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It is important to understand the volume backscattering by dense aggregations of a variety of scattering objects such as bubbles or biological targets. This paper addresses the interference of the echoes from randomly distributed targets. The main motivation of the paper is to understand the conditions under which the echo interference may affect the accuracy of the abundance and/or biomass estimation in fisheries and zooplankton acoustics significantly. Our approach consists of two parts. The first part includes analytical analysis, which describes the dependence of the echo interference on the pulse shape of the transmitted signals explicitly. Because of the limitations of the analytical approach, numerical computations based on the Monte Carlo simulations of acoustic backscattering by three-dimensional target distribution were performed. The impacts of the echo interference were studied numerically over a wide range of frequencies, for different pulse shapes and directivity patterns of the acoustic systems, and for various spatial distributions of the targets (abundance), as well as the corresponding target strengths. Using analytical and numerical approaches it was demonstrated that for targets that are uniformly distributed in space, the influence of echo interference on the observed volume backscattering strength is strongly controlled by three main parameters. These are the number of targets in sampling volume, the product of sound frequency and pulse duration, and the degree of tapering of the applied pulses. The numerical example of the abundance estimation of marine organisms is presented. 
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Introduction

The contribution of the echo interference in the acoustic backscattering by aggregated targets has attracted the attention of many researchers (Morse and Feshbach, 1953; Morse and Ingard, 1968; Ishimaru, 1978; Medwin and Clay 1998). Classically, it is recognized that the ratio of the centre-to-centre distance of scattering targets (d) and sound wavelength (() is a main parameter controlling the echo interference. The larger the ratio d / (, the smaller the effect (Grace, 1954; Stanton, 1983, Sakhar and Prosperetti, 1994; Feuillade et al., 1996). 

However, Sakhar and Prosperetti (1994) noted that the echo interference did not vanish abruptly with the ratio d / (, but rather only asymptotically. Therefore, it is interesting to evaluate the decreasing of the echo interference in the transition region in which d / ( is comparable to unity, and obtain more exact criterion for evaluating the significance of the echo interference. 

There are also other reasons for further studies of the echo interference. The calculations made for one-dimensional, i.e, a linear aperture of targets (Bruno and Novarini, 1982), two-dimensional, a planar distribution of scatterers, (Sun and Gimenez, 1992), and three-dimensional (Glotov, 1962; Glotov and Lysanov, 1963; Gorska and Klusek, 1998) cases demonstrated that the parameter d / ( is not the only parameter controlling the echo interference. The geometric factors including the distance between the transducer and the targets, target distributions, and the transducer beam pattern, also have significant influence on echo interference. The factors that have not been considered in a systematic way in previous studies include first, the assumption of a rectangular pulse (Glotov, 1962; Glotov and Lysanov, 1963), second, the plane-wave approximation (Gorska and Klusek, 1998), and third, the numerical computations only performed over  some specific parameter range in (Sakhar and Prosperetti, 1994; Sun and Gimenez, 1994). Therefore, an in-depth study is necessary to further understand which parameters control the echo interference. The numerical approach, free from some approximations necessary for the analytical approach, will also be used in our analysis.

The main motivation of our paper is to determine which parameter, or group of parameters, influences the echo interference for backscattering by three-dimensional and randomly distributed targets that may be densely aggregated. In turn the main formulation of the problem is made, the analytical solutions and analysis are provided and then the numerical analyses using the Monte Carlo simulations of acoustic backscattering by three-dimensional and randomly distributed targets are described. Finally the application of the results to the backscattering by fish and zooplankton is discussed and the justification of the echo-integration method commonly used in abundance and biomass estimation is made.

Echo interference in backscattering by densely aggregated targets: formulation.

The geometry of the backscattering by a three-dimensional aggregation of N randomly distributed targets is illustrated in Figure 1. The far-field intensity I(t) can be expressed as: 
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where t is the time, (1 and c1 describe the seawater density and the sound speed in seawater, respectively. The symbol * denotes the complex conjugation. The function p1(t,
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) corresponds to the pressure of the direct echosounder signal scattered by the ith target located at position 
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. The sums correspond to the superposition of the echoes from N individual targets within the insonified volume. In this paper, we consider only the single scattering and the effect of higher-order scattering is ignored throughout the paper.

The expression Equation (1) can be re-arranged as:
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where
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and
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The first term describes the incoherent summation of the echoes, while the second term corresponds to the coherent, or the interference of the echoes from different targets in the aggregation. The latter is the focus of our paper, with emphasis on the impact of parameters of echosounder and aggregated targets distribution. Typically this term is neglected in the acoustical assessment of biomass of aggregation and it is interesting to understand deeper physical reasons for this.

The pressure p1(t,
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) in Equations (1) – (4) can be expressed as:
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where the function P0(t) describes the envelope of the transmitted pulse, k1 = 2 π f / c  denotes the wave number, with  f  being the sound frequency. The square of the function D defines the composite beam pattern of the transmitter and the receiver. Here 
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 is the backscattering amplitude of target where 
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 for the ith target). Let us remember that backscattering amplitude depends on the individual geometrical dimensions, target tilt angle, acoustical properties of the biological tissue, and the sound frequency (Medwin & Clay, 1998). 

The mean echo signal intensity <I(t)> is studied in the following sections, where the brackets 
[image: image12.wmf] refer to the averaging over realizations, or an ensemble of the aggregation realizations. The different realizations vary with target positions and the target-backscattering properties caused by differentiation of targets in the orientation, size, and tissue properties.

Analytical approach.

 Analytical approach: main solutions and approximations.
This approach is based on the solutions for the mean intensity of the backscattered signal of the echosounder (Equations. (9) and (10) in (Gorska, 2000)). As discussed in that paper the solutions are applicable for the statistically independent scattering targets in terms of the PDFs of the spatial, orientation, size (length), and sound speed and density contrast distributions. Mathematically, a generic multi-variable PDF can be expressed as
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is the vector, describing the main parameters of the ith target (statistical independence of targets). The probability density function 
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 describes the probability of the i–th target at position 
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 with swimming angle and length (i, li , etc. It can be expressed as: 
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In the paper by Gorska (2000), the intensity was averaged over an ensemble of the aggregation realisations different in position, swimming angle and length distributions of the scatterrers. However, the differentiation over the geometrical shape of individuals and acoustical properties of their material were not explicitly expressed. Therefore, the solutions presented here are generalized, introducing the additional averaging over these parameters characterizing the geometrical shape of individual and sound speed and density contrasts. 

By introducing a vector, 
[image: image18.wmf],
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 representing a collection of parameters, to describe the geometrical and acoustical properties of a scatterrer as well as the other parameters that are relevant to the scattering response, the analytical expressions, Equations. (3) and (4) for the mean intensity can then be presented as


[image: image19.wmf]a

r

r

>

<

F

=

-

2

1

1

1

1

)

(

f

N

c

I

incoh

,








(6)


[image: image20.wmf]2

2

1

1

1

)

1

(

)

(

a

r

r

>

<

F

-

=

-

f

N

N

c

I

c

,







(7)

where the 
[image: image21.wmf]a
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 refer to the averaging over 
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- parameters. In the following analysis, the subscript 
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 in the expression 
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 will be omitted for simplicity. 

The functions (1 and (2 have the following forms:
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where the function Wr(
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) represents the probability density function describing the probability of the i – th target to be at position 
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 (the independence of Wr(
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) on i is assumed here). In the following analysis, we assume that the biological-aggregation volume is sufficiently large that the entire sampling volume is inside the aggregation (Figure 1), which means that V in the integrals, Equations (8) and (9) is defined by the sampling volume only. 

The functions (1 and (2 are essentially determined by the geometry of the transmitted signal (the waveform of the pulse, and the transmitter and receiver beam patterns) and by the spatial distribution of the targets. Additional approximations used in the subsequent analysis are: 

(i) the uniform target spatial distribution within the sampling volume; 

(ii) the idealized transducer beam pattern
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where 
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 denotes one half of the 6 dB-beamwidth. The parameters ( and ( are the polar and azimuth angles in the spherical coordinate system;

(iii) two types of the transmitted pulse shapes:

(a) a rectangular pulse:
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(11)

and  (b) a tapered pulse:
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where T is the pulse duration, and  is a constant between 0 and 1. A linear tapering is considered here because a relatively simple analytical solution can be obtained, which will help us to understand the physics of the echo interference more deeply.

By inserting the expressions Equations (10), (11) in Equations (8) and (9), respectively, Equations (6) and (7) can be transformed to
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for the rectangular pulse shape. The Sinc(x) function is defined as 
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 Here Nsampl is the number of targets in the sampling volume and can be obtained by multiplying the target number density inside the sampling volume with the sampling volume 
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 The distance r1 indicated in Figure 1 is equal to 
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For the tapered pulse (Equation 12), the incoherent and coherent components are respectively
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The discussion on these solutions is presented in the next section.

Analytical approach: results and discussion.

A few interesting conclusions can be made using the analytical solutions in cases of the rectangular  and the tapered  echosounder pulses.:

First, for both cases the mean incoherent and coherent intensities, 
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, depend on the total number of targets in the sampling volume, i.e., not only on the number density of the aggregated targets but also on the sampling volume. The latter depends on the echosounder directivity pattern, its pulse duration, and the distance between the echosounder and the aggregation. 

Secondly, as was expected, the dependence of the mean intensities on the total target number in the sampling volume is different for two mean intensity components: 
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are respectively proportional to Nsampl [Equations (13), (15)] and N2sampl [Equations (14), (16)]. 

Thirdly, in the case of a rectangular echosounder pulse, the coherent component of the mean intensity, responsible for the echo interference, depends on a dimensionless parameter k1( = fT, a parameter proportional to the ratio of the pulse length in space to the wavelength. The 
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 oscillates as square of a Sinc – function of this parameter (Equation 14). This implies that for fT = (n+0.5), the intensity 
[image: image50.wmf])

(

t

I

c

 achieves its maxima, while for fT = n, it approaches zero. This result is similar to the result obtained for sound scattering by a uniform layer (Chu and Ye, 1999). The similarity is explained by the uniformity of the spatial random distribution within the sampling volume and by the rectangular shape of pulse. It will be discussed in more details later.
For the tapered pulse, the mean backscattered intensity depends on a dimensionless parameter k1, or fT, having an oscillatory pattern. The characteristic scale of variation is controlled by the parameter (, responsible for the degree of tapering (Equation 12). Similarly, the coherent intensity depends on ( also with a oscillatory pattern and the scale of the variability depends on fT or k1(. Equation (16) demonstrates that the larger (, the smaller echo interference. The range of the ( over which the echo interference is significant depends on k1( or fT.

In summary, the analytical results not only reveal that Nsampl, k1( and ( are the main parameters controlling the echo interference, but also provide guidance for both designing numerical simulations in the future and a better understanding of the results from them.

The Numerical approach.

Formulation.

To numerically model sound backscattering by aggregations of randomly located targets, a number of three-dimensional ensembles of realizations with randomly distributed objects were generated using MATLAB codes. Realizations differ in target locations and target backscattering amplitudes. The Gaussian probability density function is considered for three-dimensional spatial distribution of targets viz.:
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where xk, (k = 1, 2, 3) denotes three components xi, yi, zi of the vector 
[image: image52.wmf]i

r

r

 of the ith target. The vector with components 
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 (k = 1, 2, 3) describes the location of the centre of the aggregation and Sk denotes standard deviation of the respective component xk. These parameters define the dimensions of the domain ocupied by targets.

It is supposed that the random backscattering amplitudes of generated targets are characterized by a uniform distribution in a specified range [fmin, fmax]. The echosounder pulse is also generated numerically. Two types of pulse envelops are used in the simulations: one is a rectangular  window (no tapering) corresponding to Equation (11) and the other is a Gaussian tapering, which is more realistic than a triangular or linear tapering used in Equation (12). The entire sampling volume is assumed to be inside the aggregation. 

For each aggregation realization, the targets, distributed uniformly in the sampling volume, are generated numerically. Then, using the expression of the pressure of the echo, Equation (5), the terms Iincoh  and Ic, Equations (3) and (4), are calculated. Finally the intensity fields averaged over the ensemble of the aggregation realizations are computed. To better understand which parameters control the echo interference, systematic simulations were performed in terms of different depth of the aggregation, various carrier frequencies, pulse durations, shapes of echosounder pulse, target density, and beamwidths of the transducer. 

Results and Discussion.

Backscattering of rectangular pulses.

The results of numerical calculations are presented in Figures 2 a - c, where the dependence of the normalized, mean backscattering intensity on the number of targets in sampling volume is shown. Both incoherent and coherent components of the total intensity, 
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. Different plots refer to the different values of the parameter f T:  fT = 18.5 (Figure 2a), 10.5 (Figure 2b) and 18 (Figure 2c). The averaging was made over 30 realizations. The black points correspond to the mean total intensity. The thick black line refers to a linear regression of the numerically computed data (black points). The error bars correspond to the standard deviation of the total intensity, calculated from the 30 realizations. The grey line refers to the numerically calculated mean incoherent sum of echoes, 
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For the randomly distributed targets the numerical calculations confirm the analytical dependence on 
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 (or fT) of the echo interference term 
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 with a 
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 dependence as described in Equation (14). Clearly, the computations demonstrate that the echo interference is important at fT = 18.5 (Figure 2a) and fT = 10.5 (Figure 2b) but not important at fT = 18 (Figure 2c). The importance is expressed in the large difference of the slopes of the black and grey lines in both of the first two plots. The similarity of the slopes in the third plot means neglected echo interference. It is also shown in Figures 2a and 2b that the echo interference is stronger for fT  = 10.5, the difference in the slopes of the black and grey lines is about 39 times, than for fT  = 18.5  when the difference is about 13 times. It is noteworthy that the dependence on 
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 in the case of randomly distributed targets, is the same as in the regular uniform spatial distribution case.


The Sinc-function dependence of the term 
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on the k1( indicates that even for randomly distributed targets, the coherent component is very sensitive to the fT - parameter. A small variation in fT from fT = (n+0.5) to fT = n, corresponding to the change over a sampling volume with thickness of (/4, significantly changes the term 
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from maximum value to zero. It can be explained in the following way. The scattering contribution from an arbitrary layer with a thickness of  will be compensated by the scattering contribution from the adjacent layer with the same thickness. When f T = n, there are even number of spherical layers within the sampling volume. The destructive summation is nearly complete and makes the intensity 
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 close to 0. On the other hand, if the number of spherical layers within the sampling volume (fT = (n+0.5)) is an odd number, there is always a layer whose contribution is not compensated and hence results in the maximum in the echo-interference part of the intensity. It is emphasized that the uniformity of the distribution of biological targets inside the sampling volume and the rectangular pulse shape are extremely important factors in this explanation.

Backscattering of tapered pulses.

It was demonstrated that the slope ( of the linear regression curve (see, for example, black curves in Figures 2 a - c) is sensitive to fT and ( that characterizes the degree of pulse tapering. The dependence of ( on ( is presented in Figure 3 for different fT values as indicated in the figure legend. 

It can be seen from the figure that for all selected fT values, the slopes tend to approach 1 as ( increases. This means that for heavily tapered pulses (large () there is basically no difference between the mean total intensity and the mean incoherent sum of the echoes, 
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The range of (, at which the echo interference can be neglected, also depends on the fT parameter. The effect can be neglected when (’s are approximately larger than 0.075 for fT = 18.5 and 0.17 for fT = 9.5.  It is also demonstrated that the dependence on ( is oscillatory (Figure 3). The period of oscillations depends on the parameter fT.

The simulations confirm that the sensitivity of the slope ( to fT parameter depends on (. The smaller the (, the larger the sensitivity. The largest sensitivity is for a rectangular pulse (( = 0). At ( = 0 the slope varies from 1 at fT =18 (no echo interference) to 7.5 (significant echo interference) at fT = 9.5. All these results are in agreement with the results obtained analytically (see Equation (16)).

Application to the backscattering by fish and zooplankton: echo-integration method.

The results obtained in the previous sections are useful for the justification of the echo-integration method employed in the acoustical surveys for abundance estimation of biological populations. This method is based on the linear dependence of the mean total backscattered intensity on the number of animals in the sampling volume. The echo interference is commonly neglected in almost all of the field applications since in general it is small compared with the incoherent backscattering (Medwin and Clay 1998).

The echo-integration method is also used to estimate the abundance of high-density populations. Large densities were observed for krill populations in the Antarctic region, up to 60 000 individuals per cubic metre (Everson, 2000). To account for the echo interference that increases with increasing number of animals in the sampling volume, it is reasonable to check whether the echo interference is important or not under such high animal density conditions. To accomplish this some calculations were performed and the results are presented in Figures 4a and 4b. The calculations were made based on the generic parameters from the Simard EK60 echosounder, which is commonly used in krill abundance estimation, with an operating frequency of 38 kHz. The pulse duration is 1.0204 msec and the frequency bandwidth is 2.4 kHz. The standard deviation for the scattering length of target is 20% of the mean scattering length and number of realizations is 30. The calculations were made for the number of animals in sampling volume varying over the range [2.5x105 – 7x105 individuals). This range corresponds to the density range [1.2x104 – 3.2x104] individuals per cubic metre (no./m3) with the beamwidth of the echosounder being 6.86 degree and the upper border of sampling volume at 50-m depth. Figure 4a is obtained for the 40% tapered pulse (( = 0.2). The bottom plot refers to the rectangular pulse and is presented for comparison with the top one. Similar to Figures 2 a – c, black curves, presented in the plots, correspond to the linear regression of the numerically calculated and normalized mean total intensity (black points), and grey curves correspond to the normalized intensity of the incoherent sum of echoes. 

Clearly, for heavily tapered pulse (Figure 4a), the difference between the slopes of the presented curves is negligible. This means that the echo interference is not significant and does not disturb the linear dependence of the mean total intensity on the number of animals in the sampling volume. This is the justification for using the echo-integration method in abundance estimation even for a densely aggregated krill patch, or swarm. 

It is interesting to compare the results between the top and the bottom plots. There is a large difference in the slopes of the curves in the bottom plot. This means that the echo interference is significant in the backscattering for a rectangular pulse. From the fact that the calculation parameters used to obtain these two plots differ only in (: ( = 0.2 for Figure 4a and ( = 0 for Figure 4b, it is strongly suggested that the tapering of pulse is the main reason that the echo interference is not significant even for such dense krill populations.

The applicability of the echo-integration method in acoustical-abundance estimation for densely aggregated krill is demonstrated above for the sound frequency at 38 kHz. However, it can be extended easily to other commonly used frequencies such as 120 kHz using the knowledge discussed earlier that the echo interference is controlled by three dimensionless parameters: parameters fT and ( and the number of animals in sampling volume. Considering the actual parameters of echosounder EK 60, for similar tapering parameter ( and Nsampl at 38 and 120 kHz, the major difference is in the controlling parameters concerns fT. At 120 kHz this parameter is approximately 3.2 times larger as that at 38 kHz. Since the echo interference decreases with the increasing of this parameter, it can be concluded that the effect at 120 kHz is smaller than that at 38 kHz, indicating that at 120 kHz the echo interference is negligible and the echo-integration method is applicable in acoustical-abundance estimation of a densely aggregated krill patch, or swarm (see Figure 4a for comparison with the case for 38 kHz).

Conclusions

We consider that the understanding of the echo interference in the acoustic backscattering of densely aggregated targets is improved by our analysis. The analytical solutions were obtained for the backscattering by randomly distributed targets with different pulse shapes. Based on these solutions, the relatively important parameters controlling the echo interference were discussed. In addition, numerical analyses based on the Monte Carlo simulations were also presented. The following conclusions can be made:

1. The main parameters that control the echo interference are:

· Nsampl, the total number of targets in the sampling volume

· fT (or k(), the ratio of the pulse duration to the period of the CW signal

· (,  one half of the ratio of the durations of the tapering pulse part to the total pulse.

The echo interference is stronger for larger Nsampl, smaller fT, and smaller (.

2. The dependence of the echo interference, or coherent intensity, 
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on the Nsampl implies that the density of the targets in the sampling volume, the pulse duration, the depth of the observation, and the width of the directivity pattern of the echosounder will all have an impact on the echo interference.

3. For the rectangular echosounder pulse and uniform random spatial distribution of targets inside the sampling volume the echo interference component, 
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 oscillates in the same way as the backscattering due to a uniform homogenous layer - proportional to the square of  Sinc(k(). 

4. For a tapered pulse the coherent
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also oscillates as a function of k( and the scale of the oscillations depends on the parameter (.

5. The dependence on the tapering parameter ( is also oscillatory and the period of the oscillations depends on k(.

Our results provide a deeper understanding of the echo interference produced by the non-vanishing contribution from the coherent backscattering even with randomly distributed targets. They also, moreover, justify the use of the echo-integration method commonly employed in fish and zooplankton abundance estimations with commercially available echosounders. Even for very large densities of krill aggregations, the effect is not important because of, in the main, the tapering of echosounder pulses.
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Figure Captions 

Figure 1.  A diagram of the volume-backscattering configuration in three dimensions.

Figures 2 a - c. Results of the numerical analysis for a rectangular, echosounder pulse for: (a) fT = 18.5, (b) fT = 10.5, and (c) fT = 18. 

The dependencies of the mean normalized echo intensity on the number of targets in sampling volume for the mean normalized total intensity (black points) and mean normalized incoherent sum of echoes, 
[image: image70.wmf])
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 (grey line) are presented in each plot. The thick black line refers to a linear regression of the numerically computed points. The bars correspond to the standard deviation of the total intensity. The slopes of the black and grey lines are shown next to them. 

The numerical calculation were done for 20% standard deviation of fluctuations of backscattering length of individual targets. The averaging was made over the 30 realizations. 

Figure 3. The results of the numerical analysis for a tapered echosounder pulse. dependence of the slope of the liner regression curve (, on the parameter ( for different fT = 18.5, 9.5 and 18. The other calculation parameters are the same as for Figures 2 a - c.

Figures 4 a and b. Justification of the echo-integration method application. The results of numerical analysis for the tapered echosounder pulse (a) and rectangular pulse (b). The calculations were done for echosounder frequency 38 kHz, pulse duration 1.0204 msec, ( = 0.2, std for the scattering length of target 20% and the number of realizations was 30. The calculations were made for the number of animals in the sampling volume varying over the range [2.5 105 - 7 105]. This range corresponds to the density range [1.2 104 – 3.2 104] individuals per cubic metre in the case of a width of echosounder directivity pattern 6.86 degree and the upper border of sampling volume being at 50-m depth. 
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