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A psti:act

We consider the application of the EM algorithm to the multipath time

delay estimation problem. The algorithm is developed for the case of determin-

istic (known) signals, as well as for the case of wide-sense stationary Gaussian

signals.
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i Introduction

Sounds radiated from an acoustic point source in the ocean arrive at the receiver over more

than one path. Given prior knowledge of the geophysical parameters characterizing the

channel between source and receiver, the observed multipath delay information can be used

to estimate the location (i.e., range and depth) of the source relative to the receiver. In

this report we consider the application of the EM algorithm to the multipath time delay

estimation.

2 Maximum Likelihood Estimation and the EM Algorithm

Let 1: denote the data vector possessing the probability density hJll; fl) indexed by the

parameter vector fl E e. e is a subset of the Euclidean K-space. Given an observed 1!. the

ML estimate ~ML is the value of fl that maximizes the log-likelihood, that is

max log Jy (y; fl) ~ ~ML
liE8 -- (1 )

Suppose the data vector 1: can be viewed as being incomplete, and we can specify some

"complete" data X related to .i by

H(X) = y
(2)

where H (.) is a non-invertible (many to one) transformation. In the multi-path time

delay estimation problem, the "complete" data could be the observation of the various paths

separately, where the observed (incomplete) data is the sum of the signal contributions from

the various paths.
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The EM algorithm is directed at finding the solution to (1); however it does so by making

an essential use of the complete data specification. The algorithm is basically an iterative

method. It starts with an initial guess fl(O), and let fl(n+l) be defined inductively by

maxEJlogfx(~;fl)/Y = y;fl(n)l == fl(n+l)!lE8 1 - - J (3)

where hi (~; fl) is the probability density of X, and E f . /Y = Ji; fl(n) J denotes the conditional

expectation given 'l, computed using the parameter value fl(n). The heuristic idea here is

that we would like to choose fl that maximizes log hd~; fl), the log-likelihood of the complete

data. However, since log hJ~; fl) is not available to us (because the complete data is not

available), we maximize instead its expectation, given the observed data Ji. Since we used

the current estimate fl(n) rather then the actual value of fl which is unknown, the conditional

expectation is not exact. Thus the algorithm iterates, using each new parameter estimate

to improve the conditional expectation on the next iteration cycle and thus to improve the

next parameter estimate. In Appendix A we give more comprehensive description of the

EM algorithm.

The EM algorithm was first presented by Dempster et al. in f1j. The algorithm was sug-

gested before, however not in its general form, by several authors e.g. ¡2j, (3j, ¡4J. Instances

of the EM algorithm has been suggested for some signal processing problems e.g ¡5j ¡6j.

The most important work has been done by Musicus ¡7J,¡8J, who independently suggested

a general class of iterative algorithms, some of them coincide with the EM algorithm, and

applied them to several signal processing problems.

In ,i 1 it is shown that each iteration increases the likelihood, however there is an error

in the convergence proof (theorem 2 of ¡lD, pointed out WU, !9J. The proper conditions

that guarantee the convergence of the algorithm to a stationary point of the likelihood are
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given In 191.

The rate of convergence of the algorithm is exponential, depending on the fraction of the

covariance of the "complete" data that can be predicted using the observed data (theorem

4 of I i)). If that fraction is small, the rate of convergence tends to be slow, in which case

one could use standard numerical methods to accelerate the algorithm.

We note that the EM algorithm is not uniquely defined. The transformation H(.)

relat,ng X to Y can be any non-invertible transformation. Obviously, there are many

possi ble "complete" data specifications that will generate the observed data. thus the

EM algorithm can be implemented in many possible ways. The way H (.) is specified

(i.e the choice of the "complete" data) may critically affect the complexity and the rate of

convergence of the algorithm. It may also affect the convergence point, leading to a different

stationary point for different choices of "complete data". Thus, the choice of "complete"

data is an important factor in designing an EM algorithm for a problem; an unfortunate

choice of H (.) may yield a completely useless algorithm.

We shall proceed as follows: First we develop the EM algorithm for the Linear-Gaussian

casco This case covers a wide range of applications. Then we show that for the problem

of interest here, there is a natural choice of the "complete" data, leading to a surprisingly

simple algorithm to extract the ML estimates. We will conclude by presenting preliminary

simulation results for the deterministic and the stochastic cases.
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3 The Linear Gaussian Case

Suppose that Y = H X, where H is a m x n matrix (m -( n), and X possesses the following

multivariate Gaussian probability density:

( 21f )-À/2 (.A )f X (;f; fl) = det( -: A (fl) ) exp -"2 (;f - m(fl)) t A -1 (.fl)(;f - m(fl)) ( 4)

where.A = 1 if X is real valued, .A = 2 if X is complexed valued, and t denotes the conjugate

transpose operation. We shall refer to this case as the Linear Gaussian case. Taking the

logarithm of (4), we get

.A 21f .A t
log f xÚ:; fl) = -"2 log det( -: A (fl) ) - "2 (~ - m(fl)) A -1 (fl) (~ -- m(fl))

.A 21f .A t
= -"2logdet(-:A(fl)) - "2m (fl)A-1(fl)m(fl).A .A .A

+ "2~t A -1 
(fl)m(fl) + "2mt(fl)A -1(flh - 2tr(A -1 (fl)xxt) (5)

where t r( .) stands for the trace of the bracketed matrix. Thus

Erlogi,d~;fl)I1l;fl(n)) = -~logdet(2; A(fl))- ~mt(fl)A-1(fl)m(fl)

+ ~(;f(n))tA-1(fl)m(fl) + ~mt(fl)A-l(fl)~(n) - ~tr(A-l(fl)\l(n)) (6)

where ;r(n) = E r ~/Y._ = 1l; fl(n)) and \l(n) = E r xxt iy = 11; fl(n)).

Since X and Y are jointly Gaussian, these conditional expectations are readily available

in the literature (e.g. flOJ, chap. 5)

~(n) = m(fl(n)) + r(fl(n)) (1l - H . m(fl(n)))
(7)

\l(n) = (1 - r(fl(n)) . H) A(fl(n)) + (~(n))(~(n))t
(8)

where 1 is the identity matrix and r(fl) is the "Kalman gain" defined by

r(fl) = A(fl)Ht (H A(fl)Htr1
(9)
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The EM algorithm is completely specified by egs. (6) - (9); the algorithm it.erat.es

between calculating ;¡(n) and \l(n) and maximizing the expression in (6) with respect to fl.

Each iteration increases the likelihood. We observe that E f log hd~; fl)/U; fl(n) L (Eq. 6)

and log hd~; fl) (Eg. 5), have the same dependence on fl. Maximizing (6) with respect to

f! is the same as maximizing (5) with respect to fl. Hence, the EM algorithm essentially

requires the ML solution in the X model which might be significantly simpler than the

direct ML solution in the Y modeL.

4 Application to Multipath Time-Delay Estimation

Let the mathematical model characterizing the observed signal y(t) be given by

N

y(t) = L aks(t - Tk) + n(t) T¡:: t :: Tfk=i . (10)

where s(t) is the source signal and n(t) is the additive noise. Assuming that N, the number

of paths, is known a-priori, the vector unknown parameters to be estimated is

fl=(Ti, T2,...,TN, ai, a2,...,aN)T
(11 )

We shall now consider the estimation of the components of fl for the case of deterministic

signals and for the case of stochastic Gaussian signals separately.

4.1 Deterministic Signals

Consider the signal model of (10) under the following assumptions:

1) s(t) is a deterministic (known) signaL. We can assume, without any loss of generality,

that J~f s2(t)dt = 1.
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2) n( l) is a sample function from a zero-mean white Gaussian process with (double-sided)

spectral level of No wattsjHerz.

Under these assumptions, the log-likelihood function is given by, 0111 Chapter 2)

1 hTf ¡ N J 2log fy(y; ll) = c - - y(t) - L aks(t - Tk) dt
2No T.. k=l (12)

where () is a constant independent of the unknown parameters. To obtain the ML estimate

of all t.he rk's and ak's we must therefore solve the following optimization problem:

rTf ¡ . N J 2
,,~J.~~~T'~N iT.. y(t) -E aks(t - Tk) dt (13)

This is a complicated optimization problem in 2N unknowns. Of course, brute force

can always be used to solve the problem, evaluating the objective function on a coarse

grid to roughly locate the global minimum, and then applying the Gauss method or the

Newton-Raphson or some other iterative gradient-search algorithm. However, when applied

to the problem at hand, these methods 
tend to be very complex and computation ally time

consuming.

Having the EM algorithm in mind, we would like to simplify the optimization problem

associat.ed with t.he direct ML approach. To apply the algorithm to the problem at hand,

the first step is to specify the "complete" data. A natural choice of "complete" data is

obtained by decomposing y(t) into

N

y(t) = L Xk(t)
k=l ( 14)

where

Xk(t) = aks(t - Tk) + nk(t)
(15)
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and t.lie nk(t) are chosen to be mut.ually uncorrelat.ed zero-mean Gaussian processes sat is-

fying

N

L nk(t) = n(t)
k=i

(16)

The "complete" data is

~(t) = (xi(t), x2(t),...,XN(t))T (17)

The relationship between the "complete" data and the observed ("incomplete") data is

y(t) = iT ~(t) (18)

where iT = (1,1,...,1).

Since the "complete" data is Gaussian, and the relationship between ~(t) and y(t) is

linear, the results developed for the Linear-Gaussian case can be applied here. The detailed

deriv.ation is given in Appendix B. The resulting algorithm is:

E_~st~L For k = 1,2, ...N, compute:

x¡nl(t) ~ ,,¡nls (t - Tin)) + ß, ¡y(t) - t, ,,¡nl. (t - T¡n)) J
(19)

l\::~~E for k = 1,2, ...N

iT! ( (n) J 2 (n+1) (n+i)
min xk (t) - aks(t - Tk) dt == Tk , ak
Tk,"'k T; (20)

Perhaps the most striking feature of the algorithm is that it decouples the complicated

multi-parameter optimization into N separate optimization. Each optimization is, in fact,

the optimization associated with the ML estimation of the pair (Tk, ak) given separate

observations of the kth signal path. Thus, the complexity of the algorithm is unaffected by

the assumed number of signal paths. As N increases, we have to increase the number of

ML processors in parallel; however, each processor is maximized separately.
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Since t.he algorithm is based on the EM met.hod, it must. converge to a st.ationary point

of the log-likelihood function, where each iteration increases the likelihood.

We note that the ßk'S must satisfy the constraint

N

L ßk = 1
k=l

(21 )

but. otherwise they are arbitrary free variables in the algorithm. The choice of ßk'S may be

used to control the rate of convergence of the algorithm.

If the observation time T = Tf - Ti is long compared with the signal duration and with

the maximum expected delay, then

fTJ fTJs2(t - Tk)dt ~ s2(t)dt = 1Ti Ti (22)

In this case the optimization required in the M-step (Eq. (20)) reduces to:

~.:step

max rTJ x~n)(t)s(t - Tk)dt =; Tt+1)
Tk JTi

a~n+1) = rTJ x~n)(t)s(t _ T~n+l))dt
JTi

(23)

(24)

The term to be maximized in (23) can be generated by passing x~n) (t) through a filter

matched to s(t). Thus, under the assumption of (22), the M-step of the algorithm consists

of maximizing the outputs of N match filters in paralleL.

4.2 Gaussian Signals

Consider the signal model of (10) under the following assumptions:

i) s(t) is a sample function from a wide sense stationary zero mean Gaussian process

with spectral density S(w).
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2) n(t) is a sample function from a wide sense stationary zero mean Gaussian process

with spectral density N(w).

3) s(t) and n(t) are statistically independent.

4) The observation time T is long compared with the correlation time (reciprocal band-

width) of the signal and the noise, i.e., WT /21r :::: 1.

Under these assumptions, the log-likelihood is given by

logJy(y;fl)=C-2:J N IY(we) 12. 
+ log 

(i 
Lake-JWlTk 12 

S(We) + N(wt)) 1
w, 11 Lk=l ake-JWlTk 12 S(Wt) + N(wt) k=l J

(25)

where C is a normalizing constant, and

1 ~TJY(wt) = 1m y(t)e-JWitdt
yT T,

21rWt = - . f.
T (26)

The summation in (25) is carried over all wi's in the signal frequency band. We note

tliat the log-likelihood function depends only on the differences (Tk - Tm) indicating that

we can only estimate relatiNe delays. We therefore assume, without any loss of generality,

that TN --= O. In that case, Tk, k = 0,1,2,. .., N - 1 are the delay parameters measured

relative to the Nth signal path.

To obtain the ML estimate of the various unknown parameters, we must solve the

following optimization problem:

min '" J I Y(Wt) 12 + log(1 ~ a e-JWlTk 12 S(w) + N( )) 17,~;7.;,~'.::::~J :: 11 Lt=l ake-JWlTk 12 S(Wt) + N(wt) ~ k' t Wt J

(27)
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This a complicated optimizat.ion problem. Using the EM method under the same "com-

plete" dat.a specifications as in the deterministic signal case (Eqs. (14)-(18)), we propose

t.he following iterative algorithm to solve the optimization problem in (27):

~~~tep Compute:

w(n)(we) = A(Wi; ~(n)) + A(Wi; ~(n))llT A(Wi; ~(n)) (i Y(we) 12 _iT A(Wi;~(n))l) (28)

(IT A(Wi; ~(n))i)

M_-ste-L

(n+i) (n+i) (n+i)

'1.,;i.1l~_1 L (G(wdvt(we)Q-iw(n)(wi)Q-iV(wi)+logG(wi)) ~ T~n+i)' T~n+il...' T~~~i)..1...2.......N w, ai ,a2 ,...,aN
(29)

where

A(w;~) = S(w)V(w)Vt(w) + N(w). Q (30)

vt(w) = (aieJWTla2eJWT2,.",aNeJWTN)
(31 )

Q = diag(ßi, ß2, . .. , ßN) (32)

and

G(w) = S(w)jN2(w)~ ,\N ~i + N(w) L.k=i ßk

Detailed derivation of the algorithm is given in Appendix. C.

(33)

5 Preliminary simulation results

The algorithms specified above have been tested using a simple simulation of the physical

situation. We have concentrated more on testing the deterministic signal case. The ideas

presented in this report has been also applied to solve a multi-target direction of arrival

estimate, and the algorithm with some simulation results may be found in !12J,113J.
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5.1 Deterministic signals, example 1

Consider the following situation:

· The received signal is discrete and consists of 200 time samples.

· There are 5 paths. The relative time delays are 91, 95, 100, 104, and 109 samples.

· The signal is a rectangular pulse whose duration is 20 samples, i.e

f 1. for 0 ~ t -: 20

s(t) =
O. otherwise

· The amplitude of the paths are 1., 2., 1., 0.8, and 1.7 respectively.

· The noise is white and Gaussian with variance 0.1, (that is the SNR per path is

between 9 to 13 db).

In Fig. 1 (a) the received signal is plotted. In Fig. l(b) the output of a matched filter (to

the rectangular pulse) is plotted. We notice that the match filter essentially detects only

one path.

The algorithm specified in Eqs. (19),(22),(23) has been applied, using a uniform choice

for the ßk'S. The result, using a random starting point, (delays 75,91,107,119,126, ampli-

tudes uniformly 1 ), is given in table 1. To illustrate the performance of the algorithm, we

have plotted in Fig. 2, the output of the M step matched fiter for each path, after 1,5, 10

and 30 iterations.

5.2 Deterministic signals, example 2

In this example we tried to check the robustness of the algorithm to the knowledge of the

exact shape of transmitted pulse. In this example

13



· There are 3 paths, the time delays are 95, 100, 105.

· The signal is "raised sine" pulse i.e

f sin( ;6)

s(t) =

O.

for a :: t , 20

otherwise

· The amplitudes are 1., 2., and 1. respectively.

· The noise variance is 0.1

The received signal is plotted in Fig. 3(a). A matched filter output (using the true, raised

sine, signal) is plotted in Fig. 3(b).

We have applied the algorithm above, however, in order to check the robustness of the

algorithm to the precise knowledge of the waveform, we assumed that the transmitted pulse

is triangular i.e

f lo t for 0 :: t :: 10

Sk(t) =

110 (20 - t) for 10 , t :: 20

The results, starting with delays 75.,119. and 126 and unit amplitudes are given in table 2.

The output of the M step matched filter after 1, 5, 10, and 30 iterations is plotted in Fig. 4.

5.3 Stochastic signals

Consider the following situation:

· s(t) is a sample function of a discrete, stationary Gaussian process whose power spec-

trum is uniformly 1, between -1/4:: w :: 1/4, and is zero elsewhere.

· A record of 4096 points from this process was generated, i.e the number of degrees of

freedom (2WT), is 2048.

14



· The observed signal contains the direct path and an additional path, whose relative

delay is 4 sarrpleH and it.s amplitude is 0.7.

· The noise is white and Gaussian, with spectral level 0.5, i.e the signal to noise ratio

is 0 db.

In Fig. 5, the periodogram (in logarithmic scale) of the received signal and its autocorrelation

are plotted. The autocorrelation function is also zoomed, to show the interesting (near the

right delay) region.

The algorithm described in Eqs. (28),(29) has been applied, using ßi = ß2 = 1/2. The

initial guess was 2.5 for the delay, and 0.8 for the amplitude. The results, i.e the estimate

of the relative delay and amplitude of the echo, is given in table 3. In Fig. 6 the output of

the M-step, (that is a cross-correlation between the direct path and the echo contributions)

is plotted, zoomed around the interesting region, after 1,2,5,10,20 and 30 iterations.
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A The EM Algorithm

Let H(X)- ,t- where H(.) is a non-invertible (many-to-one) transformation. Express

densities

/¿d~; ll) = hJ H (~); ll) . tK/r =Il (~; ll) (A.l)

Taking the logarithm on both sides of (A.l), we obtain

log Ir (H(~); ll) = log IKJ~; ll) - log IKjr=Il(~; ll) (A.2)

Denote '! =- H (~) and taking conditional expectations given Y = It for a parameter

val ue fj', we obtain

log Ir(lt; ll) = E r log IK(~; ll)/Y = It; ll') -

-Eflog/K/r=Il(X;ll)/Y = It;ll') = Q(fl,ll') - H(fl,fl') (A.3)

Invoking the Jensen's inequality, we have that H (fl, fl') ~ H (fl', ll'). Hence

Q(fl,fl')? Q(ll',fl') == log/r(lt;ll) ? log Ir(lt; fl') (A.4)

Eq. (A.4) forms the basis to the EM algorithm. The algorithm starts with an initial

guess n(O), and let fl(n+l) be defined inductively by

max-Q(fl, fl(n)) == fl(n+1)
~ . . (A.5)

We note that since fl( n+ 1) is the value of fl that maximizes Q (fl, fl( n+1)), then according

to (A.4), each iteration of the algorithm increases the value of log Ir(lt; fl).
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B Derivation of the EM Algorithm for Deterministic Sig-

nals

Since the various Xk(t)'S are statistically independent Gaussian random processes, it can

easily be verified that the log-likelihood of the "complete" data isN N 1 rT/ 2
log!K(~;fl) = L log !Xk(Xkjfl) = c - L - 11 (Xk(t) - aks(t - Tk)J dtk=l k=l 2Nk T¡ (B.1) .

where C is a normalizing constant and Nk
ßk . No is the spectral level of nk(t). It

immediately follows that

J N 1 iT/ J 2Eilog!K(~j Il)/Y = y; fl(n) J = c' - L - (x~n)(t) - aks(t - Tk) dt
k=l 2Nk T¡

(B.2)

where

N
x~n)(t) = Ef Xk(t)/ L Xk(t) = y(t); fl(n) J,

k=l
(B.3)

and C' contains all the terms that are independent of fl. Using Eq. (7) to carry out the

conditional expectation required in (B.3), we obtain Eq. (19). Since the pair (Tk, ak) enters

the right side of (B.2) only through the k term in the sum, the joint maximization of (B.4)

with respect to the various Tk'S and ak's decouples into the N separate maximizations as

suggested by Eq. (20).
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C Derivation of the EM Algorithm for Stochastic Gaussian

Signals

Let the "complete" data X be generated by Fourier .analyzing the various ~k(t), that is,

( ~ì(wd, .:: ' XK(wd,' ~;(W2) , .~. , XK(W2),' ...) t (C.i)K(wdt K(W2)t
where

Xk(WI) = ~ fT¡ xk(t)e-Jw1tdt
vT1T¡ (C.2)

For observation time T = T¡ - Ti long compared with the correlation time of the signal

and the noises, i.e. WT /21f )-)- 1, the various X(we)'s are asymptotically uncorrelated zero-

mean Gaussian random vectors with the covariance matrix Et X(we)xt(we) J = A(we; fl),

where A(w; ll) is defined in (30). It follows that

log h (X; ~) ~ r log f ~Jw,) (X(w,);~) = - r r log det (d(w,;~) 1 + X' (w,)r i (w,; ~)X(w,) J

(C.3)

Now,

detA(w;ll) = det(S(w)V(w)vt(w) + N(w). Q)

= det¡N(w). QJ det(I + ~~:~ Q-iV(w)Vt(w))

= detfN(w). QJ. (1 + ~~:~ Vt(w)Q-iV(w))

( N ) S(w)/N2(w)= TIk=ißkN(W) G(w)
(C.4)

Xt(w)A -I(w; fl)X(w) = xt(w) (S(w)V(w)Vt(w) + N(w). Q) -I X(w)

= -l-xt(w) 

(Q-i _ S(w)/N(w). Q-iV(w)Vt(w)Q-i)X(w)N(w) 1 + ~vt(w)Q-iv(w)N(w)- -
18



- NtW)Xt(W)Q-iX(W) - C(w)Vt(w)Q-iX(w)Xt(w)Q-iV(w) (C.5)

where C(w) is defined in (33). Substituting (C.4) and (C.5) into (C.3), we obtain

log l,reK;~) = c -+ L (C(wdvt(we)Q-i X(we)Xt(wdQ-iV(we) + log C(we) J (C.6)
w,

where C contains all the terms that are independent of~. It follows that

E~ log IK(X; ~)/Y; ~(n) J = C+ L (C(we)Vt (we)Q-i\l(n)(we)Q-iV (we) 

+ log C(we) J (C.7)
wi

where \l(n)(we) = E~ X(we)Xt(we); ~(n) J. Observing that Y(we) = iT X(we) and using Eq.

(8) to compute the conditional expectation, \l(n)(we) is given by Eq. (28). Thus, the E-step

of the algorithm consists of the computation of \l(n) (we) for all We in the signal frequency

band, and the M-step is as defined by Eq. (29).
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llt- J~----
. --- - -._--------_.---. . -.__u_____ .___..__ _.__ _.____._________ ____.___

r--" ~--- -____. _. ,."____ "__0_Iteration Path 1
Path 2 Path 3 Path 4 Path 5----____h_ ________ r---No. Delay Amp. Delay Amp. Delay Amp. Delay Amp. Delay Amp.

1 75.123 0.80 94.655 1.46 106.325 1.45 109.035 0.89 126.024 0.71- u__ _____ f--
2 75.375 0.164 95.009 3.59 106.962 1.64 109.785 0.95 100.37 0.08
5 104.087 0.03 95.902 2.01 108.983 2.04 90.124 1.18 100.989 1.31--

10 104.846 0.63 95.908 1.69 108.995 1.67 91.955 1.44 100.946 1.01
.__.

30 104.847 0.64 95.909 1.69 108.995 1.66 91.956 1.43 100.946 1.008~--, --- ----'--

Table 1: Deterministic signals, Example 1

-.---~r--- -.
Iteration Path 1

Path 2 Path 3

_N~)_.___ ___ ~~lay Amplitude Delay Amplitude Delay Amplitude------.. '----- - -._--

1 110.284 0.039 100.072 4.069 90.601 0.64_u -- ------ ---- ---
2 109.529 0.707 100.229 3.823 90.777 0.764.. _. - ------- 1--- ---

5 108.727 0.776 100.156 3.68 91.882 0.81---- ----- --
10 107.83 0.89 100.106 3.43 92.795 0.90
30 106.043 1.318 100.093 2.448 94.914 1.404

Table 2: Deterministic signals, Example 2

!-~'~e~;;i~~~~Delay L Amplitude- ./,

2

-:...=--=-- ,--=-

2.738 0.789--...- -------- --_____ __ _u

2.980 0.807
---,..

3.6776 0.706------
4.0835 0.698

4.2033 0.6918

5

10

30

Table 3: Stochastic signals, Example 1
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