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We consider the application of the EM algorithm to the multipath time
delay estimation problem. The algorithm is developed for the case of determin-
istic (known) signals, as well as for the case of wide-sense stationary Gaussian

signals.



1 Introduction

Sounds radiated from an acoustic point source in the ocean arrive at the receiver over more
than one path. Given prior knowledge of the geophysical parameters characterizing the
channel between source and receiver, the observed multipath delay information can be used
to estimate the location (i.e., range and depth) of the source relative to the receiver. In

this report we consider the application of the EM algorithm to the multipath time delay

estimation,

2 Maximum Likelihood Estimation and the EM Algorithm

Let Y denote the data vector possessing the probability density fr(y;0) indexed by the
parameter vector § € ©. O is a subset of the Euclidean K-space. Given an observed y, the

ML estimate QML is the value of § that maximizes the log-likelihood, that is

: 9
max log fy (y;8) = Opr1 (1)

Suppose the data vector Y can be viewed as being incomplete, and we can specify some

“complete” data X related to Y by
HX)=Y (2)

where H(-) is a non-invertible (many to one) transformation. In the multi-path time
delay estimation problem, the “complete” data could be the observation of the various paths
separately, where the observed (incomplete) data is the sum of the signal contributions from

the various paths.



The EM algorithm is directed at finding the solution to (1); however it does so by making .
an essential use of the complete data specification. The algorithm is basically an iterative

method. It starts with an initial guess Q(O), and let §("*1) be defined inductively by
. — . pln) (r+1) 3
max P {log fx (z;0)/Y = y; 0"} = ¢ (3)

where fx(z;0) is the probability density of X, and E {/X =y; Q(")} denotes the conditional
expectation given y, computed using the parameter value 8("). The heuristic idea here is
that we would like to choose § that maximizes log fx(z;8), the log-likelihood of the complete
data. However, since log fx(z;8) is ﬁot available to us (because the complete data is not
available), we maximize instead its expectation, given the observed data y. Since we used
the current estimate §(™) rather then the actual value of 8 which is unknown, the conditional
expectation is not exact. Thus the algorithm iterates, using each new parameter estimate
to improve the conditional expectation on the next iteration cycle and thus to improve the
next parameter estimate. In Appendix A we give more comprehensive description of the
EM algorithm.

The EM algorithm was first presented by Dempster et al. in [1]. The algorithm was sug-
gested before, however not in its general form, by several authors e.g. (2], [3], [4]. Instances
of the EM algorithm has been suggested for some signal processing problems e.g [5] [6].
The most important work has been done by Musicus [7],[8], who independently suggested
a general class of iterative algorithms, some of them coincide with the EM algorithm, and
applied them to several signal processing problems.

In [1] it is shown that each iteration increases the likelihood, however there is an error
in the convergence proof (theorem 2 of (1]), pointed out Wu, [9]. The proper conditions

that guarantee the convergence of the algorithm to a stationary point of the likelihood are
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given in [9)].

The rate of convergence of the algorithm is exponential, depending on the fraction of the
covariance of the “complete” data that can be predicted using the observed data (theorem
4 of [1]). If that fraction is small, the rate of convergence tends to be slow, in which case
one could use standard numerical methods to accelerate the algorithm.

We nbt,e that the EM algorithm is not uniquely defined. The transformation H(")
relating X to Y can be any non-invertible transformation. Obviously, there are many
possible “complete” data specifications that will generate the observed data. thus the
EM algorithm can be implemented in many possible ways. The way H(-) is specified
(1.e the choice of the “complete” data) may critically affect the complexity and the rate of
convergence of the algorithm. It may also affect the convergence pbint, leading to a different
stationary point for different choices of “complete data”. Thus, the choice of “complete”
data is an important factor in designing an EM algorithm for a problem; an unfortunate
choice of H(-) may yield a completely useless algorithm.

We shall proceed as follows: First we develop the EM -algorithm for the Linear-Gaussian
case. This case covers a wide range of applications. Then we show that for the problem
of interest here-, there is a natural choice of the “complete” data, leading to a surprisingly
simple algorithm to extract the ML estimates. We will conclude by presenting preliminary

simulation results for the deterministic and the stochastic cases.



3 The Linear Gaussian Case

Suppose that Y = H X, where H is a m x n matrix (m < n), and X possesses the following
multivariate Gaussian probability density:

2

-A/2 A
x50 = [ TA0)] " on [ - m@)a OG- n@)] @

where A = 1if X is real valued, A = 2 if X is complexed valued, and  denotes the conjugate
- transpose operation. We shall refer to this case as the Linear Gaussian case. Taking the

logarithm of (4), we get
g fx(2:0) = = log dei (3 A(8)) - 2 (2~ m(®)! 4~ (0)z - m(0)

= —%log det(2/\—7rA(Q)) - ng(Q)A_I(Q)—m(Q)

+ 38 Om©) + Sl @A 0)z - Der(A @)z %)

where tr(-) stands for the trace of the bracketed matrix. Thus

£ {log fx(;6)/y;0™ } = —g log det(zTﬂA(Q)) - gmf(Q)A_-l(e)m(e)
3 ED OmO) + 3m@A @) - Jr(n (@)u) ©)

where 2 = E{z/Y = 40} and ¥t = B {gatjy = y; 8™},
Since X and Y are jointly Gaussian, these conditional expectations are readily available

in the literature (e.g. [10], chap. 5)
2™ = m(@™) +1(6™) [y - H - m(e™)] (7)
o = [1- (™) - H] A(8™) + () ()t (8)
where 1 is the identity matrix and I'(9) is the “Kalman gain” defined by

r©) =A@ A [HA@H"]” (9)
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The EM algorithm is completely specified by ‘e;qs. (6) - (9); the algorithm iterates
between calculating (") and w(*) and maximizing the expression in (6) with respect to .
Each iteration increases the likelihood. We observe that E'{log fx(z;8)/y; Q(n)} (Eq. 6)
and log fx(z;0) (Eq. 5), have the same dependence on §. Maximizing (6) with respect to
0 is the same as maximizing (5) with respect to §. Hence, the EM algorithm essentially
requires the ML solution in the X model which might be significantly simpler than the

direct ML solution in the Y model.

4 Application to Multipath Time-Delay Estimation

Let the mathematical model characterizing the observed signal y(t) be given by

N
y(t) = ) aws(t - w)tn(t) Ti<t<Ty (10)
k=1

where s(t) is the source signal and n(t) is the additive noise. Assuming that N, the number

of paths, is known a-priori, the vector unknown parameters to be estimated is
o — an)T 11
b=(r1, 72,--+,7n, 1, ag,-- ,an) (11)

We shall now consider the estimation of the components of § for the case of deterministic

signals and for the case of stochastic Gaussian signals separately.

4.1 Deterministic Signals

Consider the signal model of (10) under the following assumptions:

1) s(t) is a deterministic (known) signal. We can assume, without any loss of generality,

that f;:’ s*(t)dt = 1.



2) n(t) is a sample function from a zero-mean white Gaussian process with (double-sided)

spectral level of Ny watts/Herz.

Under these assumptions, the log-likelihood function is given by, ([11] Chapter 2)

1 Ty N 2
log fy(y;8) = C - N Jr [y(t) =) oys(t - Tk)} dt (12)
0 JT; k=1

where C is a constant independent of the unknown parameters. To obtain the ML estimate

of all the 74’s and ay’s we must therefore solve the following optimization problem:

T, . N 2
. min / [y(t)—zaw(t—rk)} di (13)
k=1

opurg.apy ¥ T

This is a complicated optimization problem in 2N unknowns. Of course, brute force
can always be used to solve the problem, evaluating the objective function on a coarse
grid to roughly locate the global minimum, and then applying the Gauss method or the
Newton-Raphson or some other iterative gradient-search algorithm. However, when applied
to the problem at hand, these methods tend to be very complex and computationally time
consuming.

Having the EM algorithm in mind, we would like to simplify the optimization problem
associated with the direct ML approach. To apply the algorithm to the problem at hand,
the first step is to specify the “complete” data. A natural choice of “complete” data is
obtained by decomposing y(t) into

N
y(t) = 3 () (14)
k=1

where

:l:k(t) = ays(t - k) + n_k(t) (15)



s

and the ng () are chosen to be mutually uncorrelated zero-mean Gaussian processes satis-
fying

N

> ni(t) = n(t) (16)

k=1

The “complete” data is

T
2(t) = (21(t), 22(t), -, zn (1)) (17)
The relationship between the “éomplete” data and the observed (“incomplete”) data is
y(t) = 17(t) (18)
where 17 = (1, 1,---,1).
Since the “complete” data is Gaussian, and the relationship between z(t) and y(t) is
linear, the results developed for the Linear-Gaussian case can be applied here. The detailed

derivation is given in Appendix B. The resulting algorithm is:

E-step For k = 1,2,...N, compute:

a:i")(t) = afcn)s (t - T,Sn)) + B

N
y(t) = 3 afs (1 - ré"))] (19)

k=1

M-step for k=1,2,..N

T
min / ! [zin)(t) — ags(t — Tk)]2 dt — T,£n+l), a£n+1) (20)

Trik J o,

Perhaps the most striking feature of the algorithm is that it decouples the complicated
multi-parameter optimization into N separate optimization. Each optimization is, in fact,
the optimization associated with the ML estimation of the pair (7, ) given separate
observations of the k** signal path. Thus, the complexity of the algorithm is unaffected by
the assumed number of signal péths. As N increases, we have to increase the number of

ML processors in parallel; however, each processor is maximized seéparately.
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Since the algorithm is based on the EM method, it must converge to a stationary point
of the log-likelihood function, where each iteration increascs the likelihood.

We note that the 8;’s must satisfy the constraint

N
dBk=1 (21)
k=1

but otherwise they are arbitrary free variables in the algorithm. The choice of 8;’s may be

used to control the rate of convergence of the algorithm.

If the observation time 7" = Ty — T; is long compared with the signal duration and with

the maximum expected delay, then

/ V2t n)de » fT .T’ 2 (t)dt = 1 (22)

T;

In this case the optimization required in the M-step (Eq. (20)) reduces to:

M-step
() d (n+1) 93
max A zy  (t)s(t — 7 )dt = 1, (23)
rT
o™t = /T T 0)s(t - ) (24)

The term to be maximized in (23) can be generated by passing a:fcn)(t) through a filter
matched to s(t). Thus, under the assumption of (22), the M-step of the algorithm consists

of maximizing the outputs of N match filters in parallel.

4.2 Gaussian Signals

Consider the signal model of (10) under the following assumptions:

1) s(t) is a sample function from a wide sense stationary zero mean Gaussian process

with spectral density S(w).

10



2) n(t) is a sample function from a wide sense stationary zero mean Gaussian process

with spectral density N(w).
3) s(t) and n(t) are statistically independent.

4) The observation time T is long compared with the correlation time (reciprocal band-

width) of the signal and the noise, i.e., WT/2x > 1.

Under these assumptions, the log-likelihood is given by

~ | ¥ (we) [ - 2
log fy (y;0) = C- { ' +log|| ) ake ™ | S(we) + N(we)
%,‘ | ALy ke 19em |2 S(wg) + N(we) k}::l
(25)
where C' is a normalizing constant, and
1 [T 27
Y(w :—-/ t)e 7¥tdt  wp= . ¢ 26
v = 2= [0 =3 (26)

The summation in (25) is carried over all wy’s in the signal frequency -band. We note
that the log-likelihood function depends only on the differences (7c — Tm) indicating that
; we can only estimate relative delays. We.therefore assume, without any loss of generality,
| that 7y == 0. In that case, 7, k=0,1,2,---,N — 1 are the delay parameters measured
relative to the N'” signal path.

To obtain the ML estimate of the various unknown parameters, we must solve the

following optimization problem:

N
L oin > { ¥ (we) | + log [l D eIk |2 () + N(wg)]}

opara oy Wy ‘ Z{cvzl Qe IV |2 S(wl) + N(wl) k=1

(27)

11
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This a complicated optimization problem. Using t,he-.EM method under the same “com-
plete” data specifications as in the deterministic signal case (Eqs. (14)-(18)), we propose
the following iterative algorithm to solve the optimization problem in (27):

E-step Compute:

A(we; 07117 A(wg; 8™)

W) (wp) = Afwe; 80 + 5
(ITA(U.)g; Q("))I)

(RIS YT CI e

M-step
Tl(n+1) ,’.2("+1) PR TI(Vn+11)
. omax L[G(we)z'r(we)Q—l\I/(n)(we)Q—lz(wg)HogG(wg)] = (n+1) _(nt1) (_+1)
u],u-_)'.---.n:;v wy . al ’a2 yo .’aN
(29)
where
A(w; 8) = S(W)V (W)Y (w) + N(w) - Q (30)
Kf(w) = (aleJ“T‘ageJ‘”?,---,aNe-"“”N) (31)
Q - diag(ﬂlaﬂ?)“"ﬁN) (32)
and
2
Glo) = SN )

- S(w N a?
T+ R St 3

Detailed derivation of the algorithm is given in Appendix C.

5 Preliminary simulation results

The algorithms specified above have been tested using a simple simulation of the physical
situation. We have concentrated more on testing the deterministic signal case. The ideas
presented in this report has been also applied to solve a multi-target direction of arrival

estimate, and the algorithm with some simulation results may be found in [12],[13].
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5.1 Deterministic signals, example 1

Consider the following situation:

¢ The received signal is discrete and consists of 200 time samples.

e There are 5 paths. The relative time delays are 91, 95, 100, 104, and 109 samples.

The signal is a rectangular pulse whose duration is 20 samples, i.e

1. for0<t<20
s(t) =

0. otherwise

The amplitude of the paths are 1., 2,,1.,0.8, and 1.7 respectively.

The noise is white and Gaussian with variance 0.1, (that is the SNR per path is

between 9 to 13 db).

In Fig. i(a) the received signal is plotted. In Fig. 1(b) the output of a matched filter (to
the rectangular pulse) is plotted. We notice that the match filter essentially detects only
one path.

The algorithm specified in Egs. (19),(22),(23) has been applied, using a uniform choice
for the Bi’s. The result, using a random sfarting point, (delays 75,91,107,119,126, ampli-
tudes unifoﬁn]y 1), is given in t,able.Al. To illustrate the performance of the algorithm, we
have plotted in Fig. 2, the output of the M step matched filter for each path, after 1, 5, 10

and 30 iterations.

5.2 Deterministic signals, example 2

In this example we tried to check the robustness of the algorithm to the knowledge of the

exact shape of transmitted pulse. In this example
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e There are 3 paths, the time delays are 95, 100, 105.

The signal is “raised sine” pulse i.e

sin(Zf) for 0 <t <20
s(t) =

0. otherwise

The amplitudes are 1., 2., and 1. respectively.

The noise variance is 0.1

The received signal is plotted in Fig. 3(a). A matched filter output (using the true, raised
sine, signal) is plotted in Fig. 3(b).

We have applied the algorithm above, however, in order to check the robustness of the
algorithm to the precise knowledge of the waveform, we assumed that the transmitted pulse

1s triangular i.e

st for0<t <10

[y

sk(t) =
5(20—1) for 10 <t <20

The results, starting with delays 75., 119. and 126 and unit amplitudes are given in table 2.
The output of the M step matched filter after L, 5, 10, and 30 iterations is plotted in Fig. 4.
5.3 Stochastic signals

Consider the following situation:

e s(t) is a sample function of a discrete, stationary Gaussian process whose power spec-

trum is uniformly 1, between —1/4 < w < 1/4, and is zero elsewhere.

¢ A record of 4096 points from this process was generated, i.e the number of degrees of

freedom (2WT), is 2048.

14



e The observed signal contains the direct path and an additional path, whose relative

delay is 4 samples and its amplitude is 0.7.

¢ The noise is white and Gaussian, with spectral level 0.5, i.e the signal to noise ratio

1s 0 db.

In Fig. 5, the periodogram (in logarithmic scale) of the received signal and its autocorrelation
are plotted. The autocorrelation function is also zoomed, to show the interesting (near the
right delay) region.

The algorithm described in Egs. (28),(29) has been applied, using 8; = 3 = 1/2. The
initial guess was 2.5 for the delay, and 0.8 for the amplitude. The results, i.e the estimate
of the relative delay and amplitude of the echo, is given in table 3. In Fig. 6 the output of
the M-step, (that is a cross-correlation between the direct path and the echo contributions)

15 plotted, zoomed around the interesting region, after 1, 2, 5, 10, 20 and 30 iterations.

15



A The EM Algorithm

densities
Ix(z;8) = fy (H(2);0) - fx/y=y(2;8) (A1)

Taking the logarithm on both sides of (A.1), we obtain

log fy (H(z); 8) = log fx(z;8) ~ log fx/y=y(=; 0) (4.2)

Denote y = H(z) and taking conditional expectations given Y = y for a parameter

value #', we obtain

log fy (;9) = E {log fx(z;6)/Y = y;0'} -
-E {log fxjy=y(X;0)/Y = g;ﬂ'} =Q(8,¢') - H(8,¢') (A.3)

Invoking the Jensen’s inequality, we have that H(8,8') < H(¢',0'). Hence

Q(6,¢) > Q(&',8') = log fy (y; 6) > log fy (y;¢') (4.4)

Eq. (A.4) forms the basis to the EM algorithm. The algorithm starts with an initial

guess Q(O), and let (**1) be defined inductively by

max Q(8,0") = g+ (4.5)

We note that since 8("*1) is the value of # that maximizes Q(Q,Q("“)), then according

to (A.4), each iteration of the algorithm increases the value of log fy (y; 9).

16



B Derivation of the EM Algorithm for Deterministic Sig-

nals

Since the various zx(t)’s are statistically independent Gaussian random processes, it can

easily be verified that the log-likelihood of the “complete” data is

N 1
: log Ix(z;8) = Zlog Ix (zk;0) =C - g::l 2—]1\7—’: /T’:f‘ [xk(t) — ogs(t — rk)]zdt (B.1)

where C' is a normalizing constant and Ny = B¢ - Ny is the spectral level of n(t). It

immediately follows that

Eflogfx(z;0)/Y = y; 6t '} = C'— 2Nk-/ Bt —aks(t—rk] dt (B2
where
N
2(t) = B{=u(t)/ 3 z(0) = (007}, (B3)
k=1

and C' contains all the terms that are independent of . Using Eq. (7) to carry out the
conditional expectation required in (B.3), we obtain Eq. (19). Since the pair 7k, o) enters
the right side of (B.2) only through the k term in the sum, the joint maximization of (B.4)
with respect to the various 7;’s and o4’s decouples into the N separate maximizations as

suggested by Eq. (20).
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C  Derivation of the EM Algorithm for Stochastic Caussian

Signals

Let the “complete” data X be generated by Fourier -analyzing the various 2, (1), that is,
1
X;(wl)7 Tt X;{(wl) ’ X;(wz) > TN X;\’(w2) y 1T (Cl)

X(wi)t X(w)t

where
Xk(w,) = —1— /Tf Ik(t)e_"’w’tdt (02)
\/T T;
For observation time T = Ty —T; long cofnpared with the correlation time of the signal
and the noises, i.e. WT/2x > 1, the various X (we)’s are asymptotically uncorrelated zero-

mean Gaussian random vectors with the covariance matrix E’{X(wg)lf(wg)} = A(wy; 8),

where A(w; 0) is defined in (30). It follows that

log fx(X;0) L log fx(u (X(wg);ﬂ) = - Z{log det [ﬂ’A(UJg;Q)] -i-X*(wg)A_l(wg;Q)X(wg)}

[/

(C.3)
Now,
det A(w; ) = det [S(w)V (@) L(w) + N(w) - @]
= detlN () - @l det[1+ £ Q¥ ()
— N (w)-Q)- 1+ %’)zf(w)q-lz(w)}
= [N, 8eV ()] -S(“g/(# (C4)

XA wi0)X () = XN(0) [S@YL@V! (@) + N(w)- @] ' X(w)

S@)/N(w)
1+ eV (@)Q 1V (w)

XHw) Q! Q' ()Y (w)Q | X(w)

( )

18



']-V%;)XT(w)Q'll(w) ~ G(w)V N (0)Q ' X (w) X (w)Q 'V (w) (C:5)

where G(w) is defined in (33). Substituting (C.4) and (C.5) into (C.3), we obtain

log fx(X;6) =C+ Z[G(we)KT(we)Q_]X(we)XT(W)Q_IK(W) + log G(we)] (C.6)

Wy

where C contains all the terms that are independent of §. It follows that

E{logfl(_)g;ﬂ)/}’;ﬂ(")} = C+Z[G(we)zT(we)Q—‘w(")(;}e)Q‘lz(we)Hog G(we)] (C7)

wy
where \Il(")(wg) = E{L((wg)lf(wg);ﬁ(")}. Observing that Y (wy) = 17 X(w) and using Eq.
(8) to compute the conditional expectation, \Il.(")(wg) 1s given by Eq. (28). Thus, the E-step
of the algorithm consists of the computation of \II(")(wg) for all wy in the signal frequency

band, and the M-step is as defined by Eq. (29).
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Iteration

Path 1

Path 2

3

Path 4

Path 5

Path

L No. Jﬁ»lg(_ei;;—[-;_r;;_—‘Delay Amp. | Delay | Amp. | Delay Amp. | Delay | Amp.
1 ’_E% 0.80 5.655 1.46 | 106.325 | 1.45 | 109.035 | 0.89 | 126.024 0.71
2‘ —?3? 0.164 ;5.009 3.59 |106.962 | 1.64 | 109.785 | 0.95 100.37 | 0.08
5 104.087 0.03 195902 | 2.01 | 108.983 | 2.04 90.124 1.18 | 100.989 | 1.31
lr_ 104.846 | 0.63 | 95.908 | 1.69 108.995 | 1.67 | 91.955 1.44 | 100.946 | 1.01

w_}(r)“_@_[1*04.847 0.64 | 95909 | 1.69 | 108.995 | 1.66 91.956 1.43 | 100.946 | 1.008

Table 1: Deterministic signals, Example 1

lteration | }:;h 1 Path 2 Path 3

N VN_(?_»___Jjrﬁl;)zgéu_Amplitude Delay | Amplitude | Delay Amplitude
1 7 ]]H().Zé; 0.039 100.072 4.069 90.601 0.64
2 | ""]—(;’9‘.'5“2'5"_' 0.707 100.229 3.823 90.777 0.764
5 7 _1—08‘_7;‘ 0.776 100.156 3.68 91.882 0.81
10 —1_07.83 0.89 100.106 3.43 92.795 0.90

1\30 106.043 1.318 100.093 2.448 94.914 1'404_J

Table 2: Deterministic signals, Example 2

reration N, pus—
7 ——-]— o 2.%38 0.789
2 - 72“9é0 1 0.807
5 ] 3.6776 0.706
7 IE‘ N 4.0835 0.698
30 4.2033 0.6918

Table 3: Stochastic signals, Example 1
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