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Centuries of biological knowledge are contained in the massive body of scientific literature, written for human-readability but too
big for any one person to consume. Large-scale mining of information from the literature is necessary if biology is to transform
into a data-driven science. A computer can handle the volume but cannot make sense of the language. This paper reviews and
discusses the use of natural language processing (NLP) and machine-learning algorithms to extract information from systematic
literature. NLP algorithms have been used for decades, but require special development for application in the biological realm due
to the special nature of the language. Many tools exist for biological information extraction (cellular processes, taxonomic names,
and morphological characters), but none have been applied life wide and most still require testing and development. Progress has
been made in developing algorithms for automated annotation of taxonomic text, identification of taxonomic names in text, and
extraction of morphological character information from taxonomic descriptions. This manuscript will briefly discuss the key steps
in applying information extraction tools to enhance biodiversity science.

1. Introduction

Biologists are expected to answer large-scale questions
that address processes occurring across broad spatial and
temporal scales, such as the effects of climate change on
species [1, 2]. This motivates the development of a new
type of data-driven discovery focusing on scientific insights
and hypothesis generation through the novel management
and analysis of preexisting data [3, 4]. Data-driven discovery
presumes that a large, virtual pool of data will emerge
across a wide spectrum of the life sciences, matching that
already in place for the molecular sciences. It is argued
that the availability of such a pool will allow biodiversity
science to join the other “Big” (i.e., data-centric) sciences
such as astronomy and high-energy particle physics [5].
Managing large amounts of heterogeneous data for this Big
New Biology will require a cyberinfrastructure that organizes
an open pool of biological data [6].

To assess the resources needed to establish the cyberin-
frastructure for biology, it is necessary to understand the
nature of biological data [4]. To become a part of the

cyberinfrastructure, data must be ready to enter a digital
data pool. This means data must be digital, normalized,
and standardized [4]. Biological data sets are heterogeneous
in format, size, degree of digitization, and openness [4, 7,
8]. The distribution of data packages in biology can be
represented as a hollow curve [7] (Figure 1). To the left of
the curve are the few providers producing large amounts
of data, often derived from instruments and born digital
such as in molecular biology. To the right of the curve are
the many providers producing small amounts of data. It is
estimated that 80% of scientific output comes from these
small providers [7]. Generally called “small science,” these
data are rarely preserved [9, 10]. Scientific publication, a
narrative explanation derived from primary data, is often the
only lasting record of this work.

The complete body of research literature is a major
container for much of our knowledge about the natural
world and represents centuries of investment. The value of
this information is high as it reflects observations that are
difficult to replace if they are replaceable at all [7]. Much of
the information has high relevance today, such as records on
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Small number of
providers with lots of data.

Large number of
providers with small amounts of data.

Figure 1: The long tail of biology. Data quantity, digitization, and
openness can be described using a hyperbolic (hollow) curve with a
small number of providers providing large quantities of data, and a
large number of individuals providing small quantities of data.

the historical occurrence of species that will help us better
understand shifting abundances and distributions. Similarly,
taxonomy, with its need to respect all nomenclatural acts
back to the 1750s, needs to have access to information
contained exclusively within this body of literature. Unfor-
tunately, this knowledge has been presented in the narrative
prose such that careful reading and annotation are required
to make use of any information [11] and only a subset has
been migrated into digital form.

The number of pages of the historical biodiversity
literature is estimated to be approximately hundreds
of millions [12]. Currently, over 33 million pages of
legacy biology text are scanned and made available online
through the Biodiversity Heritage Library (http://www
.biodiversitylibrary.org/) and thousands of new digital pages
are published every month in open-access biology journals
(estimated based on 216 journals publishing approx 10
articles per month of less than 10 pages; http://www.doaj.org/
doaj?cpid=67&func=subject). Additional biologically focus-
ed digital literature repositories can be found here (http://
www.library.illinois.edu/nhx/resources/digitalresourcecata-
logs.html).

The information is in human-readable form but is
too much for a person to transform into a digital data
pool. Machines can better handle the volume, but cannot
determine which elements of the text have value. In order
to mobilize the valuable content in the literature, we
need innovative algorithms to translate the entirety of the
biological literature into a machine-readable form, extract
the information with value, and feed it in a standards-
compliant form into an open data pool. This paper discusses
the application of natural language processing algorithms to
biodiversity science to enable data-driven discovery.

2. Overview

2.1. Information Extraction. Research addressing the trans-
formation of natural language text into a digital data pool

Table 1: From Tang and Heidorn [13]. An example template for
morphological character extraction.

Template slots Extracted information

Genus Pellaea

Species mucronata

Distribution Nev. Calif.

Leaf shape ovate-deltate

Leaf margin dentate

Leaf apex mucronate

Leaf base

Leaf arrangement clustered

Blade dimension

Leaf color

Fruit/nut shape

Table 2: Information extraction tasks outlined by the MUCs and
their descriptions.

Task Description

Named entity Extracts names of entities

Coreference Links references to the same entity

Template element Extracts descriptors of entities

Template rotation Extracts relationships between entities

Scenario template Extracts events

is generally labeled as “information extraction” (IE). An IE
task typically involves a corpus of source text documents to
be acted upon by the IE algorithm and an extraction template
that describes what will be extracted. For a plant character IE
task, (e.g., [13]), a template may consist of taxon name, leaf
shape, leaf size, leaf arrangement, and so forth (Table 1). The
characteristics of the source documents and the complexity
of the template determine the difficulty level of an IE task.
More complex IE tasks are often broken down to a series
(stacks) of sub tasks, with a later subtask often relying on the
success of an earlier one. Table 2 illustrates typical subtasks
involved in an IE task. Note, not all IE tasks involve all of
these subtasks. Examples of information extraction tools for
biology (not including biodiversity science) can be found in
Table 3.

The IE field has made rapid progress since the 1980s
with the Message Understanding Conferences (MUCs) and
has become very active since the 1990s due largely to
the development of the World Wide Web. This has made
available huge amounts of textual documents and human-
prepared datasets (e.g., categorized web pages, databases) in
an electronic format. Both can readily be used to evaluate
the performance of an IE system. The massive production of
digital information demands more efficient, computer-aided
approaches to process, organize, and access the information.
The urgent need to extract interesting information from
large amounts of text to support knowledge discovery was
recognized as an application for IE tools (e.g., identifying
possible terrorists or terrorism attacks by extracting informa-
tion from a large amount of email messages). For this reason,
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Table 3: Existing IE systems for biology [17–26].

System Approach Structure of Text Knowledge in Application domain Reference

AkanePPI shallow parsing
sentence-split,
tokenized, and
annotated

protein interactions [17]

EMPathIE pattern matching text EMP database enzymes [18]

PASTA pattern matching text biological lexicons protein structure [19]

BioIE pattern matching xml dictionary of terms biomedicine [20]

BioRAT
pattern matching,
sub-language driven

could be xml, html,
text or asn.1, can do
full-length pdf papers
(converts to text)

dictionary for protein
and gene names,
dictionary for
interactions, and
synonyms; text
pattern template

biomedicine [21]

Chilibot shallow parsing

not sure what was
used in paper, but
could be xml, html,
text or asn.1

nomenclature
dictionary

biomedicine [22]

Dragon Toolkit
mixed syntactic
semantic

text domain ontologies genomics [23]

EBIMed pattern matching xml dictionary of terms biomedicine [24]

iProLINK shallow parsing text

protein name
dictionary, ontology,
and annotated
corpora

proteins [25]

LitMiner
mixed syntactic
semantic

web documents Drosophila research [26]

IE and other related research have acquired another, more
general label “text data mining” (or simply “text mining”).

Information extraction algorithms are regularly eval-
uated based on three metrics: recall, precision, and the
F score. Consider an algorithm trained to extract names
of species from documents being run against a document
containing the words: cat, dog, chicken, horse, goat, and
cow. The recall would be the ratio of the number of “species
words” extracted to the number in the document (6). So,
an algorithm that only recognized cat and dog would have
low recall (33%). Precision is the percentage of what the
algorithm extracts that is correct. Since both cat and dog are
species words, the precision of our algorithm would be 100%
despite having a low recall. If the algorithm extracted all of
the species words from the document, it would have both
high precision and recall, but if it also extracts other words
that are not species, then it would have low precision and
high recall. The F score is an overall metric calculated from
precision and recall when precision and recall are considered
equally important:

F score = 2

((
precision∗ recall

)
(
precision + recall

)
)
. (1)

Before we review current IE systems for biodiversity
science, we will first present a reference system architecture
for a model IE system that covers the entire process of an IE
application (Figure 2). In reviewing variant systems, we will
refer to this reference architecture.

The blue-shaded areas in Figure 2 illustrate an IE system.
The inputs to the IE system include source documents in
a digital format (element number 1 in Figure 2), an IE
template which describes the IE task (2) and knowledge
entities to perform the task (3). If documents are not in
a digital format, OCR technologies can be used to make
the transition (4; see below section on digitization), but
then it is necessary to correct OCR errors before use (5).
In this model system, we use “IE template” to refer not
only to those that are well defined such as the leaf character
template example in Table 1, but also those more loosely
defined. For example, we also consider lists of names and
characters to be IE templates so the reference system can
cover Named Entity Recognition systems (see below for
examples) and character annotation systems (see below for
examples). Knowledge entities include, for example, dictio-
naries, glossaries, gazetteers, or ontologies (3). The output of
an IE system is often data in a structured format, illustrated
as a database in the diagram (6). Ideally the structured format
conforms to one of many data standards (7), which can range
from relational database schemas to RDF. The arrow from
Knowledge Entities to Extracted Data illustrates that, in some
cases, the extracted data can be better interpreted with the
support of knowledge entities (like annotation projects such
as phenoscape, http://phenoscape.org/wiki/Main Page). The
arrow from Data Standards to Extracted Data suggests the
same.

NLP techniques are often used in combination with
extraction methods (including hand-crafted rules and/or
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Figure 2: A reference system architecture for an example IE system. Numbers correspond to the text.

machine learning methods). Often the input documents
contain text that are not relevant to an IE task [14]. In these
cases, the blocks of text that contain extraction targets need
to be identified and extracted first to avoid the waste of
computational resources (8). An IE method is often used for
this purpose (9). From the selected text, a series of tasks may
be performed to extract target information (10) and produce
final output (6; see also IE subtasks in Table 2). This is often
accomplished by first applying NLP techniques (11) and then
using one or a combination of extraction methods (9). The
arrow from extraction methods to NLP tools in Figure 2
indicates that machine learning and hand-crafted rules can
be used to adapt/improve NLP tools for an IE task by, for
example, extracting domain terms to extend the lexicon (12)
used by a syntactic parser or even create a special purpose
parser [15]. One important element that is not included in
the model (Figure 2) is the human curation component. This
is important for expert confirmation that extraction results
are correct.

2.2. Natural Language Processing. IE is an area of application
of natural language processing (NLP). NLP enables a com-
puter to read (and possibly “understand”) information from
natural language texts such as publications. NLP consists
of a stack of techniques of increasing sophistication to
progressively interpret language, starting with words, pro-
gressing to sentence structure (syntax or syntactic parsing),
and ending at sentence meaning (semantics or semantic
parsing) and meaning within sequences of sentences (dis-
course analysis). Typically an NLP technique higher in
the stack (discourse analysis) utilizes the techniques below
it (syntactic parsing). A variety of NLP techniques have
been used in IE applications, but most only progress to
syntactic parsing (some special IE applications specifically
mentioned in this paper may not use any of the tech-
niques). More sophisticated techniques higher in the stack
(semantic parsing and discourse analysis) are rarely used in
IE applications because they are highly specialized that is,

S

VP

NPNP V

The fox ate the chicken

Figure 3: An example of shallow parsing. Words and a sentence
(S) are recognized. Then, the sentence is parsed into noun phrases
(NP), verbs (V), and verb phrases (VP).

cannot be reliably applied in general applications and are
more computationally expensive.

Syntactic parsing can be shallow or deep. Shallow
syntactic parsing (also called “chunking”) typically identifies
noun, verb, preposition phrases, and so forth in a sentence
(Figure 3), while deep syntactic parsing produces full parse
trees, in which the syntactic function (e.g., Part of Speech,
or POS) of each word or phrase is tagged with a short label
(Figure 4). The most commonly used set of POS tags used is
the Penn Treebank Tag Set (http://bulba.sdsu.edu/jeanette/
thesis/PennTags.html), which has labels for different parts
of speech such as adjective phrases (ADJP), plural nouns
(NNP), and so forth. Not all shallow parsers identify
the same set of phrases. GENIA Tagger, for example,
identifies adjective phrases (ADJP), adverb phrases (ADVP),
conjunctive phrases (CONJP), interjections (INTJ), list
markers (LST), noun phrases (NP), prepositional phrases
(PP), participles (PRT), subordinate clauses (SBAR), and
verb phrases (VP). Some shallow parsing tools are the
Illinois Shallow Parser (http://cogcomp.cs.illinois.edu/page/
software view/13) the Apache OpenNLP (http://incubator
.apache.org/opennlp/index.html), and GENIA Tagger
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[NP leaf blade] [VP obovate] [VP to nearly orbiculate], [NP 3–9 × 3–8 cm], [NP leathery], [NP base obtuse].

Figure 4: Shallow-vs-Deep-Parsing. The shallow parsing result produced by GENIA Tagger (http://text0.mib.man.ac.uk/software/
geniatagger/). The deep parsing result produced by Enju Parser for Biomedical Domain (http://www-tsujii.is.s.u-tokyo.ac.jp/enju/
demo.html). GENIA Tagger and Enju Parser are products of the Tsujii Laboratory of the University of Tokyo and optimized for biomedical
domain. Both Parsing results contain errors, for example “obovate” should be an ADJP (adjective phrase), but GENIA Tagger chunked it as
a VP (verb phrase). “blade” is a noun, but Enju parser parsed it as a verb (VBD). This is not to criticize the tools, but to point out language
differences in different domains could have a significant impact on the performance of NLP tools. Parsers trained for a general domain
produce erroneous results on morphological descriptions [16].

(http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/). Deep
parsing tools include Stanford Parser (http://nlp.stanford
.edu/software/lex-parser.shtml), Link Parser (http://www
.link.cs.cmu.edu/link/) and Enju Parser (http://www-tsujii.is
.s.u-tokyo.ac.jp/enju/). A majority of IE applications use
the shallow parsing technique, but the use of deep parsing
techniques is on the rise in biology applications. This is
driven in part because shallow parsing is not adequate to
extract information from biology text [27–29].

Several NLP approaches are available for IE applications
in biology that go beyond shallow parsing and are not
mutually exclusive.

(1) Pattern matching approaches exploit basic patterns
in text to extract information. An example pattern
is “enzyme activates protein” or X activates Y. The
computer would look for the specific text pattern
and assume that all X are enzymes or all Y are
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proteins. Dictionary-based IE is a variant of pattern
matching that focuses on finding words in text that
are contained in a dictionary previously given to the
computer. For example, the computer might be given
a list of enzyme names (such as the UM-BBD list of
enzyme names, http://umbbd.msi.umn.edu/servlets/
pageservlet?ptype; X in previous example). Once the
enzyme name is located, the computer can infer
the pattern that it “activates Y.” Another variant of
pattern matching is the preposition-based parsing
which focuses on finding prepositions like “by” and
“of” and filling a basic template with information
surrounding that preposition. An example of this
would be “Y is activated by X.” Pattern matching
suffers from the difficulty in accounting for the wide
array of linguistic patterns used in text (X activates Y,
Y is activated by X, Y was activated by X, X activated
Y, Y is activated via X, X, which activates Y, etc.).
Many of these systems extract phrases or sentences
instead of structured facts, which limits their useful-
ness for further informatics. An example system that
uses pattern matching is given in Krauthammer et al.
[37].

(2) Full parsing approaches expand on shallow parsing
to include an analysis of sentence structure (i.e.,
syntax, see Figure 3). The biggest challenge with
this approach is the special language of biology-
specific texts. Most existing full-parsing systems are
designed to handle general language texts, like news
articles. The approach is also limited by grammar
mistakes in the literature, which are often due to
nonnative English speakers. Full parsing often runs
into ambiguity due to the many ways a sentence
(even moderately complex) can be interpreted by a
machine. Sentence fragments, such as titles or cap-
tions, can also cause problems. UniGene Tabulator is
an example of a full parser for biology [38].

(3) Probability-based approaches offer a solution to the
linguistic variability that confounds full parsing.
These approaches use weighted grammar rules to
decrease sensitivity to variation. The weights are
assigned through processing of a large body of
manually annotated text. Probabilistic grammars are
used to estimate the probability that a particular
parse tree will be correct or the probability that a
sentence or sentence fragment has been recognized
correctly. Results can be ranked according to the
probabilities. Nasr and Rambow give an example of
a probability-based parser [39].

(4) Mixed syntactic-semantic approaches take advantage
of syntactic and semantic knowledge together. This
essentially combines part-of-speech taggers with
named-entity recognition, such as in the BANNER
system [40]. This removes reliance on lexicons and
templates. This approach will be discussed further
below.

(5) Sub language-driven approaches use the specialized
language of a specific community. A specialized
sub language typically has a set of constraints that
determine vocabulary, composition, and syntax that
can be translated into a set of rules for an algorithm.
Algorithms for use in processing biology text must
cope with specialized language and the telegraphic
sentence structure found in many taxonomic works.
Being unaware of a sub language will often lead to
incorrect assumptions about use of the language.
Metexa is an example of a tool that uses a specialized
sub language in the radiology domain [41].

NLP techniques are often used as a (standard) initial text
processing procedure in an IE application. Once a computer
has an understanding of the syntactic and/or semantic
meaning of the text, other methods, such as manually derived
rules or machine learning based methods, are then often used
for further information extraction.

2.3. Machine Learning. Machine learning has been used in IE
applications since 1990s. It is a process by which a machine
(i.e., computer algorithm) improves its performance auto-
matically with experience [42]. Creating extraction rules
automatically by machine learning are favored over cre-
ating them manually because the hand-crafted rules take
longer to create and this time accumulates for each new
document collection [43]. As a generic method, machine-
learning applications may be found in all aspects of an IE
system, ranging from learning lexicons for a syntactic parser,
classifying and relating potential extraction targets, to fitting
extracted entities into an extraction template.

Learning can take various forms including rule sets,
decision trees, clustering algorithms, linear models, Bayesian
networks, artificial neural networks, and genetic algorithms
(which are capable of mimicking chromosome mutations).
Some machine-learning algorithms (e.g., most classification
algorithms such as decision trees, naı̈ve Baysian, Support
Vector Machines) rely on substantial “training” before they
can perform a task independently. These algorithms fall in
the category of “supervised machine learning.” Some other
algorithms (e.g., most clustering algorithms) require little
or no training at all, so they belong to the “unsupervised
machine learning” category. Due to the considerable cost
associated with preparing training examples, one research
theme in machine learning is to investigate innovative ways
to reduce the amount of training examples required by
supervised learning algorithms to achieve the desired level of
performance. This gave rise to a third category of machine
learning algorithms, “semisupervised.” Co-training is one
of the learning approaches that falls into this category. Co-
training refers to two algorithms that are applied to the same
task, but learn about that task in two different ways. For
example, an algorithm can learn about the contents of a web
site by (1) reading the text of the web site or (2) reading
the text of the links to the web site. The two bodies of text
are different, but refer to the same thing (i.e., the web site).
Two different algorithms can be used to learn about the
web site, feed each other machine-made training examples
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ORIGINAL TEXT
Leaf blade orbiculate, 3–9 × 3–8 cm, leathery, base obtuse
EXPECTED EXTRACTION RESULT
leaf {leafShape: orbiculate}
leaf {bladeDimension: 3–9× 3–8 cm}

Box 1

(which reduces the requirements of human-made training
examples), and often make each other better. However, co-
training requires two independent views of the same learning
task and two independent learners. Not all learning tasks
fulfill these requirements. One line of research in NLP
that uses co-training is word sense disambiguation [44].
We are not aware of the use of this learning approach
in biodiversity information extraction. The best learning
algorithm for a certain task is determined by the nature of the
task and characteristics of source data/document collection,
so it is not always possible to design an unsupervised
or semisupervised algorithm for a learning task (i.e., an
unsupervised algorithm to recognize human handwriting
may not be possible).

The form of training examples required by a supervised
algorithm is determined largely by the learning task and the
algorithm used. For example, in Tang and Heidorn [13],
the algorithm was to learn (automatically generate) rules to
extract leaf properties from plant descriptions. A training
example used in their research as well as the manually
derived, correct extraction is in Box 1 (examples slightly
modified for human readability).

By comparing original text (italics) and the text in bold,
the algorithm can derive a set of candidate extraction rules
based on context. The algorithm would also decide the order
that the extraction rules may be applied according to the
rules’ reliability as measured with training examples. The
more reliable rules would be utilized first. Two extraction
rules generated by the Tang and Heidorn [13] algorithm
are shown in Box 2. Rule 1 extracts from the original
text any leaf shape term (represented by <leafShape>)
following a term describing leaf blade (represented by
<PartBlade>) and followed by a comma (,) as the leafShape
(represented by the placeholder $1). Rule 2 extracts any
expression consisting of a range and length unit (represented
by <Range><LengUnit>) that follows a comma (,) and
is followed by another comma (,) and a leaf base term
(represented by <PartBase>) as the bladeDimension.

These rules can then be used to extract information from
new sentences not included in the original training example.
Box 3 shows how the rules match a new statement, and are
applied to extract new leafShape and bladeDimension values.

This example illustrates a case where words are the basic
unit of processing and the task is to classify words by using
the context where they appear (obovate is identified as a leaf
shape because it follows the phrase “leaf blade”).

In some applications, for example, named entity recog-
nition (e.g., recognizing a word/phrase as a taxon name),
an extraction target may appear in any context (e.g., a taxon

name may be mentioned anywhere in a document). In
these applications, the contextual information is less helpful
in classifying a word/phrase than the letter combinations
within the names. In NetiNeti, for example, a Naı̈ve Baysian
algorithm (a supervised learning algorithm based on Bayes
conditional probability theorem) uses letter combinations to
identify candidate taxon names [32]. When several training
examples indicate names like Turdus migratorius are taxon
names, NetiNeti may learn that a two-word phrase with the
first letter capitalized and the last word ending with “us” (e.g.,
Felis catus) is probably a taxon name, even though Felis catus
has never appeared in training examples.

Supervised learning algorithms can be more difficult
to use in biology largely because compiling large training
datasets can be labor intensive, which decreases the adapt-
ability and scalability of an algorithm to new document
collections. Hundreds of controlled vocabularies exist for
biological sciences, which can provide some training infor-
mation to an algorithm but are often not comprehensive
[16].

Unsupervised learning algorithms do not use training
examples. These algorithms try to find hidden structure in
unlabeled data using characteristics of the text itself. Well-
known unsupervised learning algorithms include clustering
algorithms, dimensionality reduction, and self-organization
maps, to name a few. Cui et al. Boufford [14] designed an
unsupervised algorithm to identify organ names and organ
properties from morphological description sentences. The
algorithm took advantage of a recurring pattern in which
plural nouns that start a sentence are organs and a descriptive
sentence starts with an organ name followed by a series
of property descriptors. These characteristics of descriptive
sentences allow an unsupervised algorithm to discover organ
names and properties.

The procedure may be illustrated by using a set of five
descriptive statements taken from Flora of North America
(Box 4).

Because roots is a plural noun and starts statement 1 (in
addition, the words rooting or rooted are not seen in the
entire document collection, so roots is unlikely a verb) the
algorithm infers roots is an organ name. Then, what follows
it (i.e., yellow) must be a property. The algorithm remembers
yellow is a property when it encounters statement 2 and it
then infers that petals is an organ. Similarly, when it reads
statement 3, because petals is an organ, the algorithm infers
absent is a property, which enables the algorithm to further
infer subtending bracts and abaxial hastular in statements 4
and 5 are organs. This example shows that by utilizing the
description characteristics, the algorithm is able to learn that
roots, petals, subtending bracts, and abaxial hastular are organ
names and yellow and absent are properties, without using
any training examples, dictionaries, or ontologies.

Because not all text possesses the characteristics required
by the algorithm developed by Cui et al. [14], it cannot be
directly applied to all taxon descriptions. However, because
descriptions with those characteristics do exist in large
numbers and because of the low overhead (in terms of
preparing training examples) of the unsupervised learning
algorithm, it is argued that unsupervised learning should be
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Rule 1: Pattern:: ∗ <PartBlade> (<leafShape>), ∗
Output:: leaf{leafShape: $1}

Rule 2: Pattern::∗ <PartBlade> ∗, (<Range><LengUnit>), <PartBase>
Output:: leaf{bladeDimension: $1}

Box 2

NEW TEXT
Leaf blade obovate, 1–3 × 1-2 cm, base rounded
Rule 1: Output:: leaf{leafShape: obovate}
Rule 2: Output:: leaf{bladeDimension: 1–3 × 1-2 cm}

Box 3

1. roots yellow to medium brown or black, thin.
2. petals yellow or white
3. petals absent
4. subtendingbracts absent
5. abaxialhastular absent

Box 4

exploited when possible, such as when preparing text for a
supervised learning task [16].

3. Review of Biodiversity Information
Extraction Systems

Our review describes the features of each system existing
at the time of this writing. Many of the systems are
being constantly developed with new features and enhanced
capabilities. We encourage the readers to keep track of the
development of these systems.

3.1. Digitization. The first step to making older biological
literature machine readable is digitization (number 4 in
Figure 2). Book pages can be scanned as images of text
and made into pdf files, but cannot be submitted to NLP
processing in this form. To make the text accessible, it
must be OCRed (Optical Character Recognition) to translate
the image of text (such as .pdf) into actual text (such
as .txt). The Biodiversity Heritage Library is in the process
of digitizing 600,000 pages of legacy text a month, making
them available as pdf image files and OCR text files [45].
Most modern publications are available as pdf and html
files from the publisher (and thus do not need to be
scanned or OCRed). Images of text can be run through
software designed to OCR files on desktop computers or
as a web service (i.e., http://www.onlineocr.net/). OCR of
handwriting is very different from that of text and can be
quite difficult as there are as many handwriting styles as
there are people. However, this type of OCR can be very
important because significant portions of biodiversity data

are only available as handwriting, such as museum specimen
labels and laboratory notebooks. Algorithms do exist and are
used for OCR of handwritten cities, states, and zip codes on
envelopes and handwritten checks [46, 47].

OCR is not a perfect technology. It is estimated that
>35% of taxon names in BHL OCR files contain an error
[45, 48, 49]. This is skewed, however, as older documents that
use nonstandard fonts carry the majority of the errors [49].
Biodiversity literature can be especially difficult to OCR as
they often have multiple languages on the same page (such as
Latin descriptions), an expansive historical record going back
to the 15th Century (print quality and consistency issues),
and an irregular typeface or typesetting [48]. OCR is poor at
distinguishing indentation patterns, bold, and italicized text,
which can be important in biodiversity literature [50, 51].
The current rate of digitization prohibits manual correction
of these errors. Proposed solutions include components of
crowd-sourcing manual corrections and machine-learning
for automated corrections [48].

OCR errors may be overcome by using “fuzzy” matching
algorithms that can recognize the correct term from the
misspelled version. TAXAMATCH is a fuzzy matching
algorithm for use in taxonomy [52]. The need for a “fuzzy
matching” algorithm for detection of similar names is appar-
ent for functions such as search, federation of content, and
correction of misspellings or OCR errors. TAXAMATCH is a
tool that uses phonetic- and nonphonetic-based near-match
algorithms that calculate the distance of the given letter com-
bination to a target name included in a reference database
[52]. A letter combination with a close proximity to a target
name is proposed as a fuzzy match. This system is being
successfully used to increase hits in species databases [52]
and is optimized for human typos rather than OCR errors.
The php version of this code is available through Google
code (http://code.google.com/p/taxamatch-webservice/) and
a Ruby version is available through git hub (https://github
.com/GlobalNamesArchitecture/taxamatch rb).

3.2. Annotation. Once text has been digitized, it can be
annotated in preparation for an IE task or for use as training
data for algorithms (Figure 2 number 8). Both aims require
different levels of annotation granularity, which can be
accomplished manually or automatically using annotation
software. A low level of granularity (coarse) is helpful for
identifying blocks of text useful for IE. As mentioned before,
not all text is useful for every IE task. In the practice of
systematics, taxonomists need text containing nomenclatural
acts which may be discovered and annotated automatically
through terms such as “sp. nov.” and “nov. comb.” Annota-
tion of these text blocks is helpful for algorithms designed
to extract information about species. A finer granularity
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is needed for training data annotation. Words or phrases
within a taxonomic work may be annotated as a name,
description, location, and so forth. High granularity is
more helpful for training a machine-learning algorithm but
imposes a larger cost in time needed to do the manual
annotation. There must be a balance between level of
granularity and amount of manual investment which is
determined by the specific goals at hand.

Manual annotation is very time consuming but can be
assisted with annotation software. Several software packages
aid with this.

taXMLit. TaXMLit is an interface to allow annotation of
taxonomic literature [51]. It was developed using botanical
and zoological text, but also works well on paleontological
text. This system is designed for annotation of text elements
such as “description” and “locality.” This system requires a
fairly large amount of human intervention and is not widely
accepted.

GoldenGATE. GoldenGATE is an annotation tool for
marking up taxonomic text in XML according to taxonX
schema (http://plazi.org/files/GoldenGATE V2 end user
manual.pdf, [53]. Most of the annotation is done semi-

automatically, with users checking the correctness of the
annotations in the GoldenGATE editor that facilitates
manual XML mark up. There are several plugins available
for GoldenGATE, including modules for annotation specific
to ZooTaxa and new plugins can be relatively easily added.
The system is implemented in JAVA. This system performs
best with text marked up with basic html tags (such as
paragraph and header) and high-quality OCR.

ABNER. ABNER is an entity recognition algorithm designed
specifically for the biomedical literature [54]. It uses a
conditional random fields (CRF) model. This is a type of
Bayesian statistics, wherein the computer uses characteristics
of the text to determine the probability that a given term
should be annotated as a given class. In this case, the available
classes are: protein, DNA, RNA, Cell line, and Cell type.
A human uses a point-and-click interface to confirm the
algorithm results and add the annotation.

OnTheFly. OnTheFly is a text annotator that automatically
finds and labels names of proteins, genes, and other small
molecules in Microsoft Office, pdf, and text documents [55].
A user submits a file through the interface and it converts the
file of interest into html and sends it to the Reflect tool. This
tool looks for names and synonyms of proteins and small
molecules to annotate as such [56]. It uses a list of 5.8 million
molecule names from 373 organisms and returns matching
terms. Clicking on an annotated term returns a pop-up
window with additional information. In addition, this tool
can create a graphical representation of the relationships
between these entities using the STITCH database [57].

Phenex. Phenex was designed for use in the phenotypic
literature [58]. It is a user interface that aids in manual

annotation of biological text using terms from existing
ontologies. Phenex allows users to annotate free text or
NEXUS files. A core function of this software is to allow users
to construct EQ (Entity:Quality) statements representing
phenotypes. An EQ statement consists of two parts, a
character (entity) and state (quality). The character is
described using a term from an anatomy ontology and the
state of that character is described using a term from a quality
ontology (see, e.g., [59]). An example would be supraorbital
bone:sigmoid. The fact that sigmoid is a shape is inferred
from the PATO ontology and thus does not have to be
specifically mentioned in the EQ statement (within [59] see
Figure 1). Users can load the ontology containing the terms
they want to use for annotation into Phenex which has an
auto-complete function to facilitate work. The Phenex GUI
provides components for editing, searching, and graphical
displays of terms. This software is open source, released
under the MIT license (http://phenoscape.org/wiki/Phenex).

3.3. Names Recognition and Discovery. A taxonomic
name is connected to almost every piece of information
about an organism, making names near universal
metadata in biology (see Rod Page’s iphylo blog entry
http://iphylo.blogspot.com/2011/04/dark-taxa-genbank-in-
post-taxonomic.html for an exception). This can be
exploited to find and manage nearly all biological data.
No life-wide, comprehensive list of taxonomic names
exists, but the Global Names Index (GNI) holds 20
million names and NameBank (http://www.ubio.org/index
.php?pagename=namebank) holds 10 million names. There
are also exclusive lists of taxonomically creditable names
such as the Catalogue of Life (CoLP) and the Interim Register
of Marine and Non-marine Genera (IRMNG). These lists
hold 1.3 million and 1.6 million names, respectively.

Taxonomic names discovery (or Named Entity Recogni-
tion in computer science parlance) can be achieved through
several approaches. Dictionary-based approaches rely on an
existing list of names. These systems try to find names on the
list directly in the text. The major drawback of this approach
in biology is that there is no comprehensive list of names and
terms including all misspellings, variants, and abbreviations.
Dictionary-based approaches can also miss synonyms and
ambiguous names. Some algorithms have been developed to
aid dictionary-based approaches with recognizing variants
of names in the list (e.g., see algorithms described below).
Rule-based approaches work by applying a fixed set of
rules to a text. This approach is capable of dealing with
variations in word order and sentence structure in addition
to word morphology. The major drawback is that the rule
sets are handmade (and, therefore, labor intensive) and
are rarely applicable to multiple domains. Machine-learning
approaches use rule sets generated by the machine using
statistical procedures (such as Hidden Markov Models). In
this approach, algorithms are trained on an annotated body
of text in which names are tagged by hand. The algorithms
can be applied to text in any discipline as long as appropriate
training data are available. All of these approaches have
strengths and weaknesses, so they are often combined in final
products.
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Table 4: Performance metrics for the names recognition and morphological character extraction algorithms reviewed. Recall and precision
values may not be directly comparable between the different algorithms. NA: not available [30].

Tool Recall Precision Test Corpora Reference

TaxonGrab >94% >96%
Vol. 1 Birds of the
Belgian Congo by

Chapin
[31]

FAT 40.2% 84.0%
American Seashells by

Abbott
[32]

Taxon Finder 54.3% 97.5%
American Seashells by

Abbott
[32]

Neti Neti 70.5% 98.9%
American Seashells by

Abbott
[32]

LINNAEUS 94.3% 97.1%
LINNAEUS gold
standard data set

[33]

Organism
Tagger

94.0% 95.0%
LINNAEUS gold
standard data set

[34]

X-tract NA NA Flora of North America [35]

Worldwide
Botanical
Knowledge
Base

NA NA Flora of China http://wwbota.free.fr/

Terminator NA NA
16 nematode
descriptions

http://www.math.ucdavis.edu/
∼milton/genisys/terminator.html

MultiFlora mid 60% mid 70%
Descriptions of

Ranunculus spp. from
six Floras

http://intranet.cs.man.ac.uk/ai/public/
MultiFlora/MF1.html

MARTT 98.0% 58.0%
Flora of North America

and Flora of China
[30]

WHISK
33.33% to

79.65%
72.52% to 100% Flora of North America [13]

CharaParser 90.0% 91.0% Flora of North America [36]

Several algorithms have been developed that are capable
of identifying and discovering known and unknown (to the
algorithm) taxon names in free text. These are discussed
below and their performance metrics are given in Table 4.

TaxonGrab. TaxonGrab identifies names by using a combi-
nation of nomenclatural rules and a list (dictionary) of non-
taxonomic English terms [31]. As most taxonomic names do
not match words in common parlance, the dictionary can
be used as a “black list” to exclude terms. This is not always
the case because some Latin names match vernacular names,
such as bison and Bison bison. The algorithm scans text for
terms that are not found in the black list. It treats these
as candidate names. These terms are then compared to the
capitalization rules of Linnaean nomenclature. Algorithms
of this type have low precision because misspelled, non-
English words, medical, or legal terms would be flagged as
a candidate name. However, these terms can be iteratively
added to the black list, improving future precision. This
method does have the advantage of not requiring a complete
list of species names, but can only be used on English
texts. Later, several additional rules were added to create
a new product, FAT [60]. FAT employs “fuzzy” matching
and structural rules sequentially so that each rule can use

the results of the last. The TaxonGrab code is available at
SourceForge, but the FAT code is not. FAT is a part of the
plazi.org toolset for markup of taxonomic text.

TaxonFinder. TaxonFinder identifies scientific names in free
text by comparing the name to several lists embedded into
the source code ([61], Leary personal comments). These lists
are derived from a manually curated version of NameBank
(http://www.ubio.org/index.php?pagename=namebank). A
list of ambiguous names was compiled from words that
are names, but are more often used in common parlance,
like pluto or tumor. TaxonFinder breaks documents into
words and compares them to the lists individually. When
it encounters a capitalized word, it checks the “genus” and
“above-genus” name lists. If the word is in the above-genus
list, but not in the ambiguous name list, it is returned as
a name. If it is in the genus list, the next word is checked
to see if it is in lower case or all caps and to see if it
is in the “species-or-below” name list. If it is, then the
process is repeated with the next word until a complete
polynomial is returned. If the next word is not in the list,
then the previous name is returned as a genus. TaxonFinder
is limited to dictionaries and thus will not find new names or
misspellings but can discover new combinations of known
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names. This system can have both high precision and
recall with a higher score in precision (more false negatives
than false positives). A previous version of TaxonFinder,
FindIT (http://www.ubio.org/tools/recognize.php), had the
ability to identify authorship by recognizing the reference
(usually a taxonomist’s name), which TaxonFinder does not
do (http://code.google.com/p/taxon-name-processing/wiki/
nameRecognition). A new, Apache Lucene-based name
indexer is now available from GBIF which is based on
TaxonFinder (http://tools.gbif.org/namefinder/). The source
code for TaxonFinder is available at Google code (http://code
.google.com/p/taxon-finder/).

NetiNeti. NetiNeti takes a more unsupervised approach
to names extraction [32]. The system uses natural lan-
guage processing techniques involving probabilistic classi-
fiers (Naive Bayes classifier by default) to recognize scientific
names in an arbitrary document. The classifier is trained
to recognize characteristics of scientific names as well as
the context. The algorithm uses “white list” and “black
list” detection techniques in a secondary role. As a result,
scientific names not mentioned in a white list or names
with OCR errors or misspellings are found with great
accuracy. Some of the limitations of NetiNeti include an
inability to identify genus names less than four letters long,
the assumption of one letter abbreviations of genera, and
limitation of contextual information available to one word
on either side of a candidate name. The code of this tool is
written in Python and is going to be released under GPL2
license at https://github.com/mbl-cli/NetiNeti.

Linnaeus. This is a list-based system designed specifically
for identifying taxonomic names in biomedical literature
and linking those names to database identifiers [33].
The system recognizes names contained in a white list
(based on the NCBI classification and a custom set of
synonyms) and resolves them to an unambiguous NCBI
taxonomy identifier within the NCBI taxonomy database
(http://www.ncbi.nlm.nih.gov/books/NBK21100/). In this
way, multiple names for one species are normalized to a
single identifier. This system is capable of recognizing and
normalizing ambiguous mentions, such as abbreviations (C.
elegans, which refers to 41 species) and acronyms (CMV,
which refers to 2 species). Acronyms that are not listed
within the NCBI classification are discovered using the
Acromine service [62] and a novel acronym detector built
into LINNAEUS that can detect acronym definitions within
text (in the form of “species (acronym)”). Ambiguous
mentions that are not resolvable are assigned a probability
of how likely the mention refers to a species based on the
relative frequency of nonambiguous mentions across all of
MEDLINE. Applying a black list of species names that occur
commonly in the English language when not referring to
species (such as the common name spot) greatly reduces
false positives. LINNAEUS can process files in XML and
txt formats and give output in tab-separated files, XML,
HTML and MySQL database tables. This code is available at
SourceForge (http://sourceforge.net/projects/linnaeus/).

OrganismTagger. This system uses the NCBI taxonomy
database (http://www.ncbi.nlm.nih.gov/books/NBK21100/)
to generate semantically enabled lists and ontology com-
ponents for organism name extraction from free text [34].
These components are connected to form a work flow
pipeline using GATE (the General Architecture for Text
Engineering; [63, 64]). These components are a combination
of rule-based and machine-learning approaches to discover
and extract names from text, including strain designations.
To identify strains not in the NCBI taxonomy database,
OrganismTagger uses a “strain classifier,” a machine-learning
(SVM model) approach trained on manually annotated doc-
uments. After the strain classifier is applied, organism names
are first detected, then normalized to a single canonical name
and grounded to a specific NCBI database ID. The semantic
nature of this tool allows it to output data in many different
formats (XML, OWL, etc.). This code along with supporting
materials is available under an open source license at
http://www.semanticsoftware.info/organism-tagger.

3.4. Morphological Character Extraction. Morphological
characters of organisms are of interest to systematists,
evolutionary biologists, ecologists, and the general public.
The examples used in Figure 4 are typical of morphological
descriptions. The kinds of language used in biodiversity
science has the following characteristics that make it difficult
for general-purpose parsers to process [15, 65, 66].

(1) Specialized Language. Most scientific terms are not
in the lexicons of existing parsers. Even if they were,
biological terms are more ambiguous than general
English [67]. General English has 0.57% ambiguous
terms while gene names have 14.2% ambiguity.
Taxonomic homonyms are 15% at the genus level
(http://www.obis.org.au/irmng/irmng faq/). Life Sci-
ence literature also relies heavily on abbreviations
[68]. There were over 64,000 new abbreviations
introduced in 2004 in the biomedical literature alone
and an average of one new abbreviation every 5–10
abstracts [69]. Dictionaries, such as the Dictionary
of Medical Acronyms and Abbreviations can help,
but most dictionaries contain 4,000 to 32,000 terms,
which is only a fraction of the estimated 800,000
believed to exist [69, 70]. This means that dictionary-
based approaches will not scale to work in biology.

(2) Diversity. Descriptions are very diverse across taxon
groups. Even in one group, for example, plants,
variations are large. Lydon et al. [71] compared and
contrasted the descriptions of five common species
in six different English language Floras and found the
same information in all sources only 9% of the time.
They also noted differences in terminology usage
across Floras.

(3) Syntax differences. Many species descriptions are in
telegraphic sublanguage (that lacks of verbs) but
there are also many descriptions conforming to more
standard English syntax. Parsers expecting standard
English syntax often mistake other groups of words
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for verbs when parsing telegraphic sublanguage
because they expect to see verbs in a sentence. There
is not typically standardized syntax across different
taxon groups or even within the same group.

Taylor [15, 72] manually constructed a grammar and a
lexicon of 2000 characters, and character states (1500 from
Radford [73] and 500 from descriptive text) to parse the
Flora of New South Wales (4 volumes) and volume 19 of the
Flora of Australia. The goal of parsing these Floras was to
create sets of organism part, character, and character state
from each description. These statements can be extracted
from morphological taxon descriptions using the hand-
crafted parser to get a machine-readable set of facts about
organism characteristics. While the sublanguage nature of
the plant descriptions used by Taylor [15, 72] made it easier
to construct the grammar and lexicon manually, the author
acknowledged the limited coverage they could be expected
to achieve (60–80% recall was estimated based on manual
examination of output). Algorithms for machine-aided
expansion of the lexicon were suggested; however, at the time
automated creation of rules was believed to be too difficult.

Since Taylor [15, 72], a variety of methods have been
used to extract morphological traits from morphological
descriptions. Their performance metrics are given in Table 4.

X-Tract. X-tract [35] was an interactive tool to extract mor-
phological information from Flora of North America (FNA)
descriptions available as a print and HTML version. X-tract
used HTML tags embedded in the FNA pages to identify
the morphological description sections. It used a glossary
to classify each word in a description as structure (i.e.,
organs or part of organs) or character states. If a word was
a character state, its corresponding characters were looked
up in the glossary. Then, X-tract created a form to display
the structures, substructures, characters, and character states
extracted from a document for a user to review, modify, and
save to a database. Evaluation of the extraction accuracy or
the extent of user intervention was not provided.

Worldwide Botanical Knowledge Base. Jean-Marc Vanel ini-
tiated a project called Worldwide Botanical Knowledge
Base, which also takes the approach of parsing plus glos-
sary/lexicon. It marks up morphological descriptions at sen-
tence level (e.g., leaf blade obovate is marked as “leaf blade”)
without extracting detailed character information. It stores
extracted information in XML files instead of a relational
database as Taylor [15, 72] and Abascal and Sánchez [35].
The project aims to support queries on species descriptions
in botanical databases. The database search seems to have
stopped working (http://jmvanel.free.fr/protea.html). The
parser was reported to work on Flora of China and it can
be downloaded from the website (http://wwbota.free.fr/).
However, as of the time of this publication, the authors were
unable to use the parser.

Terminator. Diederich, Fortuner and Milton [74] developed
a system called Terminator, which used a hand-crafted plant
glossary that amounts to an ontology including structure

names, characters and character states to support character
extraction. The extraction process was a combination of
fuzzy keyword match and heuristic extraction rules. Because
Terminator was an interactive system (i.e., a human operator
selects correct extractions), the evaluation was done on
16 descriptions to report the time taken to process them.
Extraction performance was evaluated only on 1 random
sample: for non-numerical characters, 55% of the time a
perfect structure/character/value combination was among
the first 5 candidates suggested by the system.

MultiFlora. Similar to previous works, Wood, Lydon, and
colleagues’ MultiFlora project (http://intranet.cs.man.ac.uk/
ai/public/MultiFlora/MF1.html) started with manual anal-
ysis of description documents. They created an ontology
manually, which included classes of organs (i.e., petal) and
features (i.e., yellow) linked by properties (i.e., hasColor).
They also manually created a gazetteer, which included
terms referring to the organs and features that served as
a lookup list. The prototype MultiFlora system used a
combination of keyword matching, internal and contextual
pattern matching, and shallow parsing techniques provided
by GATE to extract organ and feature information from a
small collection of morphological descriptions (18 species
descriptions, recall, and precision were in the range of mid
60% to mid 70%; [66, 75]). While the work of Wood,
Lydon, and colleagues shows that using descriptions from
different sources can be used to improve recall, the authors
acknowledged that organs not included in the manually-
created gazetteer/ontology have to be marked as “unknown.”
The extraction results were output in RDF triples and used
to build a knowledgebase about plants, which is not related
to Worldwide Botanical Knowledge Base reviewed earlier.
RDF is a type of programming language that allows a user
to make machine readable assertions in the form of an
RDF triple. The EQ format mentioned earlier is a similar
format used in biology. The advantage to using ontology-
supported RDF/EQ is that multiple data providers can use
the same ontological identifier for the same term. In this
way, statements become machine-readable and can be linked
regardless of the source. With ontological support, machine-
based logic reasoning has become possible. An immediate
application of this type of reasoning and a pool of RDF triples
describing species morphology is a specimen identification
key. RDF is supported by more recent biodiversity IE systems
as an output format.

MARTT. MARTT [76] is an automated description
markup system employing a supervised machine-learning
algorithm. The system marks up a description sentence-by-
sentence with tags that indicate the subject, for example,
“stem” is tagged in the text statement “stem solitary.”
MARTT along with a test collection is downloadable from
http://sites.google.com/site/biosemanticsproject/project-
progress-wiki. Wei [77] conducted an exploratory study
of the application of information fusion techniques to
taxonomic descriptions. It confirmed Wood et al. [75]
finding that combining multiple descriptions of the same
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species from different sources and different taxonomic ranks
can provide the researchers more complete information
than any single description. Wei used MARTT [76] and a
set of heuristic rules to extract character information from
descriptions of taxa published in both FNA and Flora of
China (FoC) and categorized the extracted information
between the two sources as either identical, equivalent,
subsumption, complementary, overlap, or conflict. Non-
conflict information from both sources was then merged
together. The evaluation was conducted involving 13
human curators verifying results generated from 153 leaf
descriptions. The results show that the precisions for genus
level fusion, species level fusion, FNA genus-species fusion,
and FoC genus-species fusion were 77%, 63%, 66%, and
71%, respectively. The research also identified the key factors
that contribute to the performance of the system: the quality
of the dictionary (or the domain knowledge), the variance of
the vocabulary, and the quality of prior IE steps.

WHISK. Tang and Heidorn [13] adapted WHISK [78] to
extract morphological character and other information from
several volumes of FNA to show that IE helps the information
retrieval system SEARFA (e.g., retrieval of relevant docu-
ments). The “pattern matching” learning method used by
WHISK is described in Section 2. The pattern matching algo-
rithm was assisted by a knowledge base created by manually
collecting structure and character terms from training exam-
ples. The IE system was evaluated on a relatively small subset
of FNA documents and it was evaluated on different template
slots (see Table 1 for examples of template slots) separately.
Different numbers of training and/or test examples were used
for different slots (training examples ranged from 7 to 206,
test examples ranged from 6 to 192) and the performance
scores were obtained from one run (as opposed to using
the typical protocol for supervised learning algorithms). The
system performed perfectly on nonmorphological character
slots (Genus, Species, and Distribution). The recall on
morphological character slots (Leaf shape, Leaf margin, Leaf
apex, Leaf base, Leaf arrangement, Blade dimension, Leaf
color, and Fruit/nut shape) ranged from 33.33% to 79.65%.
The precision ranged from 75.52% to 100%. Investigation
of human user performance on plant identification using
internet-based information retrieval systems showed that
even with imperfect extraction performance, users were
able to make significantly more identifications using the
information retrieval system supported by the extracted
character information than using a keyword-based full-text
search system.

CharaParser. All IE systems reviewed above relied on man-
ually created vocabulary resources, whether they are called
lexicons, gazetteers, or knowledge bases. Vocabularies are
a fundamental resource on which more advanced syntactic
and semantic analyses are built. While manually collecting
terms for a proof-of-concept system is feasible, the manual
approach cannot be scaled to the problem of extracting
morphological traits of all taxa. Cui, Seldon & Boufford [14]
proposed an unsupervised bootstrapping based algorithm

(described in Section 2) that can extract 93% of anatomical
terms and over 50% character terms from text descriptions
without any training examples. This efficient tool may be
used to build vocabulary resources that are required to use
various IE systems on new document collections.

This unsupervised algorithm has been used in two
IE systems [36, 79]. One of the systems used intuitive
heuristic rules to associate extracted character information
with appropriate anatomical structures. The other system
(called CharaParser) adapted a general-purpose syntactic
parser (Stanford Parser) to guide the extraction. In addition
to structures and character extraction, both systems extract
constraints, modifiers, and relations among anatomical
structures (e.g., head subtended by distal leaves; pappi consist
of bristles) as stated in a description. Both systems were
tested on two sets of descriptions from volume 19 of FNA and
Part H of Treatise on Invertebrate Paleontology (TIP); each
set consisted of over 400 descriptions. The heuristic rule-
based system achieved precision/recall of 63%/60% on the
FNA evaluation set and 52%/43% on the TIP evaluation set
on character extraction. CharaParser performed significantly
better and achieved precision/recall of 91%/90% on the FNA
set and 80%/87% on the TIP set. Similar to Wood et al. [66],
Cui and team found the information structure of morpho-
logical descriptions was too complicated to be represented
in a typical IE template (such as Table 1). Wood et al. [66]
designed an ontology to hold the extracted information,
while Cui and team used XML to store extracted information
(Figure 5). CharaParser is expected to be released as an open-
source software in Fall 2012. Interested readers may contact
the team to obtain a trial version before its release.

3.5. Integrated IE Systems. Tang and Heidorn [13] supervised
learning IE system, MutiFlora, and the CharaParser system,
all reviewed before, can be described using the reference
model depicted in Figure 2. Here, we describe another
system that integrates formal ontologies. This is the text
mining system that is currently under development by the
Phenoscape project (http://www.phenoscape.org/). The goal
of Phenoscape is to turn text phenotype descriptions to EQ
expressions [80] to support machine reasoning of scientific
knowledge as a transforming way of conducting biological
research. In this application, EQ expressions may be consid-
ered both the IE template and a data standard. The input
to the Phenoscape text mining system is digital or OCRed
phylogenetic publications. The character descriptions are
targeted (1 character description = 1 character statement +
multiple character state statements) and used to form the
taxon-character matrix. The target sections are extracted
by student assistants using Phenex and put into NeXML
(http://www.nexml.org/) format. NeXML is an exchange
standard for representing phyloinformatic data. It is inspired
by the commonly used NEXUS format, but more robust
and easier to process. There is one NeXML file for a source
text. NeXML files are the input to CharaParser, which
performs bootstrapping-based learning (i.e., unsupervised
learning) and deep parsing to extract information and out-
put candidate EQ expressions. CharaParser learns lexicons
of anatomy terms and character terms from description
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(a) Original sentence:
principal cauline well distributed, gradually reduced distally, bases of proximal cauline winged-petiolate or
sessile, based of distal cauline expanded and clasping margins sometimes spinier than those of proximal;

(b) Extraction Result in XML:
<?xml version="1.0" encoding="utf-8"?>
<statmentn id="83.txt-6">
<structure id="o1" name="leaf" constraint="principal cauline">
<character name="arrengement" value="distributed" modifier="well" />
<character name="size" value="reduced" modifier="gradually;distally" />

</structure>
<structure id="o2" name="base">
<character name="archilecture" value="winged-potiolate" />
<character name="archilecture" value="sessile" />

</structure>
<structure id="o3" name="leaf" constraint="proximal cauline">
<relation id="r1" name="part of" from="o2" to="o3" negation="false" />
<structure id="o4" name="base">
<character name="size" value="expanded" />
<character name="archilecture" value="clapsing" />

</structure>
<structure id="o5" name="leaf" constraint="distal cauline" />
<relation id="r2" name="part of" from="o4" to="o5" negation="false" />
<structure id="o6" name="margin">
<character name="archilecture" value="spinier" modifier="sometimes" constraint="thanmargins"
constraintid="o7" />
</structure>
<structure id="o7" name="margin" />
<structure id="o8" name="leaf" constraint="proximal" />
<relation id="r3" name="part of" from="o7" to="o8" negation="false" />
</statment>

Figure 5: Extraction result from a descriptive sentence.

collections. Learned terms are reviewed by biologist curators
(many OCR errors are detected during this step). Terms
that are not in existing anatomy ontologies are proposed
to the ontologies for addition. The lexicons and ontologies
are the knowledge entities that the text mining system
iteratively uses and enhances. With new terms added to the
ontologies, the system replaces the terms in candidate EQ
statements with term IDs from the ontologies. For example,
[E]tooth [Q]large is turned into [E]TAO: 0001625 [Q]PATO:
0001202. The candidate EQ expressions are reviewed and
accepted by biologist curators using Phenex. Final EQ
expressions are loaded into the Phenoscape Knowledge base
at http://kb.phenoscape.org/. This EQ populated knowledge
base supports formal logical reasoning. At the time of writ-
ing, the developing work is ongoing to integrate CharaParser
with Phenex to produce an integrated text-mining system for
Phenoscape. It is important to notice that the applicability of
Phenex and CharaParser is not taxon specific.

4. Conclusion

NLP approaches are capable of extracting large amounts of
information from free text. However, biology text presents a
unique challenge (compared to news articles) to machine-
learning algorithms due to its ambiguity, diversity, and
specialized language. Successful IE strategies in biodiversity
science take advantage of the Linnaean binomial structure
of names and the structured nature of taxon descrip-
tions. Multiple tools currently exist for fuzzy matching
of terms, automated annotation, named-entity recognition,
and morphological character extraction that use a variety
of approaches. None have yet been used on a large scale
to extract information about all life, but several, such as
CharaParser, show potential to be used in this way. Further
improvement of biodiversity IE tools could be achieved
through increased participation in the annual BioCreative
competitions (http://www.biocreative.org/) and assessing
tool performance on publicly available document sets so

that comparison between systems (and thus identification of
methods that have real potential to address biodiversity IE
problems) becomes easier.

A long-term vision for the purpose of making biodiver-
sity data machine readable is the compilation of semantic
species descriptions that can be linked into a semantic web
for biology. An example of semantic species information
can be found at TaxonConcept.org. This concept raises
many questions concerning semantics which are outside
the scope of this paper, such as what makes a “good”
semantic description of a species. Many of these issues
are technical and are being addressed within the computer
science community. There are two data pathways that need
to be developed to achieve the semantic web for biology.
One is a path going forward, in which new data are made
machine-readable from the beginning of a research project.
The model of mobilizing data many years after collection
with little to no data management planning during collection
is not sustainable or desirable going into the future. Research
is being applied to this area and publishers, such as Pensoft,
are working to capture machine-readable data about species
at the point of publication. The other is a path for mobilizing
data that have already been collected. NLP holds much
promise in helping with the second path.

Mobilizing the entirety of biodiversity knowledge col-
lected over the past 250 years is an ambitious goal that
requires meeting several challenges from both the taxonomic
and technological fronts. Considering the constantly chang-
ing nature of biodiversity science and the constraints of
NLP algorithms, best results may be achieved by drawing
information from high quality modern reviews of taxonomic
groups rather than repositories of original descriptions.
However, such works can be rare or nonexistent for some
taxa. Thus, issues such as proper aggregation of information
extracted from multiple sources on a single subject (as
mentioned above) still need to be addressed. In addition,
demanding that a modern review be available somewhat
defeats the purpose of applying NLP to biodiversity science.
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While using a modern review may be ideal when available, it
should not be required for information extraction.

Biodiversity science, as a discipline, is being asked to
address numerous challenges related to climate change,
biodiversity loss, and invasive species. Solutions to these
problems require discovery and aggregation of data from
the entire pool of biological knowledge including what is
contained exclusively in print holdings. Digitization and IE
on this scale is unprecedented. Unsupervised algorithms
hold the greatest promise for achieving the scalability
required because they do not require manually generated
training data. However, most successful IE algorithms use
combinations of supervised and unsupervised strategies and
multiple NLP approaches because not all problems can be
solved with an unsupervised algorithm. If the challenge
is not met, irreplaceable data from centuries of research
funded by billions of dollars may be lost. The annotation and
extraction algorithms mentioned in this manuscript are key
steps toward liberating existing biological data and even serve
as preliminary evidence that this goal can be achieved.
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