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Abstract. The longtime focus on factors that influence the survival of marine fish larvae has 1	
  

yielded an extensive number of studies on larval fish diets and feeding success. In light of a 2	
  

recent increase in such studies within lower latitudes, results from the peer-reviewed literature 3	
  

were synthesized to examine both latitudinal and taxonomic differences in several trophic-related 4	
  

categories, including feeding incidence, trophic niche breadth, ontogenetic diet shifts, dominant 5	
  

prey types, diet broadness, and larval piscivory. A total of 204 investigations (taxon-article 6	
  

combinations) contained suitable results for at least one of these categories. Feeding incidences 7	
  

(proportions of larvae containing food) were significantly higher in lower latitudes with all taxa 8	
  

combined, as well as only within the order Perciformes. Feeding incidences also differed among 9	
  

orders, with Perciformes and Scorpaeniformes having the highest values. The number of larval 10	
  

taxa exhibiting a significantly increasing niche breadth (SD of the log of prey sizes) with larval 11	
  

size decreased toward lower latitudes, with some taxa in lower latitudes exhibiting a decrease in 12	
  

niche breadth with size. The frequency of exhibiting ontogenetic diets shifts decreased with 13	
  

decreasing latitude, as did relative diet broadness (a function of prey types). The most common 14	
  

dominant prey types in the diets of higher latitude larvae were nauplii and calanoid copepods, 15	
  

with cyclopoids being rare in higher latitudes. Dominant prey types in lower latitudes were more 16	
  

diverse, with nauplii, calanoids, and cyclopoids being equally important. Appendicularians 17	
  

increased in importance with decreasing latitude, and one of the clearest latitudinal distinctions 18	
  

was the display of larval piscivory (almost exclusively by scombroid taxa), which was highly 19	
  

concentrated in lower latitudes. Overall, the latitudinal differences observed for multiple trophic-20	
  

related factors highlight inherent distinctions in larval fish feeding ecologies, likely reflecting 21	
  

differences in the overall structure of planktonic food webs over large latitudinal gradients.  22	
  

  23	
  



	
  

	
  

3 

1. Introduction 24	
  

Studying the diets and feeding success of planktonic marine fish larvae has a long history 25	
  

(e.g. Hjort, 1914; Hunter, 1981). The impetus for such work has largely been the desire to gain a 26	
  

better understanding of why economically important adult fish populations can suddenly and 27	
  

often inexplicably display large fluctuations. The link between millimeter-scale planktonic larvae 28	
  

and multi-billion-dollar fishing industries lies in the potential for minor changes in larval fish 29	
  

survival, due to the initially high numbers of hatching larvae, to have a substantial influence on 30	
  

the number of individuals surviving to later stages (Cushing, 1975; Houde, 1987).. 31	
  

Because the world’s important fisheries are more concentrated in higher latitudes 32	
  

(Watson et al., 2004), research on the processes governing larval fish survival (including trophic-33	
  

related processes) has also been historically concentrated in high latitudes. In lower latitudes, 34	
  

aside from work on large pelagic species, there has been a relatively greater focus on transport-35	
  

related processes and the implications for population connectivity, rather than on what might 36	
  

influence the survival of the larvae en route during the planktonic period (Cowen and Sponaugle, 37	
  

1997). However, recent efforts in low-latitude marine waters have begun to expand our 38	
  

knowledge on larval fish trophodynamics in these regions (Llopiz and Cowen, 2009; Llopiz et 39	
  

al., 2010; Ostergaard et al., 2005; Sampey et al., 2007). From this work, it appears that there 40	
  

could be inherent latitudinal differences in larval feeding success and the trophic role of fish 41	
  

larvae in planktonic food webs. Such differences could be related to the well-documented 42	
  

latitudinal differences in the magnitude and seasonality of primary production (Cushing, 1990; 43	
  

Longhurst and Pauly, 1987), fish and zooplankton diversity (Hillebrand, 2004; Rombouts et al., 44	
  

2009; Tittensor et al., 2010), and fish spawning strategies (Johannes, 1978). There may also be 45	
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inherent differences in larval feeding ecologies among taxonomic groupings of fishes, which 46	
  

could underlie any observed latitudinal patterns that may exist at the assemblage level. 47	
  

 Despite the extensive accumulated data on the trophic ecologies of fish larvae worldwide, 48	
  

there has yet to be an effort in any context to synthesize the published results from the many 49	
  

single or multi-species studies on the feeding of marine fish larvae in their natural environment. 50	
  

Here, I synthesize results from the literature on the feeding success, diet, and other trophic-51	
  

related variables of larval fishes with an emphasis on both latitudinal and taxonomic patterns. 52	
  

Specifically examined are patterns in feeding incidence, trophic niche breadth, ontogenetic diet 53	
  

shifts, dominant prey types, relative broadness of diets, and the occurrence of larval piscivory 54	
  

(i.e. fish larvae consuming other fish larvae).  55	
  

 56	
  

2. Material and Methods 57	
  

2.1. Literature search 58	
  

The Aquatic Sciences and Fisheries Abstracts database was searched via CSA Illumina to 59	
  

obtain a list of articles from the peer-reviewed literature meeting the general criteria of reporting 60	
  

empirical results on trophic-related variables of field-collected estuarine or marine planktonic 61	
  

fish larvae. This initial step was conducted with the search: ‘fish’ (keyword) AND ‘larva*’ 62	
  

(keyword) AND ‘feeding’ OR ‘diet*’ (keyword) NOT ‘aquaculture’ (keyword) NOT 63	
  

‘aquaculture’ (source), with keyword and source being categories of the search terms. This 64	
  

combination yielded 2466 journal articles. Based on their titles, 239 of these articles were 65	
  

conservatively selected as potentially containing relevant feeding-related results. Upon reading 66	
  

the abstracts or the articles themselves, the number of papers reporting empirical, feeding-related 67	
  

results on marine or estuarine taxa was 111. This number was supplemented with 18 peer-68	
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reviewed articles that were not returned in the search results. Most of these supplemented articles 69	
  

were published prior to the source’s inclusion in the ASFA database (the year of a source’s initial 70	
  

inclusion in the database varies, but the earliest year that any articles appeared in the search 71	
  

results was 1978). Additionally, some of the supplemented articles were published too recently 72	
  

to, as of yet, be included in the ASFA database. Together, synthesized results were from articles 73	
  

published between 1975 and 2011. To minimize the influence of an incomplete ASFA database 74	
  

on illustrating publishing trends, papers reporting any empirical results related to larval fish 75	
  

feeding were plotted only for articles published between 1980 and 2009 (Fig. 1A). 76	
  

Since the sampling unit for the analyses described below is a unique taxon within a 77	
  

latitudinal region (see section 2.3), it is less essential to gather results from as many articles on 78	
  

larval fish feeding as possible (e.g. those published prior to the ASFA cutoff year of 1978 and in 79	
  

addition to supplemented articles) in order to examine patterns or differences among regions or 80	
  

taxonomic groups. Similar to recent decades, taxa studied prior to 1978 were usually 81	
  

economically important taxa and, as such, have often been studied since 1978. Thus, the 82	
  

inclusion of additional studies on the same taxon could only change the value of the parameter 83	
  

used for that taxon, not add to the sample size. In addition to this, so little was published on low-84	
  

latitude taxa prior to 1978 that synthesized results for these regions would likely not change at all 85	
  

by extending the literature search farther back. Yet, to evaluate the thoroughness of the articles 86	
  

included herein, cited articles that could potentially contain useful results were noted from the 87	
  

literature cited sections of 12 articles published between 1969 and 1984 that were included or 88	
  

evaluated for inclusion in this synthesis. A total of 25 unique references published between 1925 89	
  

and 1980 were noted. Of these 25, 8 had been included in the present synthesis (or evaluated for 90	
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inclusion). Within the remaining 17 articles (all published before 1977), a total of only 12 unique 91	
  

taxa were analyzed, and of these 12 taxa, all but 3 had already been included in this synthesis.  92	
  

 Types of commonly reported data from gut content studies of fish larvae include feeding 93	
  

incidence (the percentage of larvae containing at least one prey item), diet composition, and 94	
  

relationships related to the sizes of both prey and consumer. Unfortunately, many of the articles 95	
  

initially selected as reporting results on field-collected larvae had methodologies, results formats, 96	
  

or insufficient detail (in the results or methodology) that rendered their results unsuitable for use 97	
  

in this synthesis (recommendations for reporting data and results are made in the Discussion). In 98	
  

all, a total of 81 published articles provided usable results for daytime feeding incidence, 99	
  

numerical diet composition, and/or trophic niche breadth. Since many articles report on multiple 100	
  

taxa, the total number of ‘investigations’ (taxon-article combinations) was 204, and, as some 101	
  

articles reported results for the same taxon, the total number of unique taxa investigated was 166 102	
  

(73% to the species level, 12% to genus, 15% to subfamily or family). For the analyses below, 103	
  

however, the sampling unit was a unique taxon within a latitudinal region, and since a few taxa 104	
  

were investigated in multiple regions, this number was 175 (Fig. 1B). Investigations with sample 105	
  

sizes less than 20 inspected larvae were excluded. Summary information on each of the 106	
  

investigations used for this synthesis, including the articles from which they came, can be found 107	
  

in Table S1 (supplementary information).  108	
  

 109	
  

2.2. Data and results synthesized 110	
  

 The specific types of results that were synthesized from investigations included daytime 111	
  

feeding incidence, trophic niche breadth, and descriptors derived from numerical diet 112	
  

compositions. For feeding incidence, a single value per investigation for larvae collected during 113	
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daylight hours was used. As most larval fish taxa only feed during daylight hours, a daytime 114	
  

feeding incidence is the only value useful as an index of feeding success, and, thus, suitable for 115	
  

making comparisons. Some articles did not explicitly state an overall daytime feeding incidence 116	
  

but instead plotted feeding incidence for time blocks throughout the day (and also included times 117	
  

of sunrise and sunset). In these instances, overall daytime values were estimated from such plots, 118	
  

usually by scaling feeding incidences for each time block by the number of larvae sampled in 119	
  

each block. This is equivalent to a single reported feeding incidence for all larvae collected 120	
  

during the day. In a few instances, sample sizes per time block were not reported, and so an 121	
  

average of the feeding incidences for the daytime time blocks was used as the single feeding 122	
  

incidence for that investigation. 123	
  

It is important to note that feeding incidence can vary with a variety of factors, including 124	
  

ontogeny, time of year, environmental conditions, and location, and there are certainly latitudinal 125	
  

differences in related factors such as production cycles, the seasonal timing and length of 126	
  

spawning, and, occasionally, the objectives of larval fish feeding studies. How such factors 127	
  

might yield any latitudinal differences in feeding success, or any other process, would be 128	
  

difficult to assess—suggesting a possible utility for the present synthesis. One criterion for a 129	
  

study’s inclusion in feeding incidence comparisons was that there was a broad size range of 130	
  

inspected larvae, thus minimizing the potential bias that the exclusion of a size class or 131	
  

ontogenetic state may have (e.g. by focusing either on first-feeding or later-stage larvae only). 132	
  

Unaccounted for, however, are any differences among studies in the size-frequency distributions 133	
  

of inspected larvae. Since feeding incidence can vary with ontogeny (but not always and not 134	
  

predictably), an overall feeding incidence can be a function of both feeding success and possibly 135	
  

the size-frequency distribution of the larvae. For a latitudinal difference in feeding incidences to 136	
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emerge that is not related to average feeding success, the size-frequency distributions of studies 137	
  

would, on average, have to vary systematically with latitude, and there would have to be a 138	
  

similar pattern among studies in how feeding incidence varies ontogenetically. The comparison 139	
  

of a large number of investigations should help minimize these possibilities. Another factor that 140	
  

could clearly influence observed feeding incidences is the taxonomic group (at any level) to 141	
  

which the larval fish consumer belongs, which could then translate to overall regional differences 142	
  

if taxa are pooled and the distributions of species within taxonomic groups vary among locations. 143	
  

Therefore, investigating taxonomic differences at the order level, and accounting for them in 144	
  

latitudinal comparisons where sample sizes allowed, is also a focus of this synthesis.  145	
  

 Trophic niche breadth, defined as the standard deviation of the log-transformed prey sizes 146	
  

and usually calculated within larval fish (consumer) size classes (Pearre, 1986), is a way of 147	
  

illustrating the relative variability in the sizes of consumed prey. Rather than using the range or 148	
  

the standard deviation of the raw values, the use of log-transformed values allows for 149	
  

comparisons on a ratio-based (relative) scale, thereby standardizing for differences in the mean 150	
  

prey size (e.g. an increase in mean prey size with larval growth). Of specific interest to 151	
  

researchers has been how trophic niche breadth within a taxon changes with predator size and 152	
  

how universal such patterns may be. Pearre (1986) synthesized data on several species (but over 153	
  

size ranges extending well beyond the larval period) and concluded that niche breadth generally 154	
  

does not change with growth. Pepin and Penney (1997) challenged this conclusion, at least when 155	
  

restricted to the larval stage, by showing significant increases in niche breadth or tendencies 156	
  

toward an increase in 9 of 11 taxa from coastal waters of Newfoundland. Contrasting with this, 157	
  

Llopiz and Cowen (2009) reported significant decreases in niche breadth with larval size for 4 of 158	
  

10 taxa of tropical coral reef fishes (with none increasing). Since the work of Pearre (1986), 159	
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investigating the relationship between niche breadth and larval size (or another proxy for feeding 160	
  

capability such as jaw length or mouth gape) is often included in larval fish trophic studies. Yet, 161	
  

as for all types of published results on larval fish feeding, there has yet to be a synthesis of 162	
  

results on niche breadth to examine either overall generality or differences in patterns among 163	
  

latitudes. 164	
  

  In addition to feeding incidence and niche breadth, the remaining types of synthesized 165	
  

results were diet-related, and were based on the numerical percentages of prey types consumed 166	
  

since numerical percentages were by far the most common type of diet results reported. To make 167	
  

comparisons among investigations, a single overall numerical percentage per consumed prey 168	
  

type was extracted from diet results of each investigation. There is the potential for bias in values 169	
  

of overall numerical percentages that could be introduced by an occurrence of ontogenetic diet 170	
  

shifts in conjunction with a size-frequency distribution of inspected larvae that is different from 171	
  

the population. Yet, a single value per prey type per investigation was the most common type of 172	
  

reported result, and further, if the size-frequency distributions of the inspected larvae are similar 173	
  

to those occurring naturally, overall numerical percentages of prey types are an accurate 174	
  

reflection of the consumer’s population as a whole. For the few articles that reported prey-type 175	
  

percentages only within larval subdivisions (e.g. larval size classes, seasons, locations), and did 176	
  

not report the number of extracted prey per subdivision, the percentages for each prey type were 177	
  

averaged across subdivisions to obtain an overall value for the investigation. For each 178	
  

investigation reporting suitable diet data, extracted results were (1) the two most numerically 179	
  

dominant prey types consumed (not to be confused hereafter with being dominant in the 180	
  

plankton); (2) the number of prey types, beginning with the most consumed type, to cumulatively 181	
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compose 90% of the diet; and (3) the total number of prey types consumed in any amount if prey 182	
  

types were identified to suitable taxonomic levels and not grouped together.  183	
  

Regarding prey-type groupings, since articles had zooplankton prey types classified at a 184	
  

variety of taxonomic levels (and to minimize the number of investigations discarded), reported 185	
  

prey types were often combined into higher-level groupings. For the typically common prey 186	
  

types, the groupings used in this synthesis included all copepod nauplii, calanoid copepodites 187	
  

(juveniles and adults together), cyclopoid copepodites by genus (Oithona, Oncaea, Farranula, 188	
  

and Corycaeus—though these genera were also summed and graphed as all cyclopoids), 189	
  

harpacticoid copepodites, invertebrate eggs, appendicularians, phytoplankton, and cladocerans. 190	
  

Other types were occasionally dominant, but did not require post-hoc grouping at particular 191	
  

levels to allow for comparisons (e.g. tintinnids, ostracods, bivalve larvae, Limacina pteropods, 192	
  

and larval fish).  193	
  

2.3. Analyses 194	
  

 Each investigation was assigned to a latitudinal region based on the approximate average 195	
  

latitude over which the study was conducted. These regions were high (>60°N/S), high-middle 196	
  

(45–60°N/S), middle (30–45°N/S), low-middle (15–30°N/S), and low (15°S–15°N). Due to low 197	
  

sample sizes in the high and low regions (Fig. 1B), these regions were combined with their 198	
  

respective adjacent regions for analyses. Investigations were also initially classified by 199	
  

planktonic environment (‘habitat’ hereafter) as estuarine, coastal (bottom depth ca. <100 m and 200	
  

not being separated from shore by water depths >100 m), or oceanic/offshore. However, 201	
  

estuarine investigations were excluded from analyses with the exception of a comparison of 202	
  

feeding incidences only within the low-middle latitude region, because (1) the number of suitable 203	
  

estuarine investigations was low at 16, (2) they were concentrated in the low-middle latitude 204	
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region with 11 of the 12 from the same study (the four other investigations included one in low, 205	
  

two in middle, and one in high-middle latitudes), and (3) they exhibited clear differences from 206	
  

other habitats within low-middle latitudes. For all comparisons, no patterns were evident 207	
  

between coastal and oceanic/offshore investigations, and therefore, these groupings were 208	
  

combined for analyses other than the initial low-middle latitude comparison of feeding 209	
  

incidences among all three habitat types.  210	
  

A simple metric derived only from diet results for relative diet ‘broadness’ (i.e. relative to 211	
  

the prey types potentially available in the plankton) was calculated by dividing the total number 212	
  

of all prey types consumed (the best diet-related proxy for what is available to the larvae) by the 213	
  

number of prey types cumulatively composing 90% of the diet (which itself is an indicator of 214	
  

absolute diet ‘narrowness’).  215	
  

The potential for differences in the prevalence of ontogenetic diet shifts was examined 216	
  

using investigations that subdivided diet results by larval size class or development stage. An 217	
  

ontogenetic diet shift was considered to have occurred if the top prey types that cumulatively 218	
  

compose 50% of the diet in any smaller/younger class are different from those in a larger/older 219	
  

class (either an altogether change in prey types or the addition or loss of a prey type). 220	
  

Relative diet broadness and the number of prey types per taxon (total and those 221	
  

composing 90%) were tested among latitudinal regions using ANOVA and Tukey’s HSD test for 222	
  

multiple comparisons. Feeding incidences were often highly skewed toward the upper limit 223	
  

(100%), and, as such, differences among latitudinal regions and taxon orders were tested with 224	
  

either a Kruskal-Wallis or Wilcoxon rank sum test (depending on the number of categories). In 225	
  

the few instances there were multiple investigations for the same larval fish taxon within the 226	
  

same latitudinal region, the mean of the feeding incidences and prey-type percentages for the 227	
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taxon were used. Statistical analyses were performed with the program R (R Development Core 228	
  

Team, 2011), with multiple comparisons after Kruskal-Wallis (MCKW) tests performed 229	
  

specifically with the R package pgirmess (Giraudoux, 2011).  230	
  

 231	
  

3. Results 232	
  

 The number of published articles reporting empirical, trophic-related results on field-233	
  

collected fish larvae increased over the last three decades (Fig. 1A). The mean number of articles 234	
  

from 1980 to 1995 was 2.3 yr-1 and nearly doubled to 5.4 yr-1 for the period 1996 to 2009. 235	
  

Feeding incidences of fish larvae differed by habitat within the low-middle latitude 236	
  

region (Fig. 2A; Kruskal-Wallis, χ2 = 10.6, df = 2, p = 0.006) where the majority of the few 237	
  

comparable estuarine studies were conducted (12 of 15). Estuarine taxa had significantly lower 238	
  

feeding incidences than both coastal and oceanic/offshore taxa (MCKW, p < 0.01 for both). As 239	
  

described in the Material and Methods, estuarine investigations were excluded from the 240	
  

remainder of the analyses, and coastal and offshore/oceanic investigations were combined. 241	
  

 Among latitudinal regions, feeding incidences were significantly different (Fig. 2B; 242	
  

Kruskal-Wallis, χ2 = 15.2, p < 0.001), exhibiting an increase with decreasing latitude. Low/low-243	
  

middle latitudes had feeding incidences significantly higher than both high/high-middle latitudes 244	
  

and middle latitudes (MCKW, p < 0.01 for both), while no difference was observed between 245	
  

high/high-middle latitudes and middle latitudes.  246	
  

Feeding incidences were also different among taxonomic orders when all regions were 247	
  

combined (Fig. 2C; Kruskal-Wallis, χ2 = 38.6, df = 5, p < 0.0001). Clupeiform taxa had 248	
  

significantly lower feeding incidences than both perciforms (MCKW, p < 0.001) and 249	
  

scorpaeniforms (p < 0.01). Similarly, myctophiform feeding incidences were also lower than 250	
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those of perciforms (p < 0.05) and scorpaeniforms (p < 0.01). Pleuronectiform feeding 251	
  

incidences were lower than those of scorpaeniforms (p < 0.05). Due to sample size constraints, 252	
  

latitudinal differences within orders could only be investigated for Perciformes, and, similar to 253	
  

the results with all taxa combined, significantly higher feeding incidences occurred in lower 254	
  

latitudes (Wilcoxon rank sum test, W = 275.5, p = 0.001). 255	
  

 The percentage of larval fish taxa exhibiting ontogenetic diet shifts in high/high-middle 256	
  

latitudes was 92%, while it was only 58% in middle latitudes and 63% in low/low-middle 257	
  

latitude regions (Table 1). Trophic niche breadth relationships also varied with latitudinal regions 258	
  

(Table 1). In high/high-middle latitudes, 5 taxa had niche breadths that increased significantly 259	
  

with larval size and 9 taxa showed no significant relationship. In middle latitudes, only one taxon 260	
  

had a significantly increasing niche breadth, 14 had no significant relationship, and one had a 261	
  

dome-shaped relationship. In low/low-middle latitudes, 13 taxa had no significant relationship of 262	
  

niche breadth with larval size but 4 had significant decreases in niche breadth. 263	
  

 The minimum number of prey types (i.e. those most consumed) to cumulatively compose 264	
  

90% of a taxon’s diet was not significantly different among latitudinal regions, averaging 265	
  

approximately 4 prey types per taxon (Fig. 3). However, the total number of different prey types 266	
  

consumed in any amount did differ by region (ANOVA, F = 7.53, df = 2, p < 0.001), with taxa in 267	
  

low/low-middle latitudes having consumed more total prey types than the other regions (Tukey’s 268	
  

HSD, p < 0.01 for both). The fraction of the total number of prey types represented by the 269	
  

number to reach 90% of the diet was used as a measure of relative diet broadness, which differed 270	
  

among latitudinal regions (Fig. 3; ANOVA, F = 4.25, df = 2, p = 0.017); specifically, low/low-271	
  

middle latitude taxa had relatively narrower diets than both high/high-middle latitudes and 272	
  

middle latitudes (Tukey’s HSD, p = 0.02 and 0.04, respectively). 273	
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 Latitudinal patterns in the trophic role of fish larvae as a whole (all taxa combined) were 274	
  

evident when comparing the prey types that were dominant in the diets of larvae among regions 275	
  

(Fig. 4A). The frequency with which appendicularians and cyclopoid copepods occurred as a 276	
  

dominant prey type (this frequency indicating a prey type’s overall importance to the larval fish 277	
  

community) increased toward lower latitudes while the frequency for nauplii and phytoplankton 278	
  

decreased. No latitudinal patterns were evident for calanoid copepods (lowest frequency in 279	
  

middle latitudes) or invertebrate eggs (highest in middle latitudes). When only perciform larvae 280	
  

were compared (Fig. 4B), accounting to some extent for potentially influential intrinsic 281	
  

differences among taxa (e.g. morphology), the patterns were similar to those observed with all 282	
  

taxa combined. Without considering latitude, there were clear diet differences among orders for 283	
  

certain prey types (Fig. 4C). For example, clupeiform larvae never relied heavily upon 284	
  

appendicularians or cyclopoids, and this was nearly true for gadiforms (cyclopoids were a 285	
  

dominant type for a small fraction). The lowest dominant prey-type frequencies for calanoids and 286	
  

nauplii were observed for myctophiform larvae, for which cyclopoids had the highest frequency 287	
  

of occurring as a dominant prey type. Phytoplankton was never dominant in either 288	
  

myctophiforms or perciforms.  289	
  

 Among latitudinal regions there were clear differences in the frequency with which taxa 290	
  

were piscivorous (Table 2). There were 4 gadid species (cods and haddocks) in high-middle 291	
  

latitudes from one study and a merlucid hake in middle latitudes from another for which a few 292	
  

individuals were observed to have yolk-sac fish larvae in their guts. Aside from these cases, the 293	
  

remaining piscivorous larval taxa were all from the perciform suborder Scombroidei and nearly 294	
  

all occurred in lower latitudes. The only piscivorous scombroid species in high/high-middle 295	
  

latitudes was the Atlantic mackerel (Scomber scombrus); in low/low-middle latitudes, 16 taxa 296	
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from 4 scombroid families were observed to be piscivorous. Among scombroid taxa, there were 297	
  

differences in the relative reliance upon piscivory (not shown), ranging from being nearly 298	
  

exclusively piscivorous throughout ontogeny in Scomberomorus spp. (but see Jenkins et al., 299	
  

1984) to larval fish prey appearing in the diet later and, once appearing, continuing to be 300	
  

supplemented with other prey types (Scomber spp.). The standard lengths at which scombrids 301	
  

first exhibited piscivory were ca. 7 mm for Scomber scombrus and other lower-latitude Scomber 302	
  

spp., 6–8 mm for Auxis spp., 6–7 mm for Thunnus spp., 5 mm for both Katsuwonus pelamis and 303	
  

Euthynnus spp., and at first-feeding (ca. 3 mm) for Scomberomorus spp. Istiophorid billfishes 304	
  

were piscivorous at 5 mm, swordfish at ca. 9 mm, and gempylids at ca. 8 mm.  305	
  

 306	
  

4. Discussion 307	
  

 Studies on the processes governing larval fish survival have long been recognized as a 308	
  

critical step for understanding not only the early life history of fishes, but also factors influencing 309	
  

population sizes of adult fishes. Given this history, it was possible to use the extensive literature 310	
  

on the feeding ecologies of individual taxa of fish larvae to elucidate large-scale latitudinal and 311	
  

taxonomic patterns. In one of the only general reviews on larval fish feeding ecologies (not a 312	
  

synthesis, and more focused on kinematics, prey-size factors, and other laboratory-based results), 313	
  

Hunter (1981) addressed the relative lack of data at the time for tropical and subtropical larval 314	
  

taxa. Leis (1991) did the same in his brief overview of the feeding of tropical fish larvae. Since 315	
  

these works, a substantial amount of research has been conducted in both high and low latitudes, 316	
  

allowing for the present synthesis of 204 investigations on 166 unique taxa. Emerging from this 317	
  

synthesis were latitudinal differences in the feeding success of fish larvae and the prey types they 318	
  

consume, itself illustrating a change with latitude in the trophic role that fish larvae play in 319	
  



	
  

	
  

16 

marine planktonic food webs. Identifying large-scale ecological patterns such as those that vary 320	
  

with latitude represents an important step toward gaining an understanding of the underlying 321	
  

mechanisms that might be responsible for the patterns (e.g. Hillebrand, 2004; Willig et al., 2003). 322	
  

Together, the observed differences and patterns in larval fish feeding suggest that there may be 323	
  

inherent distinctions in the food web structure of planktonic ecosystems that extend to fish larvae 324	
  

and their evolved feeding strategies. But, whether gradients in variables such as the diversity and 325	
  

abundance of both larvae and their prey; the timing, frequency, and amplitude of production 326	
  

fluctuations; temperature; photoperiod length; or the seasonality and length of spawning periods, 327	
  

among others, are behind any observed latitudinal distinctions remains largely unknown.   328	
  

 Feeding incidences, which are inferred to be related to feeding success and feeding 329	
  

frequency, were significantly higher for taxa in lower latitudes than in higher latitudes. This 330	
  

difference appears to be independent of any species composition differences between the regions 331	
  

since it held within the order Perciformes. Given the greater temperatures in low-latitude waters, 332	
  

and the corresponding increase in metabolic rates and energy demands (Houde, 1989), the 333	
  

significant, but not extreme, difference in median feeding incidences in low/low-middle (96%) 334	
  

and high/high-middle (72%) latitudinal regions might be expected if levels of starvation between 335	
  

the regions were similar. This is because larvae in cooler waters would be physiologically 336	
  

capable of withstanding an empty gut for a longer period. A potential caveat to making 337	
  

comparisons of feeding incidences between low and high latitudes is the distinct difference in the 338	
  

productivity cycles of the regions. In higher latitudes, where narrow periods of high productivity 339	
  

would make match-mismatch dynamics more important (e.g. Cushing, 1990), a study’s sampling 340	
  

strategy (including the time of year it was conducted relative to peaks in secondary productivity, 341	
  

as well as its time span) could influence feeding incidences. Contrary to higher latitudes, the 342	
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tropical and subtropical open ocean maintains lower and more stable levels of productivity 343	
  

(Longhurst and Pauly, 1987; Raymont, 1983). Accordingly, fishes in these regions often exhibit 344	
  

more protracted spawning seasons than species in higher latitudes, if not year-round spawning. 345	
  

At scales smaller than those related to seasonal production peaks, the patchiness of planktonic 346	
  

organisms has been well documented (Davis et al., 1992; Folt and Burns, 1999; Llopiz et al., 347	
  

2010; Wiebe, 1970); however, we still know very little about how this patchiness influences 348	
  

larval fish feeding dynamics, growth, and survival.  349	
  

Within lower latitudes, the consistently high feeding incidences in offshore, oceanic 350	
  

waters are somewhat paradoxical considering the oligotrophy of the habitat, which should result 351	
  

in low prey availability. It is generally hypothesized that an oceanic planktonic environment 352	
  

offers reduced predation mortality (Bakun and Broad, 2003) but with the nutritional tradeoff of 353	
  

low food availability. While growth rates of low-latitude larvae can be influenced by ambient 354	
  

densities of zooplankton prey (Sponaugle et al., 2009), such high feeding incidences, in 355	
  

combination with rapid evacuation rates and the ability to endure an empty gut for the majority 356	
  

of each nightly non-feeding period (Llopiz and Cowen, 2008; Llopiz et al., 2010), call into 357	
  

question the likelihood of high levels of starvation mortality in lower latitudes. But, total 358	
  

mortality rates of larvae are indeed very high in warm, low-latitude waters (Houde, 1989). So if 359	
  

starvation mortality were low, predation mortality would have to be extremely high. 360	
  

Unfortunately, our understanding of both sources of mortality is rather limited, especially in 361	
  

lower latitudes and despite existing techniques and previous efforts to estimate actual starvation 362	
  

mortality rates (e.g. Gronkjaer et al., 1997; Margulies, 1993; Tanaka et al., 2008).  363	
  

The considerably lower feeding incidences of taxa in estuarine waters within the low-364	
  

middle latitude group was also surprising given the much greater levels of productivity in 365	
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estuaries. A major limitation to this comparison is that most of the estuarine taxa were from a 366	
  

single study (Houde and Lovdal, 1984) and location (Biscayne Bay, FL, USA). However, the 367	
  

observed differences do appear to be unrelated to taxonomic factors since the median feeding 368	
  

incidence of the 6 perciform taxa in the estuarine group was the same as for the group as a whole 369	
  

(43%). The low number of estuarine articles included in comparisons (n = 6) was a function of 370	
  

few estuarine articles reporting feeding results on field-collected larvae (n = 17) and a larger 371	
  

proportion of articles, relative to studies in other habitats, that had to be discarded for not 372	
  

reporting results suitable for making comparisons (65% vs. 39%). One conclusion, then, is that 373	
  

our knowledge of larger-scale patterns of the feeding ecologies of estuarine larvae, including 374	
  

how they may or may not differ from other habitats, remains limited for now.  375	
  

There were also distinctions in the types of consumed prey among latitudinal regions, 376	
  

with the greatest differences occurring for copepod nauplii, eggs, and cyclopoid copepods. In 377	
  

high/high-middle and middle latitudes, nauplii were the most common dominant prey type and 378	
  

cyclopoids were rarely dominant. In low/low-middle latitudes, there was a more even 379	
  

distribution of dominant prey types, with nauplii equally as common as calanoid and cyclopoid 380	
  

copepods. Consumption of appendicularians was also highest in lower latitudes, and 381	
  

appendicularians were notably absent from the dominant prey of perciforms in high/high-middle 382	
  

latitudes; however, appendicularians were often a dominant, and sometimes exclusive, prey of 383	
  

higher-latitude pleuronectiforms (e.g. Last, 1978). Diet results from all studies were based on gut 384	
  

content analysis, which, though relatively simple and straightforward, is an informative 385	
  

technique that allows for the enumeration of prey and their identification to an often low 386	
  

taxonomic level—but only when those prey are observable. There is growing evidence that 387	
  

organisms that go unnoticed or are altogether unnoticeable (particularly heterotrophic protists) 388	
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can play an important role in larval nutrition, either through consumption or indirectly due to 389	
  

their presence (de Figueiredo et al., 2005; Overton et al., 2010; Pepin and Dower, 2007).  390	
  

Not shown for the diet results were the dominant prey types that were in addition to those 391	
  

plotted in Figure 4, most of which occurred in low/low-middle and middle latitudes exclusively 392	
  

or in higher frequencies than in higher latitudes. These included bivalve larvae, cladocerans, and 393	
  

harpacticoid copepods, which were more frequent in lower latitudes, and fish larvae, Limacina 394	
  

pteropods, and ostracods, which exclusively occurred as dominant prey types in lower latitudes. 395	
  

Furthermore, within Cyclopoida, Oithona was the only genus that was ever dominant in 396	
  

high/high-middle latitudes, while in low/low-middle latitudes there were four cyclopoid genera 397	
  

that were dominant (Oncaea, Farranula, Corycaeus, and Oithona). The greater diversity of 398	
  

dominant prey types in lower latitudes certainly follows the general pattern of increasing 399	
  

diversity toward the equator (Hillebrand, 2004; Rombouts et al., 2009; van der Spoel and Pierrot-400	
  

Bults, 1979); however, comparing the high diversity of dominant consumed prey types to the 401	
  

observations that only a few of these groups are ever dominant in the environment (Hopcroft et 402	
  

al., 1998; Llopiz et al., 2010; Neumann-Leitao et al., 2008) supports the likelihood that fish 403	
  

larvae in lower latitudes, overall, exhibit a higher degree of prey selectivity. Unfortunately, very 404	
  

few low-latitude studies quantitatively examined prey selectivity by comparing diets with prey 405	
  

availability. While Robert et al. (2008) do provide a summary of the preferred prey of larval taxa 406	
  

from published selectivity studies, another hurdle to making quantitative comparisons of prey 407	
  

selectivity across studies and regions would seem to be a lack of a sufficient metric to compare.  408	
  

The approach taken for diet broadness was meant to provide further evidence for 409	
  

latitudinal differences in prey selectivity if they existed. These results showed that larvae in 410	
  

lower latitudes consumed a greater total number of prey types, and, relative to this number 411	
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(assuming that the total number of prey types is related to the number available to the larvae), the 412	
  

bulk (90%) of their diets was composed of a smaller fraction of the available prey types than 413	
  

larvae in higher latitudes. The results for trophic niche breadth, though limited, illustrated that 414	
  

the distributions by taxa of how niche breadth changes with growth may differ among regions—415	
  

often increasing (i.e. widening) in higher latitudes, not changing in middle latitudes, and, in 416	
  

lower latitudes, occasionally declining (i.e. narrowing; illustrating these taxa become relatively 417	
  

more specialized with regard to prey size). Together, the patterns of fish larvae in lower latitudes 418	
  

(1) exhibiting potentially greater specialization in the sizes of prey consumed, (2) more often 419	
  

maintaining their diet composition with growth (i.e. not exhibiting an ontogenetic diet shift), and 420	
  

(3) all taxa together having a high diversity of dominant prey types but (4) individual taxa having 421	
  

relatively narrow diets, suggest that there is greater niche partitioning in lower latitudes relative 422	
  

to higher latitudes. 423	
  

 One of the clearest differences observed among latitudinal regions was the much greater 424	
  

number of larval taxa in lower latitudes that exhibited piscivory, and this was entirely due to the 425	
  

latitudinal distribution of inspected taxa in the suborder Scombroidei (which includes the 426	
  

families tunas and mackerels, snake mackerels, istiophorid billfishes, swordfish, and, not 427	
  

examined by any included study, barracudas and cutlassfishes [but see D’Alessandro et al., 428	
  

2011]). Scombroids have distinct adaptations contributing to their evolved strategy of 429	
  

consuming—often at the first-feeding stage—other fish larvae (Govoni et al., 1986; Llopiz and 430	
  

Cowen, 2008; Shoji and Tanaka, 2001; Tanaka et al., 1996). If we assume that all scombroid 431	
  

species exhibit some degree of larval piscivory (none has been shown not to), the striking pattern 432	
  

of the adults (or where they spawn) being concentrated in lower latitudes (Collette and Nauen, 433	
  

1983; Nakamura, 1985; Nakamura and Parin, 1992; Nelson, 2006) results in larval piscivory also 434	
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being concentrated in lower latitudes. A rough approximation based on the distribution of the 435	
  

adults suggests that, of the nearly 160 species of scombroids, it is likely that less than 10% 436	
  

spawn in latitudes higher than 40° N/S. The only confirmed scombroid larval piscivore of this 437	
  

10%, and likely the most abundant and poleward species, is the Atlantic mackerel (Scomber 438	
  

scombrus), which exhibits substantial differences from co-occurring non-scombroids in several 439	
  

feeding-related aspects (e.g. Robert et al., 2008). It is possible that not all scombroid species are 440	
  

larval piscivores, and, additionally, species other than scombroids may occasionally display 441	
  

piscivory, including some gadiforms (shown in two investigations here), as well as paralepidids 442	
  

and alepisaurids (pers. obs.). Still, the latitudinally constrained nature of larval scombroids and 443	
  

their behavior of piscivory—a feeding strategy that is effectively dependent upon the timing, 444	
  

location, and intensity of spawning by adult fishes—remains clear and represents one of the 445	
  

largest distinctions among latitudinal regions. Such a difference is paradoxical when considering 446	
  

the low levels of productivity in low-latitude waters together with the decrease in prey 447	
  

abundance and energy lost with each step up in trophic levels. 448	
  

 Approximately 43% of the articles initially categorized as having empirical trophic-449	
  

related results had to be discarded for a variety of reasons. These included inadequate sampling, 450	
  

insufficient detail in the results or methods, or diet categories that were too broad. Some studies 451	
  

had greater objectives than just describing larval feeding dynamics  (e.g. investigating feeding in 452	
  

conjunction with other processes) and simply had no need to report details on the feeding-related 453	
  

results that were used in a broader context. However, for future studies with the main goal of 454	
  

describing larval feeding ecologies, following some well-established approaches for reporting 455	
  

metadata, data, and results will ensure future interpretability and broader utility of the published 456	
  

results. These ‘best practices’ include that (1) if sampling was conducted during both day and 457	
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night, feeding incidence should be indicated separately for the daytime-collected larvae. Since 458	
  

few species of fish larvae have been shown to feed at night (and even if they do, it would likely 459	
  

be at a reduced level), an overall feeding incidence taken from daytime and nighttime larvae will 460	
  

be influenced not only by feeding success (the variable of interest), but also by gut evacuation 461	
  

rates and the relative sample sizes from each period. Along these lines, (2) if sampling was 462	
  

conducted only during the daytime, this should be stated. (3) Regarding the reporting of diet 463	
  

data, numerical percentages (%N) and frequencies of occurrence (%FO) of prey types (and, if 464	
  

used, any other descriptors such as biomass or volume) should be reported separately. These 465	
  

categories are often combined to calculate an index of relative importance (IRI); but to ensure a 466	
  

study’s maximum utility for making comparisons, IRI should not be the only reported descriptor 467	
  

(most journals allow for online supplemental information, where, for example, %N and %FO 468	
  

could be reported while the more condensed IRI could be included in the article). (4) Also 469	
  

regarding IRI, values are most easily interpreted when reported as a percentage rather than a raw 470	
  

product. (5) For %FO, since these values do not sum to 100% across prey categories, values 471	
  

should be given for a variety of taxonomic levels to which the prey type belongs (e.g. for 472	
  

‘Copepoda’, ‘Cyclopoida’, and ‘Oithona’) to allow for better comparisons among studies. (6) 473	
  

Grouping of prey types should be kept to a minimum, even if the types were of minor importance 474	
  

(e.g. an ‘other’ category; a thorough table of all prey-type results could also be supplementary 475	
  

information if grouping is necessary to conserve space). Lastly, (7) minimal additional effort is 476	
  

required to identify copepods to at least the order level and doing so provides much more utility 477	
  

than to the level of Copepoda. 478	
  

 The results synthesized here on larval fish trophodynamics have highlighted clear 479	
  

differences between higher and lower latitudes and among taxonomic orders. Though these 480	
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differences are informative, future efforts should also move toward gaining an understanding of 481	
  

the broader-scale ecosystem processes and potential evolutionary mechanisms that are behind 482	
  

these differences. Such an ecosystem approach in the plankton should enhance our understanding 483	
  

of the early life history of fishes and our ability to predict future impacts on important fisheries 484	
  

and planktonic ecosystems.  485	
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Table 1. Size-related aspects of larval fish feeding by latitudinal region, including the 

percentages of taxa exhibiting an ontogenetic diet shift (defined as a change with size in the top 

prey types cumulatively composing 50% of the diet) of the total number of taxa (in parentheses) 

for which numerical diet composition by size or developmental stage classes were examined; and 

the number of taxa displaying a non-significant or significantly increasing or decreasing 

relationship of trophic niche breadth with larval size (or proxy for larval size).  

 
 

Latitudinal region 

Taxa exhibiting 
an ontogenetic 
diet shift (of 

total examined) 

Trophic niche breadth with larval size 
(number of taxa) 

Non-
significant Increasing Decreasing 

High/High-middle 92% (26) 9 5 0 
Middle 58% (38)   11a 1 0 
Low/Low-middle 63% (32) 13 0 4 

 
a One additional taxon observed to have a dome-shaped relationship  
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Table 2. Number of larval fish taxa within latitudinal regions observed to be piscivorous of the 

total number of taxa (in parentheses) for which diet results were synthesized. The number of 

piscivorous taxa is further subdivided at the family level. Taxon names, as well as study 

information, are in Table S1 (supplementary information). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*Prey larvae that were observed in gut contents were yolk-sac larvae and only observed in one 
study and within a few individuals  

Latitudinal 
region 

Number 
of pisciv. 
taxa (of 
all taxa 

examined) 
Piscivorous 

families 

Number 
of pisciv. 

taxa 
within 
family 

High/High-
middle 5 (33)   

 
 Scombridae 1 

  Gadidae 4* 

Middle 6 (52)   

 
 Scombridae 5 

  Merlucciidae 1* 

Low/Low-
middle 16 (57)  

 
 

 Gempylidae 1 

 
 Scombridae 10 

 
 Xiphiidae 1 

 
 Istiophoridae 4 
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Figure captions 

Figure 1. (A) Number of journal articles from a search of the Aquatic Sciences and Fisheries 

Abstracts database (see Material and Methods) published between 1980 and 2009 in two-year 

intervals reporting trophic-related empirical results on field-collected, estuarine or marine fish 

larvae (n = 121). (B) Number of articles from which trophic-related data or results were 

synthesized, and, from these articles, the number of ‘investigations’ (taxon-article combinations) 

and unique taxa. 

 

Figure 2. Median feeding incidence (percentage of larvae containing at least one prey item) by 

(A) habitat type only within the low-middle latitude region, (B) latitudinal region, and (C) 

taxonomic order within groups of latitudinal regions (H/HM/M: high, high-middle, and middle; 

L/LM: low and low-middle) that emerged as significantly different in B. Upper and lower 

boundaries of boxes indicate quartiles and bars indicate 10th and 90th percentiles. For A and B, 

pairwise significant differences in feeding incidences are indicated by unshared letters. In C, 

unshared letters indicate significant pairwise differences among orders without regard to latitude 

(all regions grouped). Only within the order Perciformes was there a significant difference 

among region groupings (indicated by the asterisks). 

 

Figure 3. Metrics related to the number of different prey types consumed by fish larvae within 

latitudinal regions, including the mean (±SE) total number of prey types, the number of the most 

consumed prey types cumulatively composing 90% of the diet, and the relative ‘broadness’ of 

the diet (the fraction of the total number of prey types that the number of types to reach 90% 
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represents). Significant pairwise differences indicated by unshared letters (among regions for 

each result category).   

 

Figure 4. Proportions of the dominant prey types (most or second-most numerically dominant in 

the diets) of fish larvae by (A) latitudinal region for all taxa combined, (B) latitudinal region for 

perciform taxa only, and (C) taxonomic order with all regions combined.  
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
  


