Auxiliary Material for Paper 2011GL047798 Hydrothermally-induced melt lens cooling and segmentation along the axis of fast- and intermediate-spreading centers Fabrice J. Fontaine Institut de Physique du Globe de Paris, UMR 7154, CNRS, Sorbonne Paris Cite, Universite Denis Diderot Paris 7, Paris, France Jean-Arthur Olive Ecole Normale Superieure de Paris, UMR 8538, CNRS, Paris, France Mathilde Cannat and Javier Escartin Institut de Physique du Globe de Paris, UMR 7154, CNRS, Sorbonne Paris Cite, Universite Denis Diderot Paris 7, Paris, France Thibaut Perol Ecole Normale Superieure de Paris, UMR 8538, CNRS, Paris, France Fontaine, F. J., J.-A. Olive, M. Cannat, J. Escartin, and T. Perol (2011), Hydrothermally-induced melt lens cooling and segmentation along the axis of fast- and intermediate-spreading centers, Geophys. Res. Lett., 38, L14307, doi:10.1029/2011GL047798. Introduction This auxiliary material contains two text files, a figure, and a table. 1. 2011gl047798-txts01.pdf Text S1. The mathematical formalism used to describe the thermal coupling between the hydrothermal and magmatic layers. 2. 2011gl047798-txts02.pdf Text S2. The analytical model to quantify the migration of a freezing front in an initially impermeable layer. This analytical model is used to backup our numerical simulations. 3. 2011gl047798-fs01.pdf Figure S1. Effects of the hydrothermal layer permeability on key model outputs. (a) downward migration rate of the zero-melt front (1000 deg C isotherm) V^1000 deg C_ max (in m/yr) and (b) heat flow F (in W/m^2) at the bottom of recharge (F^r) and discharge (F^d) zones. Numerical model outputs (dots) are compared with our simple analytical model (black lines). The "no melt" curve corresponds to a case where L -the latent heat parameter- is ignored in the expression of V^1000 deg C (see appendix 2). 4. 2011gl047798-ts01.doc Table S1. Summary of notations.