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Abstract
The respoñse of vertical arrays at single frequencies (OW) and for homogeneous media
is. well known. This paper addresses the issues of frequency dependence and sound
velocity gradients for the vertical array response in a deep ocean. I have modified
the synthetic seismogram code of Neil Frazer, Subhashis Malck and Dennis Lindwal
to address this problem. The code uses a rearrangement of the Kennett reflectivity
algorithm (Kennett, 1974, 1983) which computes the geoacoustic response for depth
dependent media and pulse sources by the wave number integration method. The
generalzed Filon method is applied to the slowness integral for an additional increase
in speed (Frazer and Gettrust, 1984; Filon, 1928). The original code computes the re-

sponse of a single source at a specified depth. The new code has several improvements
over the previous one. First, it is a much simplified code addressing only acoustic

interaction. The total length is about hal the length of the original code. Secondly,

the code can compute the response of a vertical array of point sources. By changing
the phase delay between the sources, we can steer the beam to the places of most
interest. Thirdly, the code reduces considerably numerical noise at large offsets. The
original work has numerical noise beyond about 30 km offset at 50 Hz which limits
the application of reflectivity modeling in long range problems. The improvement
comes with the optimization of the program, both in the speed and program struc-
ture. The improved algorithm can be used to get the far offset response (up to 150
km) of a vertical array in the deep ocean at frequencies up to at least 250 Hz. The
modeling results are compared to analytical and benchmark solutions. The modified
reflectivity code can be applied to the study of pulsed-vertical array sources such as
were deployed on the ARSRP (Acoustic Reverberation Special Research Program)
acoustic cruises.
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Chapter 1

Introduction

The ARSRP (Acoustic Reverberation Special Research Program) Reconnaissance Ex-

periment ~as conducted from 25 July to 19 August 1991, and in 1993 the ARSRP

acquired detailed geological and acoustic backscatter data from three sites in the

ARSRP corridor in the western North Atlantic. A vertical line array (VLA) of 10

coherent sources was used, and its beam angle can be steered (Ellot, 1991). Spe-

cific long term objectives of these efforts are: 1) "to characterize the variations in

bottom topography and sub-bottom properties that control the scattering of low fre-

quency acoustic waves", 2) "to develop theoretical and numerical techniques capable

of predicting the low frequency acoustic wavefield scattered from geologicaly realistic

models of the bottomjsub-bottom environment", and 3) "to isolate from these scat-

tering models the physical mechanisms which dominate the long-range reverberation

from the seafloor."

The chalenge for the ARSRP is to analyze the acoustic and geological data and

to demonstrate a predictive modeling capability for low angle seafloor backscatter.

In order to achieve such a goal, it is important to model the acoustic responses on

the seafloor for the VLA. There are several interesting objectives in the numerical

modeling: 1) what is the effect of the free surface on the sea floor response, 2) what is

the effect of the ocean velocity gradient on the response, 3) how do the above factors

affect CW and pulse sources, etc.

Ray theory and parabolic equation methods (Smith and Tappert, 1993) are com-
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mon in ocean acoustics to compute the acoustic field. They are compared in Tolstoy

et al. (1985). Özlüer (1992) studied the refraction effects on vertical line array

beamforming applying a simple ray theory method. She studied the responses from

10 omnidirectional point sources with linear phase tapering equivalent to a steering

of 6 deg depression. There are big inaccuracies involved in the results after 30 km

horizontal offset.

In order to study the vertical array interference problem more completely and

to get a more accurate picture of the interference response in the deep ocean for a

wide variety of outgoing beam angles from the vertical array, we use the reflectivity

modeling method. The reflectivity method has been widely used to compute synthetic

seismograms in layered media. In fact, it has contributed to a better understanding

of the earth's structure, both on the continents and beneath the ocean (for example,

Braille and Smith (1975), Spudich and Orcutt (1980a, b), and Kempner and Gettrust

(1982a,b)).

Its main advantage is its capacity to compute a total solution of the wave field

for a given modeL. A matrix method is generaly used to compute the responst

of the model in frequency-wavenumber space. This includes contributions from al

possible generalzed rays within the reflecting zone (Kennett 1974, 1983; Kind, 1976).

The original reflectivity version of Fuchs and Müller (1971) required the source and

receiver to be above the reflecting zone, but the method was subsequently modified

. by Stephen (1977) to accommodate a receiver buried within the reflecting zone. In

practice, theL are some disadvantages of the reflectivity method. The main one is

the usualy long computation time required in the modeling. So, even though there

has been extensive study of the theory of the reflectivity method, adequate care must

be taken to implement the theory and also to balance the speed and accuracy. This

is especialy true for our vertical array problem which has multiple sources and which

is required to compute long range responses in the deep ocean.
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Chapter 2

Background

2.1 Reflectivity Method
./

The. reflectivity' method has long been used by seismologists for modeling both land

and marine reflection and refraction data. The method, originally proposed by Fuchs

and Müller(1971), was extensively modified by Kennett (1974). The calculations are

done essentialy in two steps:

. A reflectivity function R(w,p) is calculated in the frequency-ray parameter

(wavenumber) domain. This is performed by layer iteration starting from the

free surface down to the deepest interface. In each step of the iteration, all

orders of multiple-bounce paths in the layer are included. At the final step,

one obtains a reflectivity function that includes all possible ray paths from the

source to the receiver.

. The second step involves numerical evaluation of a double integral of the form

u(æ, t) = 2~ J dw exp( -iwt) x J dpf(w,p) exp¡O"g(p)J (2.1)

where 0" = iwæ and g(p) = p.

The integration over frequency w is usualy carried out by a fast Fourier transform

(FFT). A complex frequency with a constant imaginary part is used in the integral
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to attenuate the wraparound caused by the use of the FFT.

The integrand of the integral over the ray parameter p is highly oscilatory and use

of the trapezoidal rule would require a very smal step size in p. Use of a generalzed

Filon method (GFM) ( Frazer, 1978; Frazer and Gettrust, 1984) alows one to use a

much larger step size in p. The sampling interval Sp depends both on frequency and

the maxmum range needed for the calculation, i.e., long range and high-l-equency

calculations require a very smal step size in p to avoid spatial alaSing.

The background and limitations of the method are described in the two papers

of Malck and Frazer (1987; 1988). We modied their program for our vertical array

problem.

The compressional potential of the wave from an explosive point source is

1 R
lPo(r,z,t) = -F(t --)R ai (2.2)

where R2 = r2 + Z2. Its Fourier transform can be written in integral form

- - 100 klPo(r,z,w) = F(w) ~Jo(kr)exp( -jviz)dk
o JVi

(2.3)

where F( w) is the Fourier transform of the excitation function F( t), Jo( kr) the Bessel

function of the first kind and order zero, j the imaginary unit, k the horizontal wave

number, and

Vi = (k~i - k2)l (2.4)

is the vertical wave number (kai = w/ai).

Since we are maiy interested in the application of synthetic seismograms to

explosion seismological studies, we can replace the Bessel functions by their asymp-

totic approximations for large arguments(Fuchs and Müler, 1971) , which is good

for kr :: 14 (Corresponding to a source with a frequency of 200 Hz, this approxi-

mation is good for ranges down to 16.7m. The synthetic seismograms based on this
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approximation wil be incorrect at normal incidence) :

Jo(x) ~ (2 cos(x - ~) = ~ f exp¡j(x - ~)J + exp¡-j(x - ~)J 1. (2.5)V ;; 4 ý'27lx 1. 4 4 f

. YO(x) ~ (2 sin(x - ~) = -= f exp¡j(x - ~)J - exp(-j(x - ~)J 1. (2.6)V ;; 4 ý'27lx 1. 4 4 f
Where Jo and YO are Bessel functions of first and second kind respectively and both

are of order zero.

The second exponential term in the above equations corresponds to waves prop-

agating in the positive r-direction (away from the source), whereas the first term

describes waves traveling in the negative r-direction (towards the source).

2.2 The Reflectivity Function in a Layered Water

Column

Fig. 2-1 shows the geometry and notation for the derivation of a layered half space.

The pressure reflection and transmission coeffcients at the boundary of layers 1 and

2 for a wave incident from above are:

3li2( 8i) = P2C2 cos 8i - Pi Ci cos 82

P2 c2 cos 8i + PI Ci cos 82
(2.7)

~ (8) _ 2P2C2 cos 8i~i2 i -
P2C2 cos 8i + Pi Ci cos 82

with similar expressions for ~23 and ~23' From Figure 2-1, the total up-traveling

(2.8)

signal is the sum of an infinite number of partial transmissions and reflections. Each

path within the layer has a phase delay 2k2h2 cos 82, where k2 cos 82 is the vertical

component of the wave number in the layer. By letting the incident signal have unit

amplitude, the total reflection 3li3 is

17



,
..-_';i-r~¡i~

"'
i

I
i

,'-,: ;,-'1...i ii

/
i

Pi. '")

183~

Figure 2-1: Reflection and transmission at a thin layer~ From Figure 2.10.2. in Clay
and Medwin. 1976)

\
! -

~13(81,W) = ~12 + ~12~il~23 exp( -2iCPi) + ~12~21~232~21 exp( -4iCP2) + ... (2.9)

CP2 = kihi cos ()i (2.10)

After ~12' terms in ( 2.9) have the form of a geometric series

co

S=Lrn=(I-rt1 for r-:l
n=O

ex

3l13 = 3l12 + 2š12~21Ri3 exp( -2iCPi) ¿ ¡3l233l21 exp( -2iCPi)r

o
(2.11)

Note that the reflection and transmission coeffcients at a single interface are

frequency independent (i.e. a function of angle or ray parameter only). \Vhen the

propagation through a layer is considered (i.e. using q,i), the coeffcients become

frequency dependent.

We can reduce equation 2.11 by using the following relations, which come from

equations 2.7 and 2.8,

18



R12 = -R2i (2.12)

0. 0. -1 \0 2~I2~2i - - :nI2 . (2.13)

We have

RI3 = R12 + R23 exp( -2i~2) .
1 + Ri2R23 exp( -2i~2) (2.14)

The transmission through the layer for a unit incident signal is

~I3 = ~i2~23 exp( -i~2) + ~I2~23R23R2i exp( -3i~2) + . . . (2.15)

This is -a geometric series, and the sum is

~i2~2S exp( -i~2)
~I3 =

1 + R12R23 exp( -2i~2) (2.16)

Both the Ri3 and ~i3 are oscilatory functions and depend on ~2 = k2h2 COS (J2.

They are functions of frequency and angle of incidence for a given layer.

We then can derive the total reflection and transmission of n layers, by repeated

applications of the single layer coeffcient.

As in Fig. 2-2 the reflection from the lower half space is R(n-i)n' Applying equa-

tion 2.14 the reflection coeffcient at the top of the n - 1 layer is

\0 _ R(n-2)(n-i) + R(n-i)n exp( -2i~n-i):n(n-I)n - \0 \0 ( 2 ';i )'
1 + :n(n-2)(n-i):n(n-I)n exp - i'fn-I

We can repeat the above process to get R( n - 3)n, the reflection coeffcient for

(2.17)

the layers beneath the interface, which is

\0 R(n-3)(n-2) + R(n-2)n exp( -2i~n-2):n(n-3)n = .
1 + R(n-3)(n-2)R(n-2)n exp( -2i~n-2) (2.18)
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Figure 2-2: Reflection Îrom a layereà hal space(From Figure 2.10.3.in Clay and
Medwin~ 1976)

Continuing the above calculation upwarà to the top, we have

iRi2 + ~2n exp( -2i~2)
~in =

1 + ~i2~2nexp( -2i~2) (2.19)

By letting. the reflection coeffcient iRin represent al the frequency and angle de-

pendence, we simplify the expression for the reflection from a multiple layered hal

space. The above process can also be applied to get the transmission coeffcient from

a multiple layered half space. So, for large ranges, we can get the composite pressure

reflection and transmission coeffcients by applying the above layer iteration approach.
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2.3 Computation of the Slowness Integral

In the reflectivity method, we do the numerical evaluation of the slowness integral,

in the form

u(x,w) = 100 w2pdpJo(wpx)u(w,p) (2.20)

where Jo denotes the first kind Bessel function of order zero. This integral is oscila-

. tory and in a normal integration scheme many steps are necessary in computing this

when wx is large. The step size used is inversely proportional to wx. The program

uses the generalzed Filon method given by Frazer (1978) and Frazer and Gettrust

(1984), which requires the step size to be inversely proportional to (wx)l/2, which

alows higlier wx response, for a given step size and a given error in computation.

To use the generalzed Filon method, we transform the integral of equation 2.20

into (see Chapman 1978)

2

l ~ pdpH~I)(wpX)u(w,p) (2.21)

where r is the contour of integration (shown in Fig. 2 of Frazer and Gettrust (1984)).

The H~I) stands for a Hankel function of type 1 and order zero. The details for the

transformation from equation 2.20 to equation 2.21 are shown by Chapman (1978).

We can rewrite equation 2.21 as

l j(p)eSg(p)dp, (2.22)

where
2W (1) .

j(p) = -pHo (wpx)e-iwp:iu(w,p)
2

S = iwx

and

g(p) = p
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Application of the standard trapezoidal rule to the integral in equation 2.22, between

the limits a and b, gives the quadrature formula

lb j(p)eSg(p) = ~¡¡(a)eSg(a) + j(b)ég(b)Jhp
(2.23)

This formula does not work well because it assumes that j(p )ég(p) is well approxi-

mated by a linear function over the interval (a, b), while actualy it is highly oscilating.

If, we assume that both j(p) and g(p) are well approximated by different linear func-

tions on (a, b), then we get the generalzed Filon method analog of the trapezoidal

rule (Frazer, 1978):

rb j(p)eSg(p)dp = hp¡¡(a)eSg(a) + j(b)eSg(b)1, jor h(g) = 0Ja 2 (2.24)

¡b hp h(f)h( ég)
j(p)eSg(p)dp = -¡h(feSg) - 1, otherwisea Sh(g) Sh(g) (2.25)

where, hp denotes P2 - Pi, h(g) denotes g(P2) - g(Pi), etc. It can be derived by

replacing the integrand in the left-hand side of 2.23 by

h(f) J h(g) 1.
¡¡i + (p - Pi) h(p)Jexp 1. s¡gi + (p - Pi) h(p)J J

The generalzed Filon method greatly improves the qualty of the synthetic result.

It saves computation time by as much as 80 percent (Malck and Frazer, 1987). A

straightforward error analysis shows that, for a given accuracy, the step size in 2.23

is proportional to 181-i whereas the step size to 2.25 is proportional to Isl-i/2(Frazer

and Gettrust, 1984).

The integral in equation 2.25 is simplified by letting hp = h(g) and removing the

term 8pjh(g):

¡b 1 h(j)h( eSg)
j(p)eSg(p)dp = -¡h(feSg) - J, otherwisea S Sh(g) (2.26)

The results using equation 2.26 show great improvement in terms of the quality

of the modeling result. Applying equation 2.25 as in the original program, there is
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a big numerical noise problem beyond about 30km offset which limits the applica-

tion of reflectivity modeling in long range problems. The optimized program using

equation 2.26 reduces significantly the noise at large offsets. In the integral 2.25, the

p and g(p) are very smal. This results in more numerical error than the simplified

integral 2.26.

For the reflectivity method, we need to evaluate the integral:

u(w, æ) = l°O-io kdku(w, k )In(kæ) (2.27)

in which In is the Bessel function of order n, and k is the wavenumber. Here advantage

is taken of the relation (Olver, 1972, formula (9.2.19))

In = MncosOn (2.28)

where the definitions of Mn and On are:

Mn = tan -I(YnjJn) (2.29)

i

(2 2)-On = In + Yn 2 (2.30)

The functions Mn and On are avaiable as polynomial approximations (Allen, 1954;

Ovler, 1972, formula (9.4.3) and (9.4.6)) for values of kæ greater than three. For

values of kæ less than three, exact values of Mn and On could be computed (Olver,

1972, formula (9.2.17)).

The asymptotic expansion of On is (Olver, 1972, formula (9.2.29))

On = kæ - an + O(lkæl-i) (2.31)

where
1

an = -(2n + 1)7l
4

23



So, the equation 2.27 can be written as:. .
u(w,x) = 100-'0 dkli(k)eizk + 100-.0 dkI2(k)e-izk (2.32)

in which

Ii (k) = !ku( w, k )Mnei(8n-kz)
2

fi(k) = !ku(w, k)Mne-i(8n-kz)
2

(2.33)

(2.34)

Equation 2.32 is exact, and yet the functions, Ii and 12, are relatively non-oscilatory

because of 2.31. More importantly, each integral on the right-hand side of 2.32 is of

the form 2.22, and so they can be evaluated using the generalzed Filon integration

method.

In the modeling of refraction data, x is usualy greater than four or five wave-

lengths, and then the following simpler procedure can be applied. In equation 2.32

replace On by kx - an and Mn by (2j1lkx )1/2 (Frazer, 1988).

The u(w, x) can now be evaluated using the generalzed Filon formula 2.26 with

g(p) = p and 8 = iwx.

24



Chapter 3

Theory of Vertical Array

Interference for Harmonic Sources

3.1 Notation and Example Parameters

In our study, we use the following notation as shown in Fig. 3-1. We denote W

as the total distance between the top .source and the bottom source, d denotes the

neighboring source distance, h is the depth of the top source from the free surface

and 4i is the grazing or dip angle of the ray to a receiver at a large distance from the

array. Unless otherwise specified, al of the plotting wil have the following parameters:

W = 5.49À, h = 24.755À, which implies that the distance between the surface to the

midpoint of the 10 sources is 27.5À and the distance between the neighboring sources

is O.61À. In the case of a frequency of 250Hz and a velocity of 1.5kmj s (so that the

wavelength À = 6m), d = 3.66m and h + ~ = 165m.

3.2 Dipole Interference

3.2.1 The Field from a Single Source

A sinusoidaly excited source expands and contracts repeatedly. The resulting con-

tractions (density increases) and dilatations (density decreases) in the medium move
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Figure 3-1: The Notation for Multiple Source Interference beneath a Free Surface
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away from the source at the sound speed c, as would the disturbance from an impul-

sive source. This disturbance is caled a continuous wave (CW), and it comes from a

CW source. The distance between adjacent contractions along the direction of travel

is the wavelength À.

Assume that an omnidirectional CW sinusoidal point source in a homogeneous

medium has the pressure at unit distance given by:

P = Po * sin(wt) (3.1)

So, at distance R, the pressure at a given time t wil be:

Pr = Po * sinw(t - r)
R (3.2)

where r is the phase delay due to the travel time in the medium (r = Rjc) and cis

the wave velocity.

The field intensity (transmitted power per unit area), I, wil be:

p2 p,2
1=-= 0

pc 2pcR2 (3.3)

where p2 is the ensemble average of p2 in the time domain, p is the density of

the medium and c is the wave speed in the medium.

3.2.2 The Field from Two Sources

Under the same assumption as the single source, two sources wil generate an inter-

ference pattern.

The pressure at the receiver R is given by

Pr = PI + P2 (3.4)

where
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P Po . A. Po . ( )i = - * sin 'fI = - * sin w t - 7iRi Ri
P2 = ~: * sinlP2 = ~: * sinw¡(t - 72) + boJ

(3.5)

(3.6)

. ( Ti and 72 are the wave travel time from source 1 and source 2 to the receiver

respectively, 150 is the phase difference of the sources )

Then the field intensity wil be:

( ) 2 2 -I _- p2 __ Pi + P2 2 PI P2 2Pi P2 I I 2Pi P2 ()= - + - + = 1+ 2 + 3.7pc pc pc pc pc . pc
(Ii and 12 are the intensity due to single sources in the absence of the other source,

and the term 2P, P2 corresponds to the interference of the two sources.). pc
At the same frequency, the phase shift ,15, between waves from two adjacent sources

is independent of time:

15 = lP2 - lPi = w( 71 - 72) + 150 (3.8)

27r
= - * (Ti - T2) + 150À (3.9)

( À is wave length, Ti and T2 are the distances from the two sources to the receiver

respectively, and 150 is the phase delay of the top source relative to the bottom source).

Then

1= Ii + 12 + 2VliI2 cosb (3.10)

Discussion:

. When Ii = 12 = 10, which is the case when the two sources have the same

intensity, we have I = 410 cos2 ~. For the case with 15 = 0, the phase shift offsets

the phase difference due to the separation of the sources and we have I = 410.

. Figures 3-2 and 3-3 show the interference between two sources at four typical

separations of À, Àj2)j4 and Àj8 with (150 = 0). From these plots, it can

be seen that within one wavelength, as the distance of the sources decrease,

28



d=À d = ìJ2

CX....
", .' - - ..'. .

....ii. ...

d = ìJ4 d = ìJ8

Figure 3-2: Interference Patterns for Two CW Sources without a Free Surface Plotted
as Rose Diagrams, with zero phase shift
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Figure 3-3: Interference Patterns for Two CW Sources without a Free Surface Plotted
as Intensity versus Angle, with zero phase shift
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the intensity becomes less directionally dependent. All of the plots have the

maxmum intensity at cP = 0 as they are always 'in phase' in that direction.

For the case in which the separation equals one wavelength, the sound is also in

phase in the vertical direction and so there is a maxmum intensity downwards

and upwards. For a half wavelength separation, the sources are exactly out of

phase and there is no response at cP = 90°. For the case in which the separation

is just an eighth of the wavelength, the intensity pattern is very close to the

point source case.

3.3 Multiple Source Interference

3.3.1 Ånalysis Using Complex Numbers

Complex numbers can simplify the analysis of the interference of multiple sources (see

Clay and Medwin, 1976). Many operations involve the sums and differences of angles

and the products of trigonometric functions. These operations are simplified by using

the relations between trigonometric functions and complex exponential functions.

ei~ = cos q) + i sin q) (3.11)

é~ + e-i~. é~ - e-i~cos q) = , sIn q) =2 2i (3.12)

For N sources evenly spaced over a distance W, the separation of neighboring

sources is:

d= W
N- 1 (3.13)

and the pressure fluctuation, ßpn, of the signal from the nth source, relative to the

source at the distance R, is

, nkW sin cP
ßpn = aeæp¡i(wt - kR + N )J

- 1 (3.14)

where a is a constant.
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So, the pressure fluctuation of n sources is

N-i . kW . ,J. "" in SIn 'fD.p = aexp¡i(wt - kR)j L. exp( N )n=O - 1 (3.15)

Since wt - kR is common to al the signals, we factor it at the beginning and then

suppress it by calculating C as follows:

C ~l (inkW sin cP)= a L. exp N
- 1n=O

N-l
= a L exp( inkd sin cP)

n=O

We ca~ show that (see p. 46, Clay and Medwin, 1976):

exp¡iNk(Wj2) ~~tj sin¡Nk(Wj2) ~~tjC = N ar ~ L . rj
exp¡ik(Wj2) ~~ij N sin¡k(Wj2) ~~ij

(3.16)

The expression in braces has an absolute value of 1 and specifies a phase shift that

depends on the choice of origin. The remaining factor is known as the "directional

response", D, which is:

sin(.. kW sin cP)D = N-l 2
N sin( -l kW sin cP)N-l 2

(3.17)

When N is large, an9. using

sin¡k(Wj2)(sin cPj(N - 1))j ~ k(Wj2)(sin cP)j(N - 1) (3.18)

D becomes

sin kW sinq,D = 2kWsinrj
2

(3.19)

The latter expression has the form (sin x) j x which has a maxmum of one as x

tends to zero. This is identical to the directional response of a continuously distributed

line source (Clay and Medwin, 1976).
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