population, Density v_α number per 10^3 km2</th>
<th>Height to Diameter Ratio δ_d</th>
<th>Elongation D_{max}/D_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.6 (axial)</td>
<td>86</td>
<td>2.8</td>
<td>91.5 ± 3.7</td>
<td>75.9 ± 8.5</td>
<td>0.09 ± 0.02</td>
<td>1.3 ± 0.2</td>
</tr>
<tr>
<td>0.6-28 (off axis)</td>
<td>1290</td>
<td>70.7</td>
<td>51.2 ± 1.2</td>
<td>58.3 ± 1.6</td>
<td>0.13 ± 0.04</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>0.6-2</td>
<td>85</td>
<td>2.8</td>
<td>69.2 ± 3.7</td>
<td>74.6 ± 8.4</td>
<td>0.09 ± 0.02</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>2-4</td>
<td>97</td>
<td>4.1</td>
<td>70.1 ± 3.4</td>
<td>58.5 ± 6.2</td>
<td>0.13 ± 0.06</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>4-8</td>
<td>178</td>
<td>8.5</td>
<td>74.1 ± 2.5</td>
<td>52.2 ± 4.0</td>
<td>0.13 ± 0.04</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>8-12</td>
<td>179</td>
<td>10.4</td>
<td>69.1 ± 2.9</td>
<td>42.2 ± 3.2</td>
<td>0.14 ± 0.05</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>12-16</td>
<td>182</td>
<td>11.8</td>
<td>61.2 ± 2.8</td>
<td>41.5 ± 3.1</td>
<td>0.13 ± 0.04</td>
<td>1.4 ± 0.3</td>
</tr>
<tr>
<td>16-20</td>
<td>207</td>
<td>11.8</td>
<td>56.8 ± 2.2</td>
<td>52.7 ± 3.8</td>
<td>0.12 ± 0.04</td>
<td>1.3 ± 0.2</td>
</tr>
<tr>
<td>20-24</td>
<td>200</td>
<td>9.9</td>
<td>52.1 ± 2.6</td>
<td>65.4 ± 4.7</td>
<td>0.13 ± 0.04</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>24-28</td>
<td>162</td>
<td>11.5</td>
<td>51.1 ± 2.5</td>
<td>47.2 ± 3.8</td>
<td>0.13 ± 0.04</td>
<td>1.5 ± 0.3</td>
</tr>
</tbody>
</table>
tion, especially near the ridge axis where faults are active (Table 1).

Hawaii MR1 (HMR1) long-range sidescan sonar images of the seafloor were used to evaluate the ages of seamounts relative to adjacent seafloor. The HMR1 data [Tucholke et al., 1992] provide 100% seafloor coverage in both NNW and SSE look directions. We first studied the backscatter from off-axis seamounts for indications of young lava flows. At mid-ocean ridges the rain of pelagic sediment produces an almost linear decay in average backscatter strength away from the ridge axis, and regions of high backscatter represent surfaces where sediment does not significantly attenuate the backscatter signal [Mitchell, 1993]. Our analysis showed that no off-axis seamounts have high backscatter relative to surrounding seafloor, suggesting that they are approximately the same age as the crust on which they were built.

We also examined the sidescan sonar imagery for geological relations between faults and seamounts (e.g., Figure 2). Dissection of a seamount by faults indicates that the seamount was formed prior to faulting, i.e., prior to exiting the rift valley. Growth of a seamount's volcanic apron over a fault would indicate that the seamount postdates the fault and thus would have been formed on crust beyond the inner rift valley bounding fault. We found no evidence of seamounts being constructed across preexisting faults, although many seamounts are crosscut by faults. We conclude from these observations that the seamounts studied here were constructed on the inner rift valley floor and that off-axis volcanism is not important in our study area.

From detailed mapping of sediment thickness [Jaroslow, 1997] we recognize that there are areas where sediment thickness is ≥70 m, the minimum height of seamounts analyzed in this study. Smaller seamounts may be wholly or partially buried by sediments. Thus our estimates of ν_s are considered to be minimum values. However, partial burial of a population of similar age seamounts does not change the characteristic height of the population because all individual seamount heights are uniformly affected, and the distribution of seamount heights would remain the same.

5. Seamount Population Comparisons

5.1. Axial Versus Off-Axis Seamount Populations

We identified 86 axial and 1290 off-axis seamounts with heights ranging from 70 to 560 m (Figure 1 and Table 1). Average slopes on the seamount flanks range from 10° to 16°. There are many seamount-like topographic highs in the off-axis bathymetry that have heights ≥70 m but have plan view shapes that form only a portion of a circle and whose aspect ratio is >2. Many of these may be seamounts that have been dissected by faults; however, by our identification criteria, these are not identified as seamounts, and hence they are excluded from our study.

Population characteristics of axial and off-axis seamounts differ significantly from one another (Table 1). Numbers of seamounts versus seamount heights h are plotted in Figure 3 for these populations, together with the best fitting exponential model in Figures 3c and 3d. The characteristic height of the axial seamounts is estimated as $h^* = 91 ± 4$ m, which is significantly higher than that of the off-axis population at $h^* = 51 ± 1$ m. Likewise, the axial seamount population density is signifi-

![Figure 3](https://example.com/figure3.png)

Figure 3. (a and b) Binned height distributions of axial and off-axis seamounts ≥70 m high. (c and d) Number of axial and off-axis seamounts versus seamount height. Stars are binned counts in 25 m height bins; Crosses are cumulative counts. Open circle data are not included in the statistical analyses because of small numbers of seamounts at these heights. Maximum likelihood fits to the data show that the distributions can be modeled with exponential size-frequency curves (solid line is fit of cumulative data; dashed line is binned data). Line slope is the characteristic height of the seamount population h^* and the line intercept at zero height, when normalized to area, defines the population density ν_s.
and faults suggest that all seamounts in this region are formed at the ridge axis (on crust <0.6 Ma). Using this assumption, we measured cross-isochron variations in seamount populations to examine (1) how seamounts are modified during tectonic transport from the inner rift valley floor to the ridge flank, (2) the effects of seafloor aging processes, and (3) temporal changes in axial seamount production.

The decrease in population density of seamounts from on to off axis does not occur immediately as crust is transported beyond the inner rift valley bounding faults; on crust 0.6-2 Ma the population density is approximately the same as that on the inner rift valley floor (Figure 6a). It is only in the upper rift valley walls and on the ridge flank on crust older than 2 Ma that population density significantly decreases. Population density decreases steadily on crust older than 2 Ma, reaching a minimum on crust of age 8-16 Ma. It then increases on crust of age 16-24 Ma, peaking in the 20-24 Ma range, before again decreasing on older crust.

The characteristic height of seamounts also changes over time (Figure 6b), decreasing from the axial maximum of \(\beta^1 = 92 \pm 4 \) m. Unlike seamount population density, a dramatic decrease in \(\beta^1 \) occurs immediately off axis in the lower rift valley walls on

![Figure 4. Histograms of the seamount height-to-diameter ratio \(\xi_d \) for all axial and off-axis seamounts. Bin size is 0.025. Off-axis seamounts have ratios that span a larger range, and the distribution of values is shifted to a higher average \(\xi_d \) compared to the axial seamounts. This indicates that off-axis seamounts have smaller diameters than their axial counterparts with similar heights.](image-url)

5.2. Temporal Variations in Seamount Population

Our study of backscatter from seamounts in HMR1 sidescan data and the observed geological relations between seamounts...
ranges of age bins and errors of one standard deviation are given in Table 1. Seamount population density does not decrease versus axis population are the seamounts most likely to be modified. To examine trends in seamount shape over time, we plot the running means of height-to-diameter ratio δ_d against seamount height h for all age bins (Figure 7). We distinguish between 2-3 Ma and 3-4 Ma seamounts to gain insight into near-axis changes. For the more statistically robust 2 to 4 Ma age bin are given in Table 1. Axial seamounts and those in the lower rift valley walls (0.6-2 Ma), but characteristic height decreases significantly.

Figure 6. Seamount population parameters plotted versus crustal age. (a) Expected number of seamounts of all sizes per 103 km2, v_o, (b) Characteristic height of the seamount population β. Ranges of age bins and errors of one standard deviation are shown by bars. Values of the parameters and their errors are given in Table 1. Seamount population density does not decrease from the axial region (<0.6 Ma) to the lower rift valley walls (0.6-2 Ma), but characteristic height decreases significantly.

5.3. Variations in Seamount Population Between Segments

Seamount population parameters for individual segments are compared in Table 2. Only segments that contain >60 seamounts and that are bounded on both ends by discontinuities (Figure 1) are included in this comparison. Comparison of seamount populations in segments E, G, and H shows significant northward trends of both increasing seamount population density and increasing characteristic height from segment to segment. An even more pronounced northward increase in population density is observed for the older segments B, C, and D but with no comparable increase in characteristic height.

We also compared one segment to another in terms of population density versus crustal age. There are no significant correlations observed, so seamount populations appear to have developed independently from one segment to another.

5.4. Seamount Population Variations Correlated With Gravity

To assess possible relationships between seamount production and inferred crustal thickness, we compared seamount parameters against residual mantle Bouguer anomaly. RMBA is calculated by removing the gravity effects of seafloor topography, a constant thickness crust, and the thermal effects of lithospheric cooling [Kuo and Forsyth, 1988; Lin et al., 1990; Lin and Phipps Morgan, 1992]. Residual gravity lows are interpreted to represent regions of thicker crust and/or hotter, low-density upper mantle compared to regions of residual gravity highs. Thus residual gravity lows are expected to be in regions of elevated melt accumulation.

To compare seamount populations to variations in RMBA, we divided residual gravity values over the study area into three ranges: low (< 7 mGal), intermediate (7-15 mGal), and high (> 15 mGal). Figure 8 shows the resulting gravity anomaly pattern together with locations of seamounts. Individual spreading segments have broadly different RMBA signatures. Segment E exhibits low residual gravity, suggesting that its crust is relatively thin. In contrast, Segment G has more elevated residual gravity, indicating thinner crust. Segment H contains a mixed pattern of residual gravity highs and lows. Within each segment, IC settings tend to be marked by residual gravity highs (thin crust), while segment centers and outside corners correspond to regions of low and intermediate gravity (thick and intermediate crust), respectively [Tucholke et al., 1997a]. Across isochrons, residual gravity anomalies fluctuate by 10-20 mGal with a period of ~2-3 Ma, suggesting cyclic changes of at least 1-2 km in crustal thickness [Lin et al., 1993; Tucholke et al., 1997a].
Seamount population parameters for the three ranges of RMBA are listed in Table 3. Estimated population density in regions of low to intermediate residual gravity is significantly greater than that in regions of residual gravity highs; that is, seamounts occur more frequently on inferred thicker crust. The characteristic heights are similar for all gravity ranges.

We observe no significant correlation between cross-isochron values of the observed number of seamounts per area \(n/A \) and residual gravity, but the mean RMBA used in each age bin incorporates strong along-isochron variations (Figure 8). Thus lack of cross-isochron correlation between \(n/A \) and residual gravity may not be meaningful.

Finally, we found no significant associations between RMBA variations in adjoining segments. Although our along-isochron averaging of RMBA values may mask real correlations, the result is like that of a similar, negative finding along the MAR near the Atlantis Fracture Zone [Pariso et al., 1995].

5.5. Variations in Seamount Population With Tectonic Setting

We subdivided data on seamount population density and characteristic height along isochrons within each segment to examine possible variations related to IC, SC, and OC tectonic setting. We examined only segments where both segment ends are defined by identified discontinuities (segments B, C, D, E, G and H; Figure 1). To compare intrasegment variations objectively, each of the IC, SC, and OC settings was defined as one third of the along-isochron distance between discontinuities bounding a segment. This method was chosen to highlight along-isochron differences in seamount population that might be related to three-dimensional magmatic upwelling at the centers of segments. We also used a second method, wherein IC crust was defined as 14% of the along-isochron distance from the boundary at the IC edge of the segment. This reflects the approximate average limit of irregular, arcuate, and oblique faults that are typical of IC crust [Jaroslow, 1997]. Outside corner crust was defined as 30% of segment length from the OC edge, and the remainder of the length was considered to be SC crust. This method allows for better examination of possible correlations between seamount population and real intrasegment variations in tectonic pattern. Where discontinuity offset was zero and the segment boundary was thus poorly defined, crust was assigned to the same tectonic setting as that of younger crust in the segment, where the discontinuity is well known.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Number of Seamounts</th>
<th>Area, (10^3 \text{ km}^2)</th>
<th>Characteristic Height (\beta^1), m</th>
<th>Population Density, (\rho_{0b}), number per (10^3 \text{ km}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>60</td>
<td>4.2</td>
<td>59.8 ± 4.8</td>
<td>50.7 ± 6.6</td>
</tr>
<tr>
<td>C</td>
<td>74</td>
<td>4.6</td>
<td>44.9 ± 2.9</td>
<td>80.9 ± 9.8</td>
</tr>
<tr>
<td>D</td>
<td>124</td>
<td>5.6</td>
<td>54.9 ± 2.8</td>
<td>85.9 ± 7.9</td>
</tr>
<tr>
<td>E</td>
<td>292</td>
<td>18.5</td>
<td>50.8 ± 2.3</td>
<td>64.6 ± 3.8</td>
</tr>
<tr>
<td>G</td>
<td>228</td>
<td>11.2</td>
<td>57.8 ± 2.1</td>
<td>74.5 ± 5.1</td>
</tr>
<tr>
<td>H</td>
<td>245</td>
<td>9.2</td>
<td>68.4 ± 2.5</td>
<td>80.4 ± 5.2</td>
</tr>
</tbody>
</table>

* Segments move from south to north from B to D and from E to H.
Population characteristics in relation to along-isochron position for these two sorting methods are given in Table 4. Considering the correlation noted earlier between RMBA and population density and because IC are generally marked by elevated RMBA compared to the remaining portions of segments, we expect that seamount population density at IC would be reduced. A possible explanation is that seamount characteristic heights and expected population densities show no major changes with respect to intrasegment tectonic setting under either sorting method. However, RMBA values within a given tectonic setting change significantly both from segment to segment and across isochrons within a segment, and averaging the RMBA values within a tectonic setting may mask any correlation between seamount population density and IC tectonic setting.

6. Discussion

Our identification of 86 axial and 1290 off-axis seamounts on the western flank of the MAR shows that seamounts are common features on the North Atlantic seafloor. Our analyses indicate that the seamounts are produced primarily on the inner rift valley floor and that few, if any, seamounts are formed within the rift valley walls or on the ridge flank. This interpretation is based on the following observations. (1) Seamounts are a ubiquitous volcanic product on the inner rift valley floor of the MAR between 24° and 30°N [e.g., Smith and Cann, 1990; 1992]. (2) Sidescan sonar images show that backscatter from off-axis seamounts is not elevated in relation to backscatter from comparable slopes on adjacent seafloor, suggesting that the seamounts have ages similar to the crust on which they reside. (3) There is no bathymetric or sidescan sonar evidence for growth of seamount volcanic aprons across preexisting fault scarps. (4) Faults commonly cut the off-axis seamounts. (5) Off-axis seamount population density is consistently lower than that of axial seamounts. Assuming that observed off-axis seamounts were formed on the inner rift valley floor, changes in seamount parameters with age must reflect the effects of faulting as seamounts are transported out of the rift valley, the effects of seafloor aging (sedimentation and mass wasting), and temporal variations in axial seamount production.

<table>
<thead>
<tr>
<th>RMBA, mgal</th>
<th>Number of Seamounts</th>
<th>Area, 10^3 km2</th>
<th>Characteristic Height h^1, m</th>
<th>Population Density V_{dp}, number per 10^5 km2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (<7)</td>
<td>472</td>
<td>22.9</td>
<td>58.3 ± 1.9</td>
<td>70.7 ± 3.3</td>
</tr>
<tr>
<td>Medium (7-15)</td>
<td>595</td>
<td>32.1</td>
<td>55.1 ± 1.5</td>
<td>69.6 ± 2.9</td>
</tr>
<tr>
<td>High (>15)</td>
<td>298</td>
<td>20.5</td>
<td>61.4 ± 1.9</td>
<td>50.2 ± 3.0</td>
</tr>
</tbody>
</table>
Table 4. Seamount Population Characteristics in Relation to Along-Isochron Position

<table>
<thead>
<tr>
<th>Province</th>
<th>Number of Seamounts</th>
<th>Area, 10^3 km2</th>
<th>Characteristic Height β^{-1}, m</th>
<th>Population Density v_{Sp} number per 10^3 km2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside Corner (33%)</td>
<td>352</td>
<td>18.0</td>
<td>56.5 ± 1.7</td>
<td>73.4 ± 4.0</td>
</tr>
<tr>
<td>Segment Center (33%)</td>
<td>362</td>
<td>18.0</td>
<td>58.1 ± 2.0</td>
<td>71.4 ± 3.8</td>
</tr>
<tr>
<td>Outside Corner (34%)</td>
<td>355</td>
<td>18.6</td>
<td>56.3 ± 2.2</td>
<td>68.0 ± 3.7</td>
</tr>
<tr>
<td>Inside Corner (14%)</td>
<td>167</td>
<td>9.5</td>
<td>52.8 ± 2.4</td>
<td>71.1 ± 5.6</td>
</tr>
<tr>
<td>Segment Center (56%)</td>
<td>588</td>
<td>28.7</td>
<td>56.4 ± 1.5</td>
<td>74.8 ± 3.1</td>
</tr>
<tr>
<td>Outside Corner (30%)</td>
<td>313</td>
<td>16.4</td>
<td>55.7 ± 2.4</td>
<td>68.6 ± 3.9</td>
</tr>
</tbody>
</table>

6.1. Modification of Seamounts During Transport Off Axis

The preservation of large numbers of off-axis seamounts that originated on the inner rift valley floor provides compelling evidence that rift valley faults are spaced widely enough that seamounts are commonly transported off axis without being destroyed (Figure 9). Nonetheless, off-axis changes in seamount population density, size, and shape suggest that faulting and aggrading processes do destroy some seamounts and strongly modify others. These changes are concentrated in the rift valley walls on 0.6-4 Ma crust (Figures 6, 7), and we show them in expanded form in Figure 10. At the top of Figure 10 is a conceptual cross section of the ocean crust that highlights fault patterns consistent with a separate fault analysis of the study area [G. Jaroslow and B. E. Tucholke, manuscript in preparation, 1999] and with our seamount observations.

6.1.1. Axial Seamounts. Where seamounts are generated on the inner rift valley floor (zone 1, Figure 10), faults are discontinuous and have small throws of typically < 50 m. Population and shape parameters of these axial seamounts therefore are little affected by faulting. Instead, other variables most likely control the axial population density, including the amount of magma delivered to the crust, its ability to erupt, and the style of emplacement (low-relief flow versus edifice construction) [e.g., Ballard et al., 1979; Bonatti and Harrison, 1988]. Similarly, the height to which a seamount builds depends on several variables, most important of which must be magma volume and pressure within the magma reservoir [Head et al., 1996].

As throughout the study region, plan view shapes of seamounts on the inner rift valley floor have elongations (D_{max}/D_{min}) that range between 1 (circular) and 2 (elliptical, the upper limit of our identification criterion). The elongate shapes

Figure 9. Shaded, three-dimensional bathymetry of a fossil axial volcanic ridge (25 Ma) that has been transported intact onto the ridge flank. Seamount height and diameter are ~250 m and 2 km, respectively. Observations of intact seamounts and volcanic ridges on the flanks of the MAR suggests that in places, large sections of the oceanic crust move to the flanks without being disrupted by faults.
Figure 10. (a) Schematic cross-section showing presumed pattern of normal faulting [Laughton and Searle, 1979; G. Jaroslow and B. E. Tucholke, manuscript in preparation, 1999]. Inactive faults are indicated by dashed lines. Circled numbers identify (1) the relatively unfaulted inner rift valley floor, (2) the lower walls of the rift valley where faults are predominantly inward facing, (3) the upper rift valley wall to the crest of the rift mountains, where limited outward facing faults are active, and (4) ridge flank where there are no active faults. (b-e) Seamount population characteristics in age bins as indicated. Errors of one standard deviation are shown by vertical bars.
Figure 11. Illustrations showing effects of faults on seamount geometry (left) in cross section and (right) in corresponding plan view with schematic contours. Seamount volume above base level is stippled. Slopes of 20° on seamount flank and fault dips of 45° are assumed in this example. First generation, inward facing faults are designated as f_1, and second generation, outward facing faults as f_2. Active faults are indicated by arrows. Dashed lines in plan view show limits of exposed fault scarp. (a) Up to half of a seamount (at base level) can be downfaulted by f_1 faults while maintaining $D_{\text{max}}/D_{\text{min}} \leq 2$ so that the seamount remains in the counted population. The downfaulted portion is rarely recognizable, probably because it is buried by talus and sediment at the base of the fault scarp. (b) Fault f_1 intersects the crest of a seamount. At least for larger seamounts, this is probably the usual minimum extent of a seamount that is downfaulted; removal of a smaller portion does not reduce characteristic height, contrary to observation (see text). Fault f_2 is shown at the most axisward position where $D_{\text{max}}/D_{\text{min}}$ still is < 2. (c) Fault f_1 is as in the limiting case of Figure 11a. Here, fault f_2 cannot cut into the seamount without increasing $D_{\text{max}}/D_{\text{min}} > 2$ and thus eliminating the seamount from the counted population.
The strong decrease in characteristic height of $\beta^4 = 92 \pm 4\ m$ to $69 \pm 4\ m$ between on-axis and 0.6-2 Ma crust (Figure 10c) probably is caused largely by faulting. Faults are likely to intersect larger seamounts and remove their crests (Figure 11a) more frequently than they intersect smaller seamounts, thus disproportionately reducing the height of large seamounts and causing a reduction in the characteristic height of the population (i.e., increasing the slope β^4 of the line in Figure 3). Few seamounts appear to be completely destroyed, however, as indicated by nearly constant population density (Figure 10b). The relatively constant population density does not negate the importance of faulting; normal faults could downdrop as much as half of a seamount (measured at base level) including the seamount crest without increasing the aspect ratio beyond 2 (the maximum permitted by our identification criteria) (Figure 11a).

Height-to-diameter ratio ξ_h also remains nearly constant from the axial seamounts to those on 0.6-2 Ma crust, implying that diameters are being reduced in approximate proportion to the reduction in height (Figure 10d). Hence faulting must typically remove a seamount crest (Figure 11a). This configuration may be expected if the fracture and fissure system that feeds magma to the AVR is a zone of weakness that localizes normal faults. The axialward edges of resulting fault blocks would carry dissected remnants of the AVR and seamounts, forming "volcanic lips" as have often been observed elsewhere along the MAR [Macdonald and Luyendyk, 1977; Laughton and Searle, 1979].

The effects of faulting also could be expected to appear in seamount elongation, $D_{\text{max}}/D_{\text{min}}$; there is no statistically significant change observed in the elongation parameter (Figure 10e), but because the error bars are large, this effect is not precluded.

Other factors might contribute to changes in seamount heights off-axis. The heights to which seamounts were initially constructed at the axis could have changed with time, but we consider it unlikely that the change in characteristic height represents a fundamental change in the nature of seamount accretion for two reasons. First, it would be remarkable that this change coincides with the boundary between the floor and wall of the rift valley, and second, the height change is 3 times that in any comparable time period over the preceding ~26 m.y. of crustal accretion (Figure 6). Mass wasting could also modify seamounts because it has been identified as a process that significantly affects both axial and off-axis crust [Cann et al., 1992; Allerton et al., 1995; Tucholke et al., 1997b]. However, the observed reduction of seamount characteristic height would require height reduction of large seamounts by mass wasting in preference to small seamounts, and it is not clear how this could be accomplished. Significant mass wasting could also reduce population density by eliminating seamounts from our counting criteria ($\geq 70\ m$ height), but this is not observed. From these considerations we conclude that faulting is the major factor that affects the seamount population in the lower rift valley walls.

6.1.3. 2-4 m.y. Modification of the seamount population continues through the upper rift valley walls to the crest of the rift mountains (zone 3 at ~2-3 Ma, Figure 10; see also Figure 6). There is a significant reduction in seamount population density N_{se} from 0.6-2 Ma to 2-4 Ma crust, while characteristic height, height-to-diameter ξ_h and elongation remain unchanged within their standard errors, although the range and mean of ξ_h do increase. These observations appear to be explained by a combination of sedimentation and mass wasting, with additional contributions by faulting and fault block rotation.

Reduction of population density in this region may be largely caused by sedimentation and mass wasting. Although average sediment cover on 2-4 Ma crust is low (8 m), several tens of meters of sediment can fill basement depressions between abyssal hills and near nontransforms offsets [Jaroslow, 1997]. Reduction in seamount height by sediment cover or by taphus accumulation at the seamount base would reduce the counted seamount population as previously mentioned. Because these effects are likely to reduce heights of all seamounts uniformly, they will not change the slope of the population distribution and thus will not change the characteristic height (Figure 10c).

A small number of outward facing faults appear near the crest of the rift mountains [Laughton and Searle, 1979; G. Jaroslow and B. E. Tucholke, manuscript in preparation, 1999], and these faults also may modify the seamount population. Unlike earlier inward facing faults, however, an outward facing fault can only cut a small section of a previously faulted seamount without $D_{\text{max}}/D_{\text{min}}$ exceeding 2 such that the seamount drops from the counted population (Figures 11b and 11c). The effects of outward facing faults that intersect seamounts consequently are to decrease seamount diameter in the counted population (thus increasing height-to-diameter ratio and elongation) and to reduce population density. Both reduced population density (Figure 10b) and increased range and mean of height-to-diameter ratio are observed (Figure 10d). Larger seamounts should be more affected by faulting, and this may account for increasing height-to-diameter ratio of larger seamounts in the 2-3 Ma and older age bins (Figure 7). Because the crests of previously faulted seamounts are now unlikely to be removed by outward facing faults without $D_{\text{max}}/D_{\text{min}}$ exceeding 2 (Figures 11c and 11d), large seamounts are not disproportionately affected by faulting compared to small seamounts (as they were on 0.6-2 Ma crust), so the characteristic height is unchanged (Figure 10c). There is no statistically significant increase in elongation, but the large error bars on this parameter do not preclude increased elongation.

Tilting of fault blocks also could affect seamount shape, although it cannot reduce the seamount population density (Figure 10b). Backtilts of blocks bounded by inward facing faults has been measured at 5°-10° [Macdonald and Luyendyk, 1977; Laughton and Searle, 1979] and, in some places, may reach 35°-40° [Karson and Rona, 1990]. We expect this backtilting to culminate at its highest value near the crest of the rift mountains before crust begins to subside on the ridge flank. The effect of any rotation would be to reduce plan view diameter in the flowline direction while effectively maintaining seamount height h and diameter in the along-isochron direction. The result would be an increase in height-to-diameter ratio and elongation, similar to the effects of faulting already discussed.

6.1.4. 4-28 m.y. There are few, if any, active faults on the ridge flank beyond the crest of the rift mountains [Jaroslow, 1997]. Therefore changes in seamount population characteristics on crust older than 4 Ma reflect either the effects of sedimentation and mass wasting or temporal changes in seamount production. Average sediment cover in the study area increases in thickness to a maximum of 35-50 m on 8-19 Ma crust and then decreases to 20-25 m on 19-28 Ma crust [Jaroslow, 1997]. As already noted, the effect of uniform partial burial of seamounts by sedimentation is to reduce the seamount population density without changing the characteristic height of the population. It is likely that the distribution of sediment cover accounts for much of the observed decline in seamount population density at 8-16
Ma and the increase at 16-24 Ma (Figure 6a). However, the peak in seamount abundance at 20-24 Ma is coeval with a major plate reorientation event [Tucholke et al., 1997a] and we cannot discount the possibility that this event affected seamount production. The decline in seamount population density at 24-28 Ma is not a sedimentation effect and probably reflects a real decrease in seamount production.

Mass wasting of some seamounts is observed in scalloping of scarps and by decreased slope gradients characteristic of talus deposition at the seamount base. This has the effect of reducing population density with time, and it probably contributes to the long wavelength decrease in v_n (Figure 6). However, as we have noted, mass wasting should have no effect on characteristic height. Thus the long-term trend of decreasing characteristic height with age (Figure 6b) is puzzling. If it is caused by a crustal aging process, it must preferentially reduce the height of larger seamounts in a way that we do not yet understand. It is possible that it reflects a real change in characteristic height of the original, axial seamount population over time, but the underlying mechanism is unknown.

6.2. Seamount Populations in Relation to Ridge Segmentation

Seamount population densities and characteristic heights do not change along isochrons (Table 4). There are not enough on-axis seamounts in our study area to be certain that this is true on the rift valley floor, but the fact that the observation is robust for off-axis seamounts suggests that it also applies on axis. This is surprising because gravity studies [Kuo and Forsyth, 1988; Lin et al., 1990] and seismic studies [Tolstoy et al., 1993] suggest that crust is thickest near segment centers and therefore that magmatism might be strongest near segment centers.

At the bottom of the rift valley, the apparent along-axis uniformity of seamount abundance and characteristic height implies uniform eruption processes. This could be accomplished either by dike emplacement vertically from magma bodies that are evenly distributed along axis or by lateral magma propagation in dikes extending from a source at the segment center. Thus the uniform seamount population does not constrain whether deep-seated upwelling is focused near the segment center.

It is possible that seamount production actually is not uniform along axis but that we cannot detect variations from existing data. For example, seamount construction may be more frequent at segment centers than at segment ends, but segment center seamounts could be buried by subsequent volcanism, thus limiting the population density. This idea is consistent with overall along-axis topography and morphology of axial volcanic ridges in our study region; the AVR are robust near the segment center but tend to lose definition and become discontinuous toward the ends of segments.

It is also surprising that there is no difference in seamount population parameters between inside and outside corners of ridge segments off-axis (Table 4). IC crust is characterized by a region of highly strained thin crust (high RMBA) with irregular, large-throw normal faults and large detachment faults; the detachment faulting is thought to remove much of the volcanic crust from inside corners (footwalls) and transfer it to outside corners (hanging walls) [Dick et al., 1981; Karson, 1990; Tucholke and Lin, 1994; Escartin and Lin, 1995]. Strain in OC crust also is less disruptive, with brittle extension being accommodated on relatively small-throw normal faults; apparent crustal thicknesses at OC remain comparable to those on axis [Tucholke and Lin, 1994; Escartin and Lin, 1995; Jaroslow, 1997]. From these observations we expect that seamount population densities would be lower at IC where more seamounts might be destroyed and higher at OC to which upper crust and seamounts would be transferred by detachment faulting. We do observe that seamount population densities are relatively low in regions of high RMBA and apparently thin crust (Table 4), but this observation does not hold for IC tectonic settings where RMBA is also generally elevated. It is possible that our artificial assignment of some percentage (30 or 14%) of segment length to "IC crust" explains this result; this assignment averages over cross-isochron variations in RMBA, and it may mask real correlations with seamount populations.

Significant differences in observed seamount populations between individual ridge segments (Table 2) suggest that seamount-forming volcanic processes are separate and distinct between segments. Differences in RMBA between segments within our study area, and also on the MAR at 29°-31°30'N [Parisio et al., 1995], suggest there are no segment-to-segment correlations in magmatism. The trend of increasing seamount population densities and characteristic heights northward from segment E through segment H is noteworthy, and it is possible that the trend reflects increasing proximity to the Azores hotspot. However, off-axis seamount populations will have to be mapped farther to the north to determine whether the trend is a regional or local phenomenon.

7. Summary

The major conclusions of this study are the following.

1. Eighty-six axial and 1290 off-axis seamounts (circular to elliptical volcanoes) with height \geq 70 m were identified on the western flank of the Mid-Atlantic Ridge between 25°25' and 27°10', extending from the inner rift valley floor westward ~450 km to ~29 Ma crust. Analysis of sidescan sonar images and bathymetry shows no evidence for construction of seamounts off axis, indicating that seamount construction occurs primarily on the inner rift valley floor in this region.

2. Abundance of off-axis seamounts shows that as seafloor is carried off axis through the rift valley wall to the ridge flank (> 4 Ma crust), crustal deformation is concentrated along discrete faults (spaced at ~1-3 km) and that the deformation is not pervasive. Nevertheless, significant changes in seamount population density, size distribution, and shape occur between ~0.6 and 3-4 Ma. During initial transport of seamounts out of the rift valley (0.6-2 m.y.), inward facing faults commonly intersect larger seamounts and thus reduce characteristic height of the population, although few seamounts are destroyed. In the upper portions of the rift valley (2-4 m.y.), sedimentation, mass wasting, additional faulting (outward facing), and backtilting of fault blocks reduce the seamount population density and increase the height-to-diameter ratio without affecting characteristic height.

3. Volcanic lips [Macdonald and Luyendyk, 1977; Laughton and Searle, 1979] are common features outside the inner rift valley floor and are composed of faulted seamounts and remnants of axial volcanic ridges perched at the elevated edges of fault blocks. This structural relationship indicates that major faults often nucleate through the axial volcanic ridge, as suggested by Ballard and van Andel [1977] from studies of the French-American Mid-Atlantic Undersea Study (FAMOUS) region at 37°N on the MAR.

4. Beyond the crest of the rift mountains (>4 m.y.) faults are no longer active, and changes in the seamount population reflect long-term crustal aging processes as well as temporal changes in
seamount production at the ridge axis. Long-term changes in observed seamount population density are mostly explained by variations in sediment cover with crustal age. A short-term peak in population density on 20-24 Ma crust also is at least partly explained by variation in sediment cover, but strongly reduced population density on 24-28 Ma crust is not. The change in population density between these periods correlates in time with a significant change in plate motion ~24 – 22 Ma, and this event could have affected population density through changes in magmatism or tectonism (e.g., reduced faulting). A steady decline in characteristic height of the seamount population with crustal age cannot be attributed to crustal aging processes such as sedimentation or mass wasting, which should affect all seamount sizes equally. Either the decrease reflects real changes in how seamounts were constructed at the ridge axis, or some presently unknown aging process preferentially degrades the larger seamounts.

5. Seamount population density estimated for the entire off-axis seamount population has a positive correlation with crustal thickness as inferred from gravity data, suggesting that increased seamount production accompanied increased magma supply to the crust. However, intrasegment, along-isochron variations in seamount population characteristics do not appear to correlate with differences in RMBA that generally are associated with IC, SC, and OC tectonic settings. It is uncertain whether this effect is real or whether it is an artifact of averaging because of the way the tectonic settings were defined (i.e., as percentages of segment length, rather than as detailed, but subjectively interpreted, tectonic boundaries).

6. There are no discernable variations in measured seamount population density with along-axis position in the rift valleys of individual spreading segments. Assuming that this is not an artifact of the limited axial data set, there are two possible explanations: (1) Along-axis production of seamounts is uniform, in which case eruption processes also must be relatively uniform on axis. (2) Seamount production varies along the axis, but it is not possible to identify its topographic signature either because of complete or partial burial of existing seamounts by subsequent volcanism.

Acknowledgments. We thank S. Garland for help in developing the software for seamount identification, Tamara Osychny for help in data entry, and L. Dolby for assistance in map processing. We also thank J. Escartin, R. W. Girdler, D. Scheirer, and R. C. Searle for constructive comments. This research was supported by ONR grants N00014-93-1-1153 (AAERT), N00014-94-1-0319, N00014-94-1-0466, and N00014-90-J-1621. B. E. Tucholke was also supported by NSF grant OCE 95-03561. Contribution 10068 of Woods Hole Oceanographic Institution.

References

