Measurements of 220Rn and 222Rn and CO$_2$ emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture

S. Giammanco
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, I-95123, Catania, Italy (giammanco@ct.ingv.it)

K. W. W. Sims
Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

M. Neri
Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Piazza Roma 2, I-95123, Catania, Italy

1. Introduction

Measurements of 220Rn and 222Rn activity and of CO$_2$ flux in soil and fumaroles were carried out on Mount Etna volcano in 2005–2006, both in its summit area and along active faults on its flanks. We observe an empirical relationship between (220Rn/222Rn) and CO$_2$ efflux. The higher the flux of CO$_2$, the lower the ratio between 220Rn and 222Rn. Deep sources of gas are characterized by high 222Rn activity and high CO$_2$ efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO$_2$ efflux. Excess 220Rn highlights sites of ongoing shallow rock fracturing that could be affected by collapse, as in the case of the rim of an active vent. Depletion both in 220Rn and in CO$_2$ seems to be representative of residual degassing along recently active eruptive vents.

1. Introduction

[2] Measurement of CO$_2$ and radon emissions on active volcanoes provide a demonstrated geochemical tool to identify and monitor increased magmatic and tectonic activity.

[3] Carbon dioxide is, after water vapor, the most abundant gas dissolved in magma. Because of its low solubility in basaltic melts [Pan et al., 1991], CO$_2$ is also one of the first volatile components to be released from magma during its migration toward the surface, and is therefore an important indicator of magmatic activity at depth. While CO$_2$...
fluxes are typically greatest from the most magmatically active conduits, significant CO\textsubscript{2} emissions also occur along faults and fissures from the volcanoes flanks [Allard et al., 1991; Aiuppa et al., 2004; D’Alessandro et al., 1997; Giammanco et al., 1995, 1998a, 1998b], and can thus be used to map hidden subsurface faults (i.e., high porosity regions).

[1] Radon is a noble gas and the only naturally occurring radioactive gas. It has three isotopes: 222Rn (radon), 220Rn (thoron), and 219Rn (actinon). Radon is a short-lived decay product derived from the 238U decay series, with a half-life of 3.8 days. Thoron is a decay product derived from the 232Th decay series and has a relatively short half-life (55s) that makes it useful in discriminating sectors with very fast soil-gas transport and/or Th-rich mineral outcrops. Actinon is part of the decay series of 235U and has such a short half-life (4s) that is neglected in geochemical exploration. Although few concurrent measurements of radon and thoron measurements have been previously reported, elevated radon emissions are grossly correlated with high CO\textsubscript{2} emissions; thus 222Rn provides an additional means to identify increased magmatic activity and map active, high porosity regions. In principle, 222Rn, because of its short half-life, has the additional and unique advantage of being able to constrain the timescales of degassing. However, because the main source of the measured radon (shallow soil degassing, deep magma degassing or both) is undetermined, the nature and relevance of the temporal constraints from 222Rn remain uncertain.

Figure 1. (a) Digital Elevation Model (courtesy of M. Pareschi research group, INGV Pisa) based on 2005 topographic data. Black lines are the main dry and eruptive fracture fields developed in the summit area between 1998 and 2006. Open circles numbered from 1 to 8 represent the locations of the sampled sites in the summit area (higher than 2700 m above sea level). BN1 and BN2 are the two pit craters inside the Bocca Nuova crater. TdF, Torre del Filosofo. (b) Locations of the other sampled points (the open circles indicate sites P39 and P78; the dashed wide circle indicate the Zaf area). Black lines indicate the main faults cutting the volcano; gray lines represent the position of the main rift zones. See text for details.
To better understand the nature of the processes controlling Rn emissions in volcanic systems we conducted a systematic survey of discrete radon and CO₂ efflux measurements in soil gases at the summit area and flanks of Mount Etna. Measuring CO₂ and both isotopes of radon (222Rn, with $t_{1/2} = 3.85$ d, and 220Rn, with $t_{1/2} = 55$ s) from the same samples enables us better constrain the relationship between radon degassing and CO₂ flux and the different half-lives provide important constraints on the source of the radon gas. As we will show, the concurrent measurements of Rn and CO₂ not only provide an important perspective on the timescales of magma degassing, but also provide a means to understand and potentially even forecast the development of important structural changes in an active volcano.

2. Background

2.1. Recent Structural Evolution of Mount Etna

Volcanoes undergo frequent and intense changes in morphology due to the constructive/destructive processes associated with magmatism and tectonism. Mount Etna (Italy) is one of the best examples of a volcano that has been rapidly changing its summit morphology [Behncke et al., 2004]. The present-day summit region is composed of a main central crater named Voragine (VOR), surrounded by three younger near-continuous active craters (North-East Crater or NEC, Bocca Nuova or BN, South-East Crater or SEC), formed in 1911, 1968 and 1971, respectively [Chester et al., 1985] (Figure 1). The volcano also has three fracture zones of volcanic rifting [Acocella and Neri, 2003, and references therein], converging toward the summit area: the NE, S and W Rifts (Figure 1b). Etna’s summit area is also affected by extensional processes in part related to spreading phenomena that affect the eastern to southwestern flanks of the volcano [Neri et al., 2004, and references therein]. All these processes produce wide fracture fields around and inside the summit craters, recently arranged in a structural system directed approximately N-S (Figure 1) [Neri and Acocella, 2006]. In 1998–2001 this system consisted of a N-S fracture zone with orthogonal extension. In 2004 the fractures propagated toward the SE, cutting the SEC and triggering the 2004–2005 eruption [Burton et al., 2005; Neri and Acocella, 2006]. On 12 January 2006 an explosive episode occurred at VOR which widely changed the morphology of the summit area. After this activity, the ridge of rock which separated the VOR from the BN was near completely destroyed and the two summit vents today show a common rim which borders a new single and wider crater (Figure 2).

2.2. Previous Measurements of CO₂ and Radon on Mount Etna

As recently known from literature [Abdoh and Pilkington, 1989; Ciotoli et al., 1999; Baubron et al., 2002; Tansi et al., 2005], near-surface faults are likely to be sites of high soil degassing and in particular of elevated radon and CO₂ emissions. Consequently, the discrete and/or continuous monitoring of these gases can provide important perspective on the dynamic state of faults [Burton et al., 2004; Neri et al., 2007], as well as providing an indicator of potential eruptive activity [Alparone et al., 2005; Neri et al., 2006].

Etna is an important source of volcanic CO₂ on Earth [Gerlach, 1991], even during periods of quiescence. During the last decades many studies have been carried out on Mount Etna regarding both the spatial and the temporal variations of diffuse soil CO₂ emissions, but not as many studies have been carried out on radon emissions (for an extensive review, see Aiuppa et al. [2004] and Burton et al. [2004]). For the most part, studies on radon were focused on temporal variations of soil 222Rn emissions measured with remote sensors set in a continuous mode [Badalamenti et al., 1994; Giammanco and Valenza, 1996; Alparone et al., 2005; Neri et al., 2006]. Only in a very few cases were soil CO₂ and soil 222Rn investigated together, but limited to the spatial variation of their concentrations at 50 cm depth in the ground [Aubert and Baubron, 1988; Badalamenti et al., 1994].

Here we describe the importance of concurrent radon and CO₂ flux measurements in both the monitoring the activity of a volcano like Etna, as well as understanding and mapping the development of the important structural and morphological changes.

3. Analytical Methods and Sampling Strategy

3.1. Soil Radon and Thoron Measurements

Soil radon and soil thoron measurements were carried out using a Durridge RAD7 radon meter (http://www.durridge.com/). The RAD7 measures concentrations of both 222Rn (radon) and 220Rn (thoron) in gas phase, by exclusively collecting radon and then counting the alphas emitted by the
decay of their respective daughter nuclides ^{218}Po ($t^{1/2} = 3.04$ min) and ^{216}Po ($t^{1/2} = 0.145$ sec). The soil and fumarole radon and thoron are pumped from the ground at 40 cm depth by an internal pump and their measurement require approximately fifteen minutes pumping in the field, in order to reach equilibrium with the measured daughter nuclide ^{218}Po. The WHOI instruments were calibrated by Durridge prior to each field campaign.

3.2. Soil CO$_2$ Eflux Measurements

[11] Carbon dioxide effluxes were measured in soil and fumarole emissions using the accumulation chamber method, which consists of measuring the rate of increase of the CO$_2$ concentration inside a cylindrical chamber opened at its bottom placed on the ground surface. The chamber has an internal fan to achieve an efficient gas mixing and is connected with a portable NDIR (nondispersive infrared) spectrophotometer (PP Systems, UK, mod. EGM4). The change in concentration during the initial measurement is proportional to the efflux of CO$_2$ [Tonani and Miele, 1991; Chiodini et al., 1998]. This is an absolute method that does not require corrections linked to the physical characteristics of the soil. We tested the method in the laboratory with a series of replicate measurements.
of CO₂ efflux from a barrel filled with an artificial soil having similar permeability as that of the average soils of Etna; CO₂ was let in through a small pipe at the bottom of the barrel at increasing flows controlled by a digital flowmeter. The average error was about ±5% and the reproducibility in the range 200–1600 g m⁻² d⁻¹ was ±5%.

3.3. Sampling Strategy

[12] A survey of combined discrete field measurements of radon and thoron activities and of CO₂ flux in soil and fumarole gases was carried out on the summit area of Mount Etna in early September 2005. Three sites (numbered 1 to 3 in Figures 1 and 2) were in moderate-temperature fumarolic fields (with significant steam emissions and outlet temperature between about 105°C to 260°C, Table 1) located on the northern and western edges of VOR, on evident fractures running parallel to the outer crater rim. Two sampling sites (4 and 5 in Figure 1) were selected near the summit craters of Mount Etna, in low-temperature fumarolic fields (outlet temperature of about 83°C, Table 1). They were located on fracture fields at Torre del Filosofo (hereafter named TdF; ~2950 m above sea level) and Belvedere. Both of these fracture fields are characterized by fumarolic activity due to boiling of a shallow water table and intense diffuse degassing related to active gas release from the central feeder system of the volcano [Aubert and Baubron, 1988; Pecoraino and Giammanco, 2005]. Measurements were repeated at site 4 in July 2006.

[13] Last, sites 6, 7 and 8 were located inside some of the eruptive vents that opened during the 2002–03 eruption [Andronico et al., 2005; Neri et al., 2005] both on the northern and the southern upper flanks of Etna (Figure 1); these sites were still emitting steam at the time of sampling.

[14] Eleven more sampling sites were selected on the lower flanks of Mount Etna, in areas characterized by anomalous diffuse emissions of volcanic gas [Giammanco et al., 1995, 1998a, 1998b; Aiuppa et al., 2004; Pecoraino and Giammanco, 2005]. Ten of these sites were surveyed in June 2006 in the Etna eastern flank, near the villages of Zafferana Etnea and Santa Venerina (“Zaf” area in Figure 1). One of these sites, namely P78, shows soil CO₂ flux values that are much higher than those of the other sites of this area and are sometimes comparable to those measured at the summit fumaroles. The origin of the gas emitted at this site is magma that accumulates at depths between ~4 and ~10 km along the main feeder system of Etna [Bruno et al., 2001; Aiuppa et al., 2004; Pecoraino and Giammanco, 2005]. Within the present study, this site was first measured during the September 2005 survey.

[15] Last, an additional site (P39) was surveyed in July 2006 on the lower SW flank of Mount Etna. This site is characterized by huge diffuse degassing that is produced by a magmatic source located at great depth beneath Mount Etna [Giammanco et al., 1998a; Caracausi et al., 2003; Pecoraino and Giammanco, 2005].

4. Results

[16] The results and uncertainties of the geochemical measurements are listed in Table 1. Radon values ranged from 232 to 104,300 Bq m⁻³, thoron values range from 10 to 23,350 Bq m⁻³, and CO₂ effluxes ranged from 28 to 26,634 g m⁻² d⁻¹. Covariance among the measured parameters, both geochemical and environmental (air temperature and pressure, outlet temperature) was evaluated statistically. The most significant correlations were found between CO₂ efflux and outlet temperature values (R = 0.88) and between radon and thoron values (R = 0.66). The former is a typical correlation found in volcanic and geothermal areas [e.g., Chiodini et al., 2005], whereas the latter has previously been observed in other active geodynamical contexts [e.g., Yang et al., 2005].

[17] Plotting radon and thoron data versus CO₂ flux data on a log-log scale (Figure 3), we observe that (1) both ²²²Rn (Figure 3a) and ²²⁰Rn (Figure 3b) activities increase with increasing CO₂ efflux up to about 1000–2000 g m⁻² d⁻¹, at which point they reach a maximum and decrease with continued increases in CO₂ flux, and (2) the ratio of (²²⁰Rn/²²²Rn) is inversely correlated with CO₂ efflux (R = 0.61), with a few notable exceptions, namely the VOR summit samples and the 2002 vents samples from the NE region. As will also be discussed below, the observation that several samples have (²²⁰Rn/²²²Rn) > 1 has important implications for gas residence and transport times.

4.1. Comparison of Data With a Two-Component Degassing Model

[18] The behavior of CO₂ and radon gases during their transport to the surface can be modeled taking into account the marked difference in the half-lives of the ²²²Rn and ²²⁰Rn.
Table 1. Values of the Parameters Measured in the Sampling Sites at Mount Etna, Divided by Area

<table>
<thead>
<tr>
<th>Sampling Site</th>
<th>Date of Sampling</th>
<th>Latitude (UTM-ED50)</th>
<th>Longitude (UTM-ED50)</th>
<th>Air Temp., °C</th>
<th>Air Press., mbar</th>
<th>Outlet Temp., °C</th>
<th>CO₂ Efflux, g m⁻² d⁻¹</th>
<th>²²²Rn, Bq m⁻³</th>
<th>Error ²²²Rn, ±Bq m⁻³</th>
<th>²²⁰Rn, Bq m⁻³</th>
<th>Error ²²⁰Rn, ±Bq m⁻³</th>
<th>²²⁰Rn/²²²Rn</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2/9/2005</td>
<td>499473</td>
<td>4178524</td>
<td>5.1</td>
<td>683</td>
<td>260.0</td>
<td>14,902</td>
<td>2259</td>
<td>1025</td>
<td>3119</td>
<td>1165</td>
<td>1.380</td>
</tr>
<tr>
<td>2</td>
<td>2/9/2005</td>
<td>499473</td>
<td>4178524</td>
<td>5.1</td>
<td>683</td>
<td>105.0</td>
<td>3705</td>
<td>3271</td>
<td>596</td>
<td>2308</td>
<td>469</td>
<td>0.706</td>
</tr>
<tr>
<td>3</td>
<td>2/9/2005</td>
<td>499549</td>
<td>4178376</td>
<td>5.1</td>
<td>683</td>
<td>105.0</td>
<td>3705</td>
<td>3271</td>
<td>596</td>
<td>2308</td>
<td>469</td>
<td>0.706</td>
</tr>
<tr>
<td>TdF</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1/9/2005</td>
<td>500101</td>
<td>4176686</td>
<td>4.7</td>
<td>712</td>
<td>83.8</td>
<td>2440</td>
<td>18,167</td>
<td>15,750</td>
<td>807</td>
<td>10</td>
<td>0.044</td>
</tr>
<tr>
<td>5</td>
<td>7/19/2006</td>
<td>500101</td>
<td>4176686</td>
<td>10.0</td>
<td>718</td>
<td>83.1</td>
<td>3712</td>
<td>8770</td>
<td>1175</td>
<td>104</td>
<td>432</td>
<td>0.012</td>
</tr>
<tr>
<td>Belvedere</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7/24/2006</td>
<td>500932</td>
<td>4176770</td>
<td>7.8</td>
<td>735</td>
<td>82.5</td>
<td>1999</td>
<td>4775</td>
<td>3340</td>
<td>220</td>
<td>0.224</td>
<td></td>
</tr>
<tr>
<td>7/2002–03 Vents</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/9/2005</td>
<td>500809</td>
<td>4181654</td>
<td>8.1</td>
<td>752</td>
<td>70.5</td>
<td>3710</td>
<td>3271</td>
<td>2303</td>
<td>1925</td>
<td>5256</td>
<td>1.253</td>
</tr>
<tr>
<td>8</td>
<td>1/9/2005</td>
<td>500138</td>
<td>4176386</td>
<td>4.5</td>
<td>716</td>
<td>139.2</td>
<td>263</td>
<td>5932</td>
<td>1576</td>
<td>10</td>
<td>10</td>
<td>0.002</td>
</tr>
</tbody>
</table>

a VOR, Voragine vent; TdF, Torre del Filosofo.
Figure 3. Correlations between (a) \(^{222}\text{Rn} \) “activity” and \(\text{CO}_2\) efflux and (b) \(^{220}\text{Rn} \) “activity” and \(\text{CO}_2\) efflux measured at all sampling points. Grey arrows indicate the effect of increasing flux of \(\text{CO}_2\) as a carrier gas. Assuming \(\text{CO}_2\) is the marker of relatively “old” magmatic gas, its increase up to about 2,000 g m\(^{-2}\) d\(^{-1}\) reduces air contamination (where air is assumed not chemically equilibrated with the soil), thus producing concurrent increases in both \(^{222}\text{Rn} \) and \(^{220}\text{Rn} \). This effect is less evident in the case of \(^{220}\text{Rn} \), suggesting that \(^{220}\text{Rn} \) has decayed out of the magmatic gas and its inventory is dominated entirely by shallow soil ingrowth and degassing. For values of \(\text{CO}_2\) efflux higher than about 2,000 g m\(^{-2}\) d\(^{-1}\) both radon and thoron decrease and show an inverse correlation with \(\text{CO}_2\). This change in behavior is probably due to dilution of both Rn isotopes because the \(\text{CO}_2\) flux becomes so high that it overwhelms the shallow source of Rn. The one exception to these trends is represented by the 2002 vent sites, which show very low \(^{220}\text{Rn} \) values, as will be shown in detail in Figure 7.
These two isotopes are produced in soils, rocks or magma by alpha recoil input from the decay of the parent nuclides [Tanner, 1964; Krishnaswami et al., 1984]. If the source and process producing the measured radon can be determined, then the existence of radon isotopes and their relative abundances place important constraints on the timescales of degassing.

For the purposes of this study, we categorize these different sources of radon as either (1) “deep-magmatic degassing,” meaning the radon in the gas is coming from the magma, or (2) “shallow soil degassing,” in which it is assumed that the Rn is coming from shallow surficial volcanic rocks and minerals and being carried upward along permeable pathways, such as faults and fractures. In this latter case the “shallow” source is somewhat nebulous. The shallow source composition could be volcanic tephra and lavas, in which case the parental (228Ra/226Ra) will be similar to that of magma, or it could be altered rocks and/or mineral deposits and incrustations with a variety of different (228Ra/222Ra) activities.

In our modeling we assume that radon degassing is controlled predominantly by advection. Radon’s large size and short half-life significantly limit its diffusivity (the length-scale of radon diffusion ranges from a few meters in dry air to about 10 cm in water [Tanner, 1964; Fleischer and Mogro-Campero, 1978]), and radon’s overall low abundances require it to be carried by other gases (e.g., CO₂), whose advective flux is controlled by pressure gradients [e.g., Shapiro et al., 1982; Toutain et al., 1992; Baubron et al., 2002].

The short and markedly different half-lives of 222Rn and 220Rn, relative to the timescales of magmatic (deep) and fumarolic (shallow) degassing, require explicit consideration of supported ingrowth and unsupported decay. In this regard, it is important to note that radon is a noble gas and partitioned into the magmatic gas, whereas its parents and grandparents (Ra, Th, U) are all lithophile and non-volatile and thus preferentially partitioned into the magmatic gas, whereas its isotopes are unsupported and will decay according to their respective half-lives. In this simple end-member scenario, measurement of (220Rn) in the gas, because of its 55 second half-life, places strict and rather fast limits on the timescale of gas migration from the magma source to the surface (i.e., <5 min). (222Rn) because of its much longer half-life, will be maintained in the gas for several tens of days. Thus if the magma gas transport time is greater than 5 min, but less than a few days, the magmatic gas will be entirely dominated by 222Rn and the (220Rn/222Rn) will be zero. There are very few constraints on traveltime of magmatic gas after it is exsolved from magma. Studies on magma chambers dynamics and magma residence times on some volcanoes, including Etna, based on (210Pb)-(226Ra) disequilibrium [Gauthier and Condomines, 1999] or (210Po)-(218Po) disequilibrium [Le Cloarec and Pennisi, 2001] in crater gases model residence times of gas inside the magma, and assume “instantaneous” times (≪1 day) for 222Rn gas transfer to the surface within volcanic conduits after gas release from the shallow (a few hundred meters deep) magma. Magmatic gas that leaks through the volcano’s flanks is certainly slower, both because it comes from a deeper magma and because it travels through rocks with a lower permeability than that of open volcanic conduits, but it is reasonable to infer that it takes some days to reach the surface, and that the 220Rn of the

radioactive equilibrium with its source much sooner, and as a consequence, a “young” gas will have a high (220Rn/222Rn), but low concentrations/activities of (220Rn) and (222Rn). Eventually both (220Rn) and (222Rn) grow into radioactive equilibrium with their supporting parents and the (220Rn/222Rn) activity ratio in the gas approaches (220Rn/222Ra) of the source. Once the gas is no longer in equilibrium with its input source, then the radon isotopes are unsupported and will decay at a rate proportional to their respective half-lives (Figure 4b). Because of the very large difference in their half-lives, 220Rn decays much faster than 222Rn, and the (220Rn/222Rn) becomes diminishingly small in a matter of a few minutes.
magmatic gas has entirely decayed and this gas is essentially a ^{222}Rn-dominated CO$_2$-rich gas.

Alternatively, the radon could be coming from shallow sources, namely “soil and rock degassing” along the porous conduit walls. Since the pathways for gas to travel through rocks and soil are highly irregular, it is likely that the gas stream interacts extensively with the porous wall rocks and that this component contributes significantly to the total radon budget. In this scenario, the measured ^{220}Rn and ^{222}Rn concentrations and $^{220}\text{Rn}/^{222}\text{Rn}$ are a function of the parental isotope abundances and the effective residence time of the gas in the “shallow soil” source. In this end-member model, the measured ^{220}Rn constrains the timescale of shallow gas migration to being less than five minutes. This is a more reasonable timescale and is consistent with the findings of Giammanco et al. [1998a], who found remarkable air contamination (~95%) in many high degassing sites and even in near-summit fumarole gases with outlet temperature of about 700°C.

The third and most likely possibility is that deep magmatic gases are mixing with gases equilibrated in shallow porous soils. Figures 5 and 6 show a simple model of closed system ingrowth of ^{220}Rn and ^{222}Rn within soil, mixed with a fraction of magmatic (“old”) CO$_2$, containing ^{222}Rn but no ^{220}Rn. The solid curve on the ($^{220}\text{Rn}/^{222}\text{Rn}$) versus ingrowth time in Figure 6 shows ingrowth time for shallow gas migration.
the soil since the system was last purged of radon (essentially an approximation to the soil-gas residence time). As the weight fraction of the \(^{222}\)Rn in the system that comes from the “old” component increases the \((^{220}\text{Rn}/^{222}\text{Rn})\) ratios decrease. As expected, the lowest \((^{220}\text{Rn}/^{222}\text{Rn})\) ratios are seen in systems with the shortest soil-gas recovery time and, presumably, the highest CO\(_2\) flux. In detail, the mixing trajectory expected will depend on the age and origin of the CO\(_2\) (CO\(_2\) exsolved from a \(^{226}\text{Ra}\)-rich aquifer could have a much higher \((^{222}\text{Rn})/\text{CO}_2\) than CO\(_2\) exsolved at depth from a magma: potentially explaining why fumarolic emissions may tend to lower \((^{220}\text{Rn}/^{222}\text{Rn})\), as seen on Figure 7). The radon isotope systematic can also be considered in terms of the relative flux of \(^{222}\text{Rn}\) into the system carried by the “old” CO\(_2\) component. As the \(^{222}\text{Rn}\) flux alone is enhanced or diminished (due to changes in the \((^{222}\text{Rn})/\text{CO}_2\) of the carrier gas), the \((^{220}\text{Rn}/^{222}\text{Rn})\) ratios will decrease or increase, respectively, following a time-invariant shift. If we assume an increasing flux of magmatic CO\(_2\) into the system, with constant \((^{222}\text{Rn})/\text{CO}_2\), then the expected result is a time-variant shift and the decrease in the \((^{220}\text{Rn}/^{222}\text{Rn})\) ratio is accompanied by a fall in soil-gas ingrowth time.

[26] This model is qualitatively consistent with the observed negative correlation between \((^{220}\text{Rn}/^{222}\text{Rn})\) ratio and CO\(_2\) flux. Our hypothesis is that this negative correlation represents mixing between

Figure 5. Schematic of closed system ingrowth model of \(^{220}\text{Rn}\) and \(^{222}\text{Rn}\) within soil, then diluted before analysis with a fraction of “old” CO\(_2\), containing \(^{222}\text{Rn}\) but no \(^{220}\text{Rn}\).

Figure 6. Simple model of closed system ingrowth of \(^{220}\text{Rn}\) and \(^{222}\text{Rn}\) within soil, then diluted before analysis with a fraction of “old” CO\(_2\), containing \(^{222}\text{Rn}\) but no \(^{220}\text{Rn}\). Contours show the proportion (weight fraction) of the \(^{222}\text{Rn}\) in the system that comes from the “old” component. The solid line represents soil gas, where the time is the time since the system was last purged of radon (an approximation to the soil-gas residence time). Curves assume that the parental soil activity ratio \(\left\{\left(^{226}\text{Ra}/^{226}\text{Ra}\right)\right\}; \left\{\left(^{232}\text{Th}/^{238}\text{U}\right)\right\} = 1\). Vertical arrow shows the effect of enhancing the \(^{222}\text{Rn}\) “magmatic” flux, due to changes in the \(^{222}\text{Rn}/\text{CO}_2\) of the carrier gas. Inclined arrow shows the expected effects of increasing CO\(_2\) flux into the system (assuming that soil-gas ingrowth time falls as a result), with constant \(^{222}\text{Rn}/\text{CO}_2\).
two end-member components: (1) a shallow soil gas with low CO$_2$ flux and high (220Rn/222Rn) and (2) a deep, magmatic gas with high CO$_2$ flux and low (220Rn/222Rn). The shallow degassing component has a high (220Rn/222Rn) as a result of recent ingrowth and short transport times, as the radon is generated near the volcano’s surface. The deep magmatic component, on the other hand, is “old” and dominated entirely by 222Rn (as the transport time is greater than 5 min and so the unsupported 220Rn has decayed away entirely). When the flux rate of this deep magmatic component is high, the CO$_2$ flux increases and the abundance of magmatic 222Rn increases significantly, lowering the (220Rn/222Rn). This increased magmatic gas flux rate has the additional effect of reducing the residence time of the shallow soil gas, this reduced soil residence time serves to even further lower the total contribution of 222Rn and 220Rn from this shallow soil component.

[27] Mount Etna soil and fumarolic gases almost always show an appreciable if not remarkable air contamination [Giammanco et al., 1998a]. If this air contamination is shallow and “young” (i.e., it has not chemically equilibrated with the soil), at modest discharge rates of CO$_2$, where air contamination is likely to be highest, there will be dilution of the 222Rn (both soil and magmatic) as a result of air mixing. With higher magma gas efflux rates, up to 2000 g m$^{-2}$ d$^{-1}$, the potential for “air” contamination is substantially reduced and the pressure gradients from the moving gas can draw the degassing radon from a large area in the shallow soils, resulting in the observed relationship between CO$_2$ efflux and 222Rn concentrations presented in Figure 3a. In the case of 220Rn a similar direct correlation with increasing soil CO$_2$ effuxes (up to about 2000 g m$^{-2}$ d$^{-1}$) is not equally evident, suggesting that 220Rn has decayed out of the magmatic gas and its inventory is dominated predominantly, if not entirely, by shallow soil ingrowth and degassing. For values of CO$_2$ efflux higher than about 2,000 g m$^{-2}$ d$^{-1}$ both 222Rn and 220Rn decrease and show an inverse correlation with CO$_2$. The most reasonable explanation for this change in behavior is that the flux of the carrier gas (CO$_2$) becomes so high that it overwhelms the shallow source of Rn isotopes and thus dilutes them both. The one exception to these trends is from the measurements of the 2002 vent sites,
which show very low \(^{220}\text{Rn}\) values; these data will be discussed in detail below.

4.2. Evidence for Old Magma and Recent Shallow Faults From Anomalous \(^{220}\text{Rn}/^{222}\text{Rn}\)

[28] Some sites do not seem to follow the general relationship observed between \(^{220}\text{Rn}^{}/^{222}\text{Rn}\) and \(\text{CO}_2\) flux showing markedly higher (light grey arrow in Figure 7) or lower (open arrow in Figure 7) \(^{220}\text{Rn}\) activities than the expected behavior. In the latter case, \(\text{CO}_2\) efflux values were also lower than expected. It is noteworthy that both of these unique data sets pertain to a well-defined geographic setting. Excess \(^{220}\text{Rn}\) (relative to \(^{222}\text{Rn}\) and \(\text{CO}_2\) flux) was measured only at the three sites sampled on the VOR crater rim (open circles in Figure 7), whereas depletion in \(^{220}\text{Rn}\) coupled with lower-than-expected \(\text{CO}_2\) fluxes was measured only at the 2002 vents (open diamonds in Figure 7).

[29] The higher than expected \(^{220}\text{Rn}\) can be explained by a very shallow source of thoron, which could be \(^{232}\text{Th}\)-rich fumarolic incrustations and/or a higher release of \(^{220}\text{Rn}\) to the atmosphere because of ongoing rock fracturing near the surface. Although both of these situations may apply in the case of the VOR fumaroles sampled, the latter seems more probable, particularly in view of the recent collapse fractures observed in the ground at all three sites (Figure 2). The structural evolution that the summit area around the VOR and BN craters underwent in the months following our September 2005 survey in the summit area also provides support for this later hypothesis. Similar high \(^{220}\text{Rn}\) emissions relative to \(^{222}\text{Rn}\) have been observed in other seismically active areas and have also been explained as microfracturing of shallow rock weeks to months before moderate earthquakes [Yang et al., 2005].

[30] Depletion in \(^{220}\text{Rn}\) together with lowering of \(\text{CO}_2\) efflux values, as observed in the 2002 vents sites, can be explained by residual degassing from the 2002–2003 magma intrusion that is cooling down inside the eruptive fissures at a depth which is likely to be on the order of hundreds of meters below the surface. In this case, the transport mechanism of gas could approach the ideal case of magmatic gas rising through a conduit with minimal contribution of radon isotopes from the wall rocks, as described above. The 2002 fissure system is actually wide open, thus with a very high ground permeability, but it is structurally stable because no further fracturing occurred after the eruption. Therefore the source of the gases that are convectively released from the 2002 vents, including water vapor, is deep enough and thus old enough to result in complete thoron decay.

[31] Considering the above discussion, the six sites pertaining to VOR and 2002 vents areas deviate from the general observation that \(^{220}\text{Rn}^{}/^{222}\text{Rn}\) ratio correlates with \(\text{CO}_2\) efflux. When these anomalous data are excluded the observed correlation is greatly improved, with a coefficient \(R\) of 0.82 (dark grey area in the plot of Figure 7). On the basis of this general correlation, the TdF site shows the greatest contribution of deep-sourced gas, or the highest velocity of gas. Although sites such as P78 and P39 show geochemical evidence of much deeper sources of gas than that of TdF, as described above, these do not show indication of a very deep origin both of radon and of \(\text{CO}_2\). This can be explained considering the interaction between the deep gas and the shallow groundwater table, that is ubiquitous in the Etna area and whose thickness in places reaches several hundreds of meters [e.g., Aiuppa et al., 2004]. Water-gas interaction promotes dissolution of both \(\text{CO}_2\) and \(^{222}\text{Rn}\), causing their depletion in the undissolved residual gas phase passing through groundwater. In these cases, the residual gas phase is enriched in \(^{220}\text{Rn}\) produced in shallow soil layers above the water table. As a result, sites P78 and P39 (Figure 7) have undergone a shift of values toward a “shallower” source of gas.

5. Conclusions

[32] The geochemical survey carried out on Mount Etna shows that independent of the type of gas emission (soil gas, low- or medium-temperature fumarolic gas), the following conclusions can be drawn:

[33] 1. The “activities” of \(^{220}\text{Rn}\) and \(^{222}\text{Rn}\) with the soil \(\text{CO}_2\) efflux appear to follow a general empirical relationship (Figure 7) that is a function of the mechanism of gas transport toward the surface.

[34] 2. This relationship provides perspective on the type and depth of the gas source, and is more constraining than simply using the ratio between radon and thoron alone.

[35] 3. The state of stress within the shallow rocks near the sampling locations can also be important; rock stress could be induced by a local stress field
related either to the instability of the rim of active volcanic craters, or to an impending earthquake.

[36] 4. Exceptions to the observed empirical relationship between 220Rn/222Rn versus CO$_2$ efflux provide information on local conditions such as ongoing rock fracturing (causing thoron excess) or residual degassing from cooling magma intrusions (causing thoron and CO$_2$ depletion).

[37] 5. Geochemical interactions involving deep 222Rn, and CO$_2$ and relatively shallow groundwater cause partial dissolution of the deep gases, leading to a more complex interpretation of the data. Other processes occurring at the fumarole sites, such as water condensation under sub-boiling conditions, may cause partial radon and CO$_2$ dissolution in condensates. However, all of these effects apparently do not significantly alter the information given by the inter-correlation among the studied parameters, namely the relative depth of the gas source and level of local rock stress.

[38] The characterization of gases based on 220Rn, 222Rn and soil CO$_2$ flux shown in the present work therefore could be considered as an absolute method, at least for Mount Etna, and could be easily applied to other areas of this volcano where anomalous diffuse degassing occurs along active faults that could produce earthquakes with ground fracturing. A similar approach is going to be tested also in other active volcanoes such as Stromboli and Vulcano islands (southern Italy).

Acknowledgments

[39] This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia (S.G., M.N.) and by the Dipartimento per la Protezione Civile (Italy), projects V3 6/28-Etna (M.N.) and V5/08-Diffuse degassing in Italy (S.G.), and NSF EAR 063824101 (K.W.W.S.). This work benefited greatly from conversations with D. Pyle, T. Mather, P. Gauthier, and M. Neri (M.N.) and V5/08-Diffuse degassing in Italy (S.G.).

References

Fleischer, R. L., and A. Mogro-Campero (1978), Mapping of integrated radon emanation for detection of long-distance