Compositional Controls on Oceanic Plates: Geophysical Evidence from the MELT Area.

Rob. L. Evans¹, Greg Hirth¹, Kiyoshi Baba², Don Forsyth³, Alan Chave⁴ and Randall Mackie⁵

1. Dept of Geology and Geophysics, Woods Hole Oceanographic Institution

4. Dept of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution

5. GSY-USA, Inc., PMB#643, 2261 Market St., San Francisco, CA 94114, USA.

Magnetotelluric (MT) and seismic data, collected during the MELT experiment at the Southern East Pacific Rise (SEPR)¹², constrain the distribution of melt beneath this mid-ocean-ridge spreading center and also the evolution of the oceanic lithosphere during its early cooling history. In this paper, we focus on structure imaged at distances ~100 to 350 km east of the ridge crest, corresponding to seafloor ages of ~1.3 to 4.5 Ma, where the seismic and electrical conductivity structure is nearly constant, independent of age. Beginning at a depth of about 60 km, there is a large increase in electrical conductivity and a change from isotropic to transversely anisotropic electrical structure with higher conductivity in the direction of fast propagation for seismic waves. Because conductive cooling models predict structure that increases in depth with age, extending to about 30 km at 4.5 Ma, we infer that the structure of young oceanic plates is instead
controlled by a decrease in water content above 60 km induced by the melting process beneath the spreading center\(^3\).

MELT MT response functions were inverted for a transversely anisotropic conductivity structure, solving for three distinct conductivities in the ridge-parallel (x), ridge perpendicular (y) and vertical (z) directions. Anisotropy oriented oblique to the ridge was not considered because shear wave splitting demonstrates that the horizontal symmetry axis for seismic anisotropy is oriented approximately perpendicular to the ridge in the direction of seafloor spreading\(^4\). The inversion algorithm finds optimally smooth sets of models that fit the data to a desired level of misfit\(^5\). The degree of anisotropy permitted by the inversion is controlled by a regularization parameter (\(\alpha\)) that restricts the level of closeness between the final models in the x, y, and z directions. Setting \(\alpha\) to 0 allows a freely anisotropic model, while increasing \(\alpha\) forces the models in all three directions to be increasingly similar, resulting in an isotropic solution when \(\alpha\) is large. All models account primarily for two-dimensional heterogeneity in resistivity structure and anisotropy is only included where needed to further decrease misfit. As expected, the model misfit decreases with decreasing \(\alpha\).

MT data are generally not sensitive to the vertical conductivity, except where there are strong, vertical conduction pathways to the surface. Such links do not exist off-axis and so the vertical conductivity structure is not independently resolved. The full results of these inversions are given elsewhere [Baba, Chave, Evans, Hirth. & Mackie, Mantle dynamics beneath the East Pacific Rise at 17°S: Insights from the MELT EM data, submitted].

Inversions of the MT response functions find higher conductivity in the direction of plate spreading with the transition from an electrically isotropic, resistive layer in the shallow upper mantle to an anisotropic conductive region beginning at a depth of around 60 km (Figure 1). Mantle conductivity is influenced by temperature,
composition - including volatile components - and the presence of partial melt. The relatively constant depth of the resistive-to-conductive boundary at around 60 km indicates that the cause for the change in conductivity is not thermal. This depth is significantly greater than that predicted by models of conductive cooling for the age of the lithosphere in this region. For example, using a standard cooling model and a potential temperature of 1350°C, the depth to the 1250°C isotherm increases from only 17 to 29 km between 1.3 and 4.5 Ma.

Inversions of Rayleigh and Love wave data from the same area also find structure that is nearly independent of age. After a rapid increase in shear velocity to a depth of about 60 km beneath young seafloor within 100 km of the spreading center, the velocity contours to the east of the ridge are nearly horizontal, decreasing from about 4.5 km/s immediately beneath the Moho to a minimum of about 4.1 km/s at about 70 km (Figure 2). The emphasis in this paper is on structure to the east of the ridge, because the seafloor to the west subsides anomalously slowly, is populated by an unusual density of seamounts, and is poorly constrained by the MT coverage. Unlike the conductivity structure, the shear structure in the uppermost 60 km of the mantle is required by the Rayleigh wave data to be azimuthally anisotropic, with a fast direction perpendicular to the ridge consistent with the fast polarization direction observed from shear-wave splitting analyses. (A discussion of whether electrical anisotropy can be resolved above 60 km is included in supplemental material.) In addition, the magnitude of shear wave splitting suggests that the anisotropic layer extends much deeper than 60 km.

To compare the results of our inversions to laboratory constraints on the conductivity of mantle minerals we calculated laterally averaged log-conductivity depth profiles from our models for both the plate spreading (y) and ridge parallel (x) directions. Examples are shown in Figure 3 for models with $\alpha=0.1$ (moderately
anisotropic) and 10 (effectively isotropic). Regardless of the degree of anisotropy in the inversions, a persistent feature is a large region of high conductivity east of the ridge. For the anisotropic models – i.e., with $\alpha<10$ – the conductivity parallel to the spreading direction is always greater than that parallel to the ridge axis. The anisotropy in conductivity is greatest from depths of ~70 km to 150 km.

In the isotropic model (Figure 3a) the conductivity at depths greater than ~100 km is significantly greater than that predicted from laboratory data for dry peridotite at a potential temperature of 1350°C. The laboratory-based conductivity profiles are calculated using a temperature profile for 3 Ma old lithosphere assuming a mantle comprised of 75% olivine and 25% orthopyroxene. There is almost no error associated with extrapolation of the experimental data because the measurements were made at the conditions of interest. However, the laboratory data exhibit a sample-to-sample variability on the order of a factor of two in conductivity. While the conductivity at depths greater than 100 km could be explained by a potential temperature of ~1500°C, this value is considerably greater than typically predicted for the upper mantle beneath the SEPR.

At depths greater than 100 km, the laterally averaged conductivity parallel to the spreading direction in our anisotropic model is similar to that predicted by the Nernst-Einstein relation for hydrogen diffusion parallel to the [100] direction in olivine containing 1000 H/10^6 Si (Figure 3b). We emphasize that the plots in Figure 3 are calculated using hydrogen self diffusivities -which is appropriate for application of the Nernst-Einstein relation. The hydrogen self diffusivity is estimated from the analysis of hydrogen chemical diffusion data. Even including the uncertainties in the hydrogen diffusion data, calculated conductivities predicted for the other crystallographic directions are significantly smaller (Figure 3c). Therefore, anisotropy in conductivity is possible if there is a strong lattice preferred orientation (LPO) of olivine in the peridotite
imposed by corner flow. The factor of 4 anisotropy predicted for the laterally averaged model in Figures 3b and 3c is the same as that calculated for peridotite with ~50% alignment of olivine [100] axes17, a value consistent with the 3 - 5% azimuthal anisotropy of Rayleigh waves observed in this region.

An important caveat to the application of the hydrogen diffusion data to constrain mantle conductivity is that the influence of hydrogen on conductivity of olivine has not been measured experimentally, although it has been observed for wadsleyite and ringwoodite18. A critical factor to be determined is the fraction of hydrogen that contributes to the conductivity16,18. We emphasize that in our calculations we have assumed that all of the hydrogen is contributing, and thus we predict a maximum influence of hydrogen on conductivity. Because dissolved hydrogen influences the concentration of other defects within olivine, conductivity could also be enhanced under hydrous conditions by an increase in the concentration of metal vacancies. However, analyses based on the measured effect of water on Mg-Fe interdiffusion in olivine suggest that this effect is not large enough to explain the high conductivities observed in the oceanic mantle19.

Two key sets of observations lead us to conclude that the mantle above 60 km is dehydrated, but significant dissolved hydrogen is present at greater depths. First, although the oceanic mantle is seismically anisotropic from the Moho to depths exceeding 100 km, significant electrical anisotropy and high conductivities are only resolved at depths exceeding 60 km. If the LPO does not change, the simplest explanation is that the higher anisotropic conductivities are caused by the anisotropic diffusivity of hydrogen. The orientation of the high conductivity direction coincides with the fast direction for seismic wave propagation, as is expected if both are controlled by the LPO of olivine crystals in a deforming mantle. Second, if thermal effects were dominant, both the shear velocity and resistivity should gradually increase
with increasing age and the high resistivity, high velocity region should be limited to much shallower depths.

The minimum in shear velocity observed at the same depth as the beginning in increase in conductivity can be caused either by the presence of melt, water (i.e., dissolved hydrogen) or a combination of both. Melt affects velocity through elastic and anelastic effects20,21,22, while dissolved water primarily affects velocities through anelastic effects23,24. Therefore, using seismic data to discriminate between the presence of melt and water will require determination of the Q structure beneath this region of the mantle. Under the damp conditions we are inferring for the mantle below 60 km, the mantle would be above the solidus, allowing a small amount of melt to be present. The MT and seismic data are most consistent with a small melt fraction ($< 2\%$) in a hydrous environment at depths greater than 60 km, with a maximum melt concentration at about 70 km. At shallower depths, increased melting and melt migration beneath the ridge axis would extract the water from the mantle minerals and the melt is expected to be removed to form the oceanic crust. The water content remaining in the mantle minerals would be significantly reduced in any residual mantle carried off axis that had reached melt fractions greater than $\sim 0.5\%$3,25.

An alternative explanation for the abrupt increase in conductivity below 60 km is that the conductivity is controlled by melt below this boundary. In this case the change in physical properties would still represent a compositional boundary because melting at these conditions requires the presence of volatiles. If melt is the explanation for the conductivity enhancement, then the 60 km transition must act as an impermeable boundary impeding it from rising. However, to account for the anisotropic conductivity, the melt would need to be distributed in tubes parallel to the spreading direction and there is no known mechanism that would cause the melt to reside in such tubes. In addition, the abrupt change from resistive to conductive structure at approximately 60
km is also observed directly beneath the ridge axis where melting is ongoing at depths shallower than 60 km [Baba et al., submitted]. The observation that conductivity remains significantly greater than that for dry olivine at depths up to ~200 km in the Pacific mantle argues for a solid-state conduction mechanism involving dissolved water, because melting at depths greater than about 80 km requires the presence of water, melting at depths greater than about 125 km is difficult even in damp conditions, and the shear wave velocity increases at depths greater than 80 km, suggesting the progressive elimination of melt.

Melting beneath the ridge dehydrates only the uppermost 60 km of the mantle, consistent with petrological models that suggest there is a only a very small degree of melting in the presence of water at greater depths, with higher degrees of melting beginning at about 60 km where the geotherm beneath the ridge axis exceeds the dry solidus. The resulting dry region of upper mantle will have a viscosity significantly greater than the underlying asthenosphere, creating a rheological boundary layer that is compositionally and not thermally controlled. Our observations are broadly consistent with seismic data from the central Pacific that show a discontinuity (G) at 68km depth, corresponding to the same dry/wet transition. This boundary corresponds to the base of the layer of low electrical conductivity and high shear wave velocity observed in the MELT area.

Acknowledgements. We thank Shun Karato and an anonymous reviewer for their comments. We are also grateful to Sash Hier-Mujander and David Kohlstedt for helpful discussions. U.S. participation in the MELT experiment and subsequent analysis was funded by NSF grants through the marine geology and geophysics program, ocean sciences division.
Figure Titles

Figure 1. Cross sections through conductivity models 70-350km east of the SEPR in the MELT area.

Figure 2. Shear wave velocity profile obtained through inversion of Rayleigh wave data 70-350km east of the SEPR in the MELT area.

Figure 3. Comparisons between averaged values of conductivity from the MELT area with laboratory data on mantle conductivity.

Figure Captions

Figure 1. Two model cross sections of conductivity through the region 70-350km east of the SEPR in the MELT area. The two sections show conductivity in the ridge-parallel (x) direction (top) and plate spreading (y) direction (lower). The model was obtained using an anisotropic regularization parameter, α, of 0.1 in the inversion. The key features in the model are the resistive layer above about 60km depth and the underlying conductive region that extends to about 120km depth. The high conductivity region is more conductive in the direction of plate spreading, which is also expected to be the direction of dominant a-axis olivine alignment.

Figure 2. Shear wave velocity profile obtained through inversion of Rayleigh wave data in the same region as Figure 1.
Figure 3. Average 1-D profiles through our conductivity model and theoretical curves based on laboratory data. (a) An isotropic model compared to conductivity of a dry peridotite mantle on a 3Ma geotherm and an adiabat with a 1350°C potential temperature. The upper and lower errors show the effects of a 150°C variation in adiabat temperature. (b) Average conductivities through an anisotropic model compared to the predicted conductivity along the a-axis of olivine shown with estimates of experimental errors. (c) Same as (b) but with the conductivities in the three crystallographic directions shown as labeled. We used an olivine hydrogen content of 1000 H/10^6Si and hydrogen diffusion data^{15} to calculate conductivity using the Nernst-Einstein relation.
(a) Conductivity (S/m) vs. Depth (km)

- Dry Peridotite
- \(\alpha = 10 \)
- \(T_p = 1350 \pm 150^\circ C \)

(b) Conductivity (S/m) vs. Depth (km)

- Dry Peridotite
- \(\alpha = 0.1 \)
- \(T_p = 1350^\circ C \)
- \(1000 \text{ H/10}^6\text{Si} \)

(c) Conductivity (S/m) vs. Depth (km)

- [100]
- [010]
- [001]
- Flow Parallel
- Ridge Parallel
Supplemental Material: Test of Isotropy of Upper 60km.

The profile for dry peridotite significantly overestimates conductivity at depths shallower than approximately 70 km. However, inversions for conductivity structure are not particularly sensitive to variations in the magnitude of conductivity in resistive parts of the model. For example, fits are not significantly changed if the minimum conductivity in the shallow mantle (i.e., depths <60 km) is set to values commensurate with the lab-based profile for a potential temperature of 1350°C. This lack of sensitivity raises the question of whether it is possible to resolve anisotropy or the lack of it in the upper 60 km.

We have run a series of tests to examine whether isotropy is required in the upper 60 km or whether a degree of anisotropy is permitted by the data. In these inversions we use as a starting model a modified version of our preferred model in which the upper 60km is reset to be anisotropic to the same degree as the deeper structure. Because the starting model is different, the new results have a different set of optimal roughness (τ) and closeness (α) values. Inversions at reasonable values of closeness parameter eliminate the anisotropy introduced in the starting model and provide a satisfactory fit to the data, suggesting that anisotropy is not a required feature of our data. Extreme models, for which closeness constraints are negligible, do retain some anisotropy in the upper 60km, but at a reduced amount compared to the starting model. While this result suggests that some anisotropy is possible, the primary result is that the upper layer is less anisotropic than the structure deeper than 60 km. This is in keeping with mineral physics which predicts only a modest amount of electrical anisotropy in dry mantle rocks.\(^1\)

In changing the starting model, there are changes to the resulting models in the conductive region below the 60km lid. A series of models for the same closeness
parameter as our preferred model ($\alpha=0.1$) is shown in supplemental figure 1. The smoother model ($\tau=3$) includes a broader and deeper conductive region than in our preferred model. As τ decreases, the conductive region shoals and narrows. In all cases, however, the anisotropy of this conductive layer is retained, even as the resistive layer above becomes isotropic.

Figure Captions

Supplemental Figure 1. Cross sections of conductivity through the region 70-350km east of the SEPR in the MELT area. The model in (a) is the same as in Figure 1 in the main article and was obtained using an anisotropic regularization parameter α of 0.1 in the inversion with an isotropic starting model. The panels on the right (e-h) show averaged anisotropy through the models. Anisotropy is the log-ratio of laterally averaged conductivity in the direction of plate spreading (y) divided by that in the strike direction (x). A positive anisotropy indicates higher conductivity in the direction of plate motion. (b-d) show three models which were obtained from the model in (a) except that the conductivity in the upper 60km was set to be highly anisotropic in the starting model (conductivity in the ridge parallel direction was an order of magnitude lower than in the plate spreading direction). The imposed anisotropy largely disappears from the inversion models, but is retained within the conductive layer deeper than 60-80km.
