Cruise Report W-49 Scientific Activities Undertaken Aboard R/V Westward St. rhomas - Key West November 28,·1979 - January 9, 1980 (R. lDng) Sea Education Association ~ Woods Hol~, Massachusetts Cruise Report W-49 St. Thomas - Key West November 28, 1979 - January 9, 1980 R/V Westward Sea Education Association Woods Hole, Massachusetts SHIPBOARD DRAFT .. " PREFACE This cruise report outlines the scientific activities for the forty- ninth cruise of the R/V Westward. These activities fall into two categories: a traditional academic program offered purely and directly for the students' scholastic benefit; and, a program of research and student projects in which the students' skill and drive and curiosity determined the scope and benefit of their participation. Emphasis was on study and investigation uniquely available aboard a sailing oceanographic research vessel. The scientific method was emphasized. An atmosphere conducive to successful scientific activity was provided by cooperative and capable nautical and scientific staffs. Captain Sid Miller cooperated with and assisted the scientific staff in an exemplary manner above and beyond the call of duty. The mates put the ship on station and kept her there for scientific operations. They were cooperative and capable in all respects. Engineer Gary Manter kept machinery and electrical equipment in excellent order and could be counted on for emergency repairs to scientific equipment. Steward Sally Kaul kept staff and students well fed. Her scientific background provided additional assistance to the science staff. Assistant Scientists Rob Moir and Rindy Ostermann were enthusiastic, energetic, and capable. They are to be commended for their work. Three visiting scientists and a visiting journalist added their ex- pertise to W-49. Mr. Will Ravenel of Florida State University studied the relatively untapped area of Caribbean Harpacticoid Copepods. Will intro- duced the students to the little studied area of benthic microfauna in in- teresting and entertaining lectures. His broad experience in oceanography was especially appreciated in the early days of W-49. Dr. Gary Faber of ii i I I , l the College of Charleston sought information on Caribbean trace metals and the ship's effect on trace metal analysis. His lectures greatly enhanced the ship's chemistry program. Ms. Nancy Murden, a graduate student ip Biology at the Citadel investigated vertical migration and brought a quest for graduate credit aboard Westward, a first for the program. Nancy's enthusiasm for every phase of the program including watch standing, dawn clean-up, and galley duty was appreciated. Mr. Ken Pierce of Time Magazine was a tireless investigator and an unparalleled student of all there was to learn aboard the R/V Westward. His curiosity, warmth, and friendliness was a privilege for participants in W-49 to experience. In addition, Ken produced an excellent, well-written report on S.E.A., Westward, and W-49 in the January 28, 1980 issue of Time Magazine. As Chief Scientist I extend my personal thanks to the staff, visitors, and students of w-49 for their cooperation. iii Donald M. Drost Chief Scientist Charleston, S.C. TABLE OF CONTENTS PREFACE ii CONTENTS iv CHARTS AND ILLUSTRATIONS vii I. INTRODUCTION 1 A. Cruise Summary 1 B. Cruise Track 2 C. Itinerary 7 D. Ship's Complement 8 II. ACADEMICS 10 A. Lectures 10 B. Science Watch 10 C. Individual Projects 11 III. COOPERATIVE PROGRAMS 12 A. Cooperative Ship Weather Observation Program 12 B. Neuston Sampling 12 C. Shark Tagging Program 13 IV. LONG TERM S.E.A. PROGRAMS 14 A. Marine Mammals 14 B. Pelagic Bird Observations 14 C. Spiny Lobster Larvae Program 14 V. ISLAND MASS EFFECTS 16 A. The Effect of an Island on Phosphate Upwelling (M. Bombelles) 18 B. Island Mass Effect: Determination of Upwelling (G. Montgomery) 18 C. Phytoplankton Distribution and the Island Mass Effect (S. Troll)19 VI. VERTICAL MIGRATION STUDIES 20 A. Vertical Migration of Euphausiids (D. Berler) 20 B. Analysis of Vertical and D~urnal Variations in Zooplankton 21 Feeding (R. Edwards) iv C. Diurnal Vertical Migration in Mesopelagic Bioluminescent Fish 21 (J. Johnson) VII. CORAL REEF STUDIES 22 A. Coral Reef Zonation (J. Collins) 22 B. Growth Form and Wave Intensity: A Study of Echinometra lucunter 23 (A. Durbin) C. The Response of Oreaster reticulantus to Light (S. Greenberg) 24 D. Microscopic Organisms in Corals (J. Henshel) 24 E. Reef Fish Zonation (S. Kennedy) 24 F. Reef Fish: Interspecific Agression (L. Ritter) 26 VIII. OTHER STUDIES 27 A. Caribbean Distribution of Halobates micans (S. Allison) 27 B. Marine Mammal Acoustics (B. Block) 28 C. Identification and Distribution of Marine Mammals (A. Rivkin) 29 D. Trace Concentrations of Soluble Iron,off the Leeward Islands of 29 the Lesser Antilles (A. Braaten) E. Correlation of Wind and Barometric Pressure in the Eastern 30 Caribbean (B. Brodie) F. Aerodynamics of the Flying Fish Cypselurus heterurus (P. Fellenbaum) 31 G. Feeding Behavior of the Magnificent Frigatebird (G. Lermann) 32 H. Reliability of Loran C in the Eastern Caribbean (P. McDowell) 32 I. Identification of Antartic Intermediate Water (D. Merrill) 33 J. Low Angle Sextant Altitude Sights (B. Parrott) 33 K. Use of Bird Counts as Indicators of Ocean Surface Productivity 34 (L. Quesenberry) L. Spiny Lobster Larvae Distribution in the Straits of Florida and 34 the Old Bahama Channel (L. Ragosa) IX. VISITING INVESTIGATOR ABSTRACTS A. Harpacticoid Copepods Inhabiting Caribbean Coral Sands (W. Ravenel) B. Trace Metals in the Caribbean (G. Faber) v 35 35 36 ~(., /' X. C. An Investigation of the Diurnal Vertical Migration of and Mysid Populations in Deep and Shallow Waters D. A Journalist at S.E.A. (K. Pierce) ISLANDS A. St. Barthelemy B. Martinique C. St. Lucia D. Aves Island E. Virgin Islands F. Norman Island G. Great Inagua Appendices A. Demonstration Organisms on W-49 B. Bird Sightings Reported During Cruise W-49 C. Summary of Bird Sightings Reported DUring Cruise W-49 D. Aves Island Organism List E. Marine Mammal Sightings F. Halobates Data G. Hydrocast Station Data H. Neuston Net Tows I. Phytoplankton Net Tows J. Marine Mammal Hydrophone Stations K. Spiny Lobster Larvae Stations L. Other Data Sources vi Euphausid (N. Murden) 36 37 38 38 39 39 39 41 42 43 44 45 45 47 47 48 50 51 54 54 55 55 57 ---------- ------------------------------------------- CHARTS AND ILLUSTRATIONS Item R/V Westward W-49 Logo Charts 1 - 5: W-49 Cruise Track Sea Flora Triton Trumpet Coryphaena hipparus Diplora labyrinthiformis Chart 6 - St. Lucia Euphausia krohnii Echinometra lucunter Gorgonia ventalina Beau Gregory Megaptera novaenglia~ Balaenoptera acutorostrata Cypselurus heterurus Saba Island Halobates micans Chart 7 - Spiny Lobster Larvae Stations Stenella plagiodon with Santa Claus Artist Page Roger Long Cover Barbara Block Title Page Rindy Ostermann 2 Ginny Lermann 7 Ginny Lermann 9 Rindy Ostermann 13 Anon. 15 Greg Montgomery 17 Dan Berler 20 Ann Durbin 23 Anon. 25 Lianne Ritter 26 Barbara Block 28 Barbara Block 29 Rindy Ostermann 31 Judy Henshel 43 Greg Montgomery 44 Anon. 56 Jack Drost & Sally Kaul 57 vii I. INTRODUCTION A. Cruise Summary The session of Introduction to Marine Science offered aboard the R/V Westward on her forty-ninth cruise was structured about ship operations in the Eastern Caribbean and the Southwest North Atlantic. The academic program included lectures, supervised laboratory and field work (Science Watch), and individual student projects. Emphases reflect the interests of the students, opportunities inherent to the cruise track, and the expertise of the shipboard and visiting staff. Subject matter treated in the academic program encompassed physical, biological, chemical, and geological oceanography in not necessarily equal quantities. Oceanographic stations of W-49 were scheduled to serve the data collection needs of students, staff, and visiting investigators. On Leg 1, between the U.S. Virgin Islands and Martinique, stations included hydrocasts in the Anegada Passage, bottom sampling on Saba Bank, and routine data collections which are discussed in sections III & IV of of this report. On Leg 2, between Martinique and the British Virgin Islands, work included oceanographic stations conducted around St. Lucia to study its island mass effect, simultaneous surface, mid-depth, and deep plankton net tows in the vicinity of Aves Island, an ecological survey of Aves Island, and routine work cited above. In and near the British Virgin Islands reef studies were conducted. On Leg 3, between the British Virgin Islands and Great lnagua, in addition to routine work, Navidad and Silver Banks were crossed in search of Humpback Whales and to obtain shallow water plankton data. On Leg 4, between Great Inagua and.'Key West, work centered on Spiny Lobster larvae studies in the Old Bahama Channel and the Gulf Stream. I (" ~ t 41:: ( "/ N ". 7 6 60W \ 1 30 '1. """, ,f I ~ ~ I c:; ••.. . ~ S·=:::::- 120 ,. " .. .• t.z\.~-~' ... #-Itmduras ~ pe. ~ I I· I ~~M~t."'"L "115 : (1 Sf: L.L'tIA o ~ i ~ 110N CHART i:: Cruise Track of W-49 !t:I::l ! • ("') a ..... en ~ 1-3 "1 III ~ 65· Ii 3()' ~ 636 ~ULj ; (III iLl 31\' , \ . .",11111' , ,?~, J('" r~;" ,', I t:r~' I ! .... I I A..'" .'" ~'~".J~ , .. ·· .. '··',',··0 i ..... t 3 ,'. oj lour~ I -'---i ... '. \j. N~I~'·' ••............. , ...... J... .. \ ' ' .. \ .: ...... . CHART 2 ". ,...., '-. 30' , 4 '., ....... \ \ ... '.. \, \ '-. , \" ... \\ .. . '\ .,..5; \ .. '- .'. \ .. t ~ • N c.o • • o \1-10 ..... " __ "" ""fr:' _.,.'\'D0 ST. VINCENT CHANNEL H-! c; Sii .. ~ ---_._-----i->--------------~=~..:===~===--====~=======-~=== CHART 6: St. Lucia 17 ------~~-.~----- ~--------------~----~--~. -- -_._- ----------- A. The Effect of an Island Mass on Phosphate Upwelling Mark Bombelles Abstract The purpose of this study was to try to determine whether or not the conical shape of an island mass causes upwelling of phosphates and therefore other nutrients. Samples were collected at various depths from eight hydro- casts situated at selected points around the island. Two were taken to windward of the island in Atlantic water, two were taken in the channels to either side of the island, and four were taken to leeward of the island (See Chart 6). Each cast consisted of six Nansen bottles spaced evenly on the wire with the last bottle being at a depth near the bottom. The results showed a definite increase in phosphate concentrations to leeward of the island mass. However, due to the small amount of data collected complete conclusions have not been drawn as to its origin. B. Island Mass Effect: Determination of Upwelling Through Density Current Analysis Greog Montgomery Abstract Studies were done near St. Lucia to determine whether the island's mass could cause upwelling on the leeward side by causing Atlantic currents to eddy there as they flow around the island. Eight hydrocasts were done around the island; two in the Atlantic; one in either channel; and four on the leeward side (See Chart 6). Nansen bottles were used to collect water samples at various depths, and these water samples were analyzed for temperature, salinity, and density. It was hoped that data could be collected which would be accurate for computing sigma-t values which could then be used for estimating realistic geostrophic flow patterns. Due to errors in titration, the salinity data was considered invalid and therefore no concrete conclusions were made. 18 Temperature data, however, was considered valid and conclusions were drawn about the island mass effect through this data. It appears that colder waters are forced up from the depths as the currents collide with the island. This causes the temperatures in the 50 to 300 meter range at stations 9, 10, & 11 to be lower than the waters found in the stable water columns to the windward and far leeward sides of the island (stations 8, 12, & 14). Whether these colder waters affect the productivity of the island's ecosystem could be determined by nutrient samples. It has been concluded that there has been some mixing present near the windward shore, above the sills and close to leeward as shown by the temperature data. Better data is necessary to draw conclusions as to whether or not this is an upwelling effect. C. Phytoplankton Distribution and the Island Mass Effect Susan Troll Abstract Phytoplankton distribution and how it is affected by the flow of water around the island was investigated on this cruise. Attention was given to eddy formation and its affect on phytoplankton. Data were collected by taking eight surface tows with a 65 ~ net around the island of St. Lucia: two channel stations (H7 & H10), two stations on the windward side of the island (H8 & H9), and four stations on "ltrhe leeward side of the island (H11 through H14). (See Chart 6). Phytoplankton abundance was the highest on the windward side, collecting there as the water flowing from the east piled up, and decreased through the passages. On the leeward side, three of the four stations had similar amounts of phytoplankton, but there was a significant increase in the amount of phytoplankton at station H12, indicating the convergence of some eddies. Since St. Lucia is a relatively dry island with very little runoff, it has been concluded that the flow of water, not the nutrient supply, is the determining factor in the phytoplankton distri- bution around the windward islands of the Caribbean Sea. 19 VI. VERTICAL MIGRATION STUDIES A. Vertical Migration of Euphausiids Daniel H. Berler Abstract The diurnal migration of euphausiids was studied using data that was o I 0 I obtained at a twenty-four hour station located at 63 14W, 15 32N. Tows at three different depths; 0, 150, & 300 meters, were taken approximately every six hours for a twenty-four hour period. As originally hypothesized there was a relationship between the vertical migration of euphausiids and that of their food source. Two different species of euphausiids, Euphausia krohnii and Stylocheiron abbreviatum were identified as being present in the tows. No abbreviatum were observed in any of the surface tows, and were also found in fewer numbers than the krohnii. This was due to the unproductivity of the area or the tendency of the abbreviatum to dwell in deeper waters. No conclusive statements can be drawn concerning the vertical migration of the .abbreviatum due to the inadequate data collected. The krohnii generally followed the main mass of organisms upwards to- wards evening, and down with the approach of noon. The results give evidence to the idea that the quest for food by euphausiids may possibly be another variable in the equation concerning the vertical migration of euphausiids. 20 B. Analysis of Vertical and Diurnal Variations in Zooplankton Feeding Robert Edwards Abstract The diurnal vertical migration of open ocean organisms is a well documented phenomenon. The relationship between feeding and predation has been suggested as an important basis for this behavior, but the daily feed- ing patterns of the migrating organisms have not been adequately character- ized. Previous studies have shown that most of the organisms involved are herbivorous copepods. According to theory, they should be feeding in the relatively phytoplankton rich surface waters at night and escaping predation in the lower depths during the day. It was proposed to study the feeding of these copepods by chlorophyll analysis. This was carried out at one 24 hour station in the Caribbean Sea. Results were inconclusive, but the method is considered feasible given certain improvements. C. Diurnal Vertical Migration in Mesopelagic Bioluminescent Fish Johanna Johnson Abstract Mesopelagic bioluminescent fish are well known practitioners of a diurnal vertical migration. During W-49, seventeen neustontows, one midwater meter net trawl, and an Isaacs-Kidd midwater trawl were conducted at various times and depths to test the theory of vertical migration. Thirty specimens of bioluminescent fish were recovered in these trawls. Three major family groups were represented in the fish collected: Mytopitiae, Stomadae, and Sternoptychidae. Data collected loosely suggested the migration of these fish as they were found consistently in the upper 300 meters of the ocean at night and were rarely present there during daylight hours. However, the data could not be considered conclusive, as evidence of deep layer communities were not obtained. 21 VII. CORAL REEF STUDIES A. Coral Reef Zonation Janet E. Collins Abstract This study was done to determine any trends in the zonation of coral on breaking reefs. The study was done in Eustatia Sound in the British Virgin Islands. Two transects were set up perpendicular to the, direction of wave action. It was then recorded how many meters each species occupied along each transect. An average was then taken. It was found that soft coral such as Sea Fan (Gorgonia ventalina) and Sea Rod (Plexaura flexuosa) were found mainly in the backreef where the finer sediment fallout occurred. They were also found in the protected areas of the zone of breaking waves and never in the forereef. Of the brain corals, Giant Brain (Co1pophy1lia natans) was found in the rougher waters of wave action and the forereef while Grooved Brain (Dip10ria labyrinthiformis) was most abundant in the backreef. One of the most abundant coral was Elkhorn (Acropora pa1mata) and occurred more frequently at the area of breaking waves. It was concluded that the smaller and least rigid corals occupied the backreef and protected areas of the breaking waves while almost all species were found at the breaking waves. The most abundant coral, Mountainous Star (Montastraea annu1aris) was found only in the forereef, where there was a sharp increase in depth. 22 B. Growth Form and Wave Intensity: A Study of Echinometra lucunter Ann Durbin Abstract The effect of wave intensity upon growth form in the intertidal Caribbean sea urchin Echinometra lucunter was studied with regard to three parameters: spine length, test thickness, and body flatness. Wave intensity was estimated at sites of specimen collection. It was expected that~. lucunter found in high wave intensity areas would be characterized by shorter spines, thicker test, and flatter body shape than those from calmer areas. Significant correlation (mean r value = .77) of spine length with wave intensity was observed. Wave intensity showed no effect upon test thickness or body flatness. 23 ---- -------- C. The Response of Oreaster reticulantus to Light Susan Greenberg . Abstract Many species of starfish have been shown to be sensitive to light. Species that live in light-exposed areas react positively to light, while those living in dark areas show a negative reaction. Oreaster reticulatus, a starfish that lives on the sandy bottom of Caribbean waters at a depth of ten to fifteen feet, was tested for its reaction to light. Specimens were placed in a tank and their response was recorded when a light was concentrated at one end of the tank. As O. reticulatus - . lives in areas relatively exposed to light, it was expected that the specimens would exhibit a positive response. Test results did not support this hypothesis. Rather, the starfish exhibited an approximately equal number of positive and negative responses. D. Microscopic Organisms in Corals Judy Henshel Abstract According to Humes, copepods have adapted their shapes to live in coral polyps in the Indian Ocean. In this study, an attempt to find what copepods, if any, live inside the polyps of Caribbean corals. Twenty-five samples of coral were collected from two reefs and a pre- cipitate obtained from the coral by soaking in an alcohol solution. No copepods were found in the samples collected. Before their existence can be ruled out, a more extensive survey of Caribbean corals should be conducted. E. Reef Fish Zonation Susan M. Kennedy Abstract The purpose of this experiment was to determine the species diversity 24 ---------r--- ----- of fish across longitudinal transects in a coral reef, Two transects across a small reef (260m x 12m) in Eustatia Sound, British Virgin Islands, were used. All data was collected by an observer snorkel.ing on the surface of the water column. The snorkeler swam on a compass o heading of 60 (NE) and stopped approximately every 9 meters counting the different fish in sight. This was done from the backreef through the breaking waves to the forereef. Two parallel transects were done, one through the middle of the reef and one near the outer southeast edge. The number of fish species increased from the beginning of the backreef and was maximum at the breaking waves. Going from the breaking waves toward the forereef, the number of species decreased. The variation in number of fish species across the reef was a clear indication of the different zones (forereef and backreef). I. ' t!';;;, ~" F. Reef Fish: Interspecific Agression Lianne Ritter Abstract Observations were made on the territorial behavior of 5 subject Eupomacentrus 1,eucostictus (Beau Gregory) and their responses to in- truding crude acrylic-painted styrofoam models. The models were re- combinations of colors and shapes of Scaridae}Sparisoma chrysopterum (redtail parrot-fish) and pomacentridae, Microspathodon chrysurus (yellowtail damselfish), and a control (a square of unpainted block). The recombination of shapes and colors was an attempt to obtain the significance of a competitor's coloration in its elicitation of agonism. Results were that only one subject displayed territorial behavior towards the models while the other four displayed consistent- ly a fear response towards the intrusion of its home site. Problems with this experiment include poor control of intervening variables, difficulties with the models and an insufficient sample set. 26 VIII. OTHER STUDIES A. Caribbean Distribution of Halobates Micans Stuart Allison Abstract One genus, of the many insect genera, occurs in the open ocean. That genus is Halobates and one of its species, Halobates micans, occurs in the Atlantic and Caribbean Oceans. ~. micans has not been greatly snudied and only, one study has been done in the Caribbean in the month of December. With their distribution and life cycle of specific in- terest, 245 individual specimens of ~ micans were collected. While they were found all along the W-49 cruise track, two areas with quite large concentrations have been found. Sixty-two individuals were taken in three separate tows around Saba Bank. Ninety-seven individuals were taken in one tow 75 miles west of the St. Lucia Channel. When this project was planned, it was expected that large numbers of H. micans would be found in the passages between the islands where the North Equatorial Current enters the Caribbean, indicating that they occur in the North Equatorial Current itself. They have never been found in that current before though it is thought that they may have used it when crossing the Atlantic thus expanding their range. Al- though ~. micans were found in the passages, they did not occur in large enough numbers to conclusively state that they are there because of the North Equatorial Current. Many individuals were also measured in order to determine their i . stage of development, a parameter in determining the life cycle for I B. micans. 27 B. Marine Mammal Acoustics Barbara Block Abstract Underwater listening stations coinciding with cetacean obser- vations were conducted along the cruise track of W-49. A systematic collection of vocalizations and observations was concentrated on several transects of Navidad and Silver Banks, the suggested breeding and calving grounds of the humpback whale Megaptera novaeangliae. The song of the humpback whale is produced only in the winter tropical calving ground but technical difficulties with the hydrophone impeded efforts to record at all of these stations. An excellent recording was obtained of vocalizations produced by the Atlantic spotted dolphin Stenella plagiodon while a pod of twenty individuals surrounded the vessel. ~. plagiodon utterances from this recording are characterized by impulsive clicks at varying repetition rates, narrow band squeals and whistles, and a diverse array of complex sounds difficult to describe. Speculation as to the function of the information bearing aspect of these sounds has begun. Spectral and temporal analyses by means of a sonogram are planned in order to obtain a conclusive understanding of the communicative and echo- locative aspects of S. plagiodon vocalizations. 28 C. Identification and Distribution of Marine Mammals April Rivkin Abstract An ongoing survey of marine mammals was conducted during W-49 in the North Atlantic and Caribbean as a continuation of one of Westward's long term internal programs. This included one day transects of Navidad and Silver Bank. Over 125 Cetaceans were observed, including Stenella plagiodon, Tursiops truncatus, Physeter catadon, Megaptera novaengliae, and Balaenoptera acutorostrata. All of the sightings on Navidad and Silver Bank were identified as Humpback whales, ~. novaengliae, seen breaching and spouting at various distances from the ship. D. Trace Concentrations of Soluble Iron off the Leeward Islands of the Lesser Antilles Arndt Braaten Abstract Two aspects of trace concentrations of soluble iron were studied in the Caribbean waters off the leeward islands of the Lesser Antilles. A concentration transect was run from 140 07' N - 620 03' W, a point 60 miles west of St. Lucia, on a northwestward track to Aves Island and con- tinued on a northward track to Tortola, B.V.I. Four samples were taken south 29 ! i ,. --- ----~ ----- -----, of Aves Island after which samples were taken approximately every twenty miles to Tortola. Concentrations were measured in J.I moles/liter by spectrophoto- metric analysis according to Strickland and Parsons (1972). It had been hypothesized that iron concentration would vary inversely with distance from land; however, no data was collected which conclusively supported such an hypothesis. This was possibly due to a lack of information on the geology of the earth's crust along the transect. I In Tortolan waters measurements of iron diffusion off the hull of R/V Westward were made to determine its effects on subsequent trace metal analysis. Surface samples were taken at intervals of 0.0, 0.2, 0.5, 1.0, and 5.0 meters from the ship. Another trial of the previous experiment was made off Marina Cay in which surface samples were taken at intervals of 0.0, 0.3, 0.6, and 1.0 meters from the ship. In this trial the turbulance was minimal and an inverse, linear relationship was established between concentration and distance from the ship. Further diffusion studies are planned for Key West where more samples will be analyzed and more extensive statistical analyses made. The studies will be made in conjunction with Dr. Don Drost and Dr. Gary Faber of the College of Charleston. It is hoped that the data will suggest an efficient and accurate method for making future trace metal analyses. E. Correlation of Wind and Barometric Pressure in the Eastern Caribbean Beth Brodie Abstract High winds commonly associated with substantial changes in barometric pressure can be vital to a mariner's safety. A correlation between wind velocity and changes in barometric pressure was sought by gathering meterological data throughout the W-49 cruise. The data, collected every 6 hours, consisted of barometric pressure change, wind direction and velocity, and cloud cover -- -~-- - --------- . -------------.- ----~ at recorded times and locations. The correlation was highly complicated by the presence of a diurnal fluctuation in barometric pressure found in the lower latitudes. Towards the end of the cruise, in more northerly latitudes, results corresponding more positively to the hypothesis were attained. F. Aerodynamics of the Flying Fish Cypselurus heterurus Paul Fellenbaum Abstract Aerodynamic features of flying organisms correspond closely to their modes of flight. With this in mind, a study of aerodynamic characteristics of the flying fish Cypselurus heterurus was undertaken. Measurements of mass, wing span, and wing area were taken from ten specime~ Aspect ratio and wing loading were then calculated. These figures, along with observations of camber, angle of attack,and modifications to the wing affecting efficiency were compared to those of various birds and bats. Results show that C. heterurus combines various features of gliding birds and high speed bats. he+e.r··r _ v ~ 31 ---_ .. _---_._---.- ._-- ---_._------- --- ---_._-----'. " G. Feeding Behavior of the Magnificent Frigatebird Ginny Lermann Abstract The intentions of this project were to test a hypothesis proposed by previous researchers concerning the feeding behavior of the Magnificent Frigatebird. The hypothesis states that frigates surface dive for their food in calm weather and plunder other birds, particularly boobies, in harsh weather. The investigator employed personal surveillance as well as other students' observations for data collection. The frigates were observed surface diving as well as plundering boobies, terns, and members of their own species, all in calm weather. Overall observations and conclusions, though limited due to a small number of observable feeding frigates and fairly consistent calm weather, indicate that no correlation exists be- tween weather conditions and frigat~ feeding behavior. It is claimed that these birds are naturally opportunistic, taking advantage of their own maneuvering abilities to feed most effectively in the given situation. H. Reliability of Loran C in the Eastern Caribbean Paul McDowell Abstract Most of the w-49 cruise track took Westward out of areas of Loran CGround Wave reception. From St. Thomas southward Westward relied entirely on skywaves for Loran C navigation. Skywaves are reflected back primarily off the E-layer in the middle ionosphere. As they reflect back towards the surface they are partially absorbed by the D-layer at times of high solar influx (daytime periods of high solar activity). Skywaves become particularly inaccurate for Loran C navigation at sunrise and sunset when the ionosphere is changing. Because of the nature of the Loran eover- age, it was only possible to receive one line of position from the master/ slave pair GRI 7980. The following data were collected: average time dif- 32 ----------~- ference, average signal to noise ratio, weather, possible incidental interference (radio, MG sets, generators, radar), time to track, and other pertinent information. From the data it became apparent that Loran C was reliable for navigation in the evening and afternoon and unreliable for navigation during sunrise and sunset. I. Identification of Antarctic Intermediate Water Debra Merrill Abstract Measurements of salinity and temperature were obtained from five hydrographic stations in the Anegada Passage, St. Lucia Channel and Grenada Basin in order to detect the presence of Antarctic Intermediate Water. Identification of the Antarctic Intermediate Water mass was based upon temperature, depth, and a salinity minimum within the water column. The Anegada Passage represented the near northern most extent of this water mass. Due to considerable mixing with adjacent water masses during its northward flow and questionable salinity values, positive identification could not be made. J. Low Angle Sextant Altitude Sights Barton Parrott Abstract Significant atmospheric refraction occurs for low angle sextant altitude observations. This refraction varies with certain atmospheric parameters such as temperature and barometric pressure. In order to obtain infor- mation on the accuracy of low angle sun sights, a significant number of low angle sun sights were observed under varying ~tmospheric conditions. Standard refraction corrections available in the Nautical Almanac were used. Position lines obtained were compared with electronically obtained fixes. 33 K. Use of Bird Counts as Indicators of Ocean Surface Productivity Leah Quesenberry Abstract Numbers and species of birds were recorded when observed during Leg I and Leg II of the W-49 cruise track. Neuston net tows were conducted at various locations during this portion of the cruise track. From the Neuston tows, the biomass of the various locations was calculated. The biomass and the numbers of birds observed at each location were examined for any possible correlation. It was observed that the results yielded no apparent correlation between the biomass of the various locations and the numbers of birds sighted in the same locations. L. Spiny Lobster Larvae Distribution in the Straits of Florida and the Old Bahama Channel Lori Ragosa Abstract Though the spiny lobster, Panulirus argus, is important commercially, very little is known about its larvae. It is believed that during the 8-11 months they live before metamorphosis, the larvae are carried by oceanic currents from breeding grounds of the adults to far distant waters and lands. It is not known whether the larvae drift passively with these currents or have some control, by a mechanism known for environmental factors such as temperature, salinity, or depth. The purpose of this project was to establish some baseline information on the distribution of the larvae of the spiny lobster. A total of seven spiny lobster stations were conducted (See Appendix). It was assumed that larvae were concentrated at the thermocline. Meter net tows were done for 30 minutes at mid-thermocline depth. Hydrocasts of six bottles determined temperature and salinity to characterize the water column. No spiny lobster l~rvae were identified at any of the seven stations in the Old Bahama Channel or the Straits of Florida. 34 IX. VISITING INVESTIGATOR ABSTRACTS A. Harpacticoid Copepods Inhabiting Caribbean Coral Sands William S. Ravenel Abstract Harpacticoida is an order of the subclass Copepoda containing small (.2 to 2.5 rom), predominantly benthic copepods. Harpacticoid copepods are found world-wide in the marine environment from the intertidal to the deep sea and are a major component of the meio- fauna, being outnumbered only by nematodes in most sediments. Recent research has indicated that harpacticoids are an important source of food for some larval and juvenile fish and may be an important link in the food web between the benthic microfauna and macrofauna. Although studies involving harpacticoid copepods have increased in the past decade, there is much basic biogeographical and taxonomic work yet to be done. References to the harpacticoids inhabiting subtidal carbonate sands are particularly scarce. On this cruise sediment samples were collected between St. Thomas and Martinique in order to obtain qualitative infor- mation about the harpacticoid copepods associated with Caribbean coral sands. Sediment samples were collected using an Emory and Chapman designed under-way sampler. This device is capable of collecting small samples of sediment to a depth of about 200 meters without stopping the ship and so is ideal for a qualitative, shallow-water meiofaunal survey. Unfortunately, the tripping mechanism began to malfunction after the third sample was collected, making further sampling impossible. 35 B. Trace Metals in the Caribbean Gary Faber Abstract Trace metals in the Caribbean waters were studied in a transect along the Leg 2 cruise track between St. Lucia and the British Virgin Islands via Aves Island. In addition, measurements of soluble iron as a function of distance from the ship were made at two sites in the Caribbean. Concentrations were measured in II moles/liter by spectrophotometric analysis according to Strickland and Parsons (1972). Data collected on the Caribbean transect did not conclusively support any functional dependence of concentration versus distance from land, as might be expected. In the two trials for soluble iron, an inverse relationship was found between concentration and distance from the ship. C. An Investigation of the Diurnal Vertical Migration of Euphausid and Mysid Population in Deep and Shallow Water Nancy L. Murden Abstract An investigation of diurnal migration of euphausid and mysid popu- laticns in deep versus shallcw water was made cn Leg 3 cn and off Silver and Navidad Banks. The largest planktcnic sample ccntents were expected to, be cbtained in shallcw water on the banks at night. This was fcund to, be true in part; hcwever, inadequate sampling and inability to, sam- pIe in the desired areas due to, internaticnal water disputes made the results inccnclusive. Three samples were taken cn and cff Navidad Bank and just scuth cf Silver Bank in two' daytime surface planktcn tcws and cne night tow. Few mysids and euphausids were fcund in the day samples, but a significant number were fcund in the night sample. The data shcw a general trend cf diurnal vertical migraticn while nct thorcugh encugh to, yield ccnclusive results. However, benthic Harpacticoid copepcds were 36 positively identified in the night sample (#3). The extenuating variable in this investigation seemed to be day/night rather than d~ep/shallow sampling. Further investigation is warranted by the latter. D. A Journalist at S.E.A. Ken Pierce, Education Editor, TIME magazine Abstract The object of my visit to the R/V Westward was to reach the sort of appreciation and understanding of Sea Semester appropriate to a general news magazine rather than to anyone specialized discipline. My research methods ( a phrase likely to cause mirth among some of my journalistic colleagues, due to the implication of formality, quantitative rigor, and the use of experimental controls) were personal observation and interview- ing. I found all aboard ideal objects for this sort of investigation, eager to answer questions, to think aloud about the experience, and, for the most part, to remain unaffected by such scrutiny. In particular, the courtesy, patience, companionship, and insight offered by Sid Miller and Don Drost was invaluable. Both strike me in their different ways as ideal men for the demanding and multi-faceted tasks of Sea Semester - including, on this voyage, coping with a journalist. My only regret, as so often in my line of work, is that TIME lacks the space to permit an elaborate and lengthy rendering of the diversity in students, tasks, weather, and even the all-important "comfort quotient index" aboard R/V Westward. 37 X. ISLANDS The cruise track of the R/V-Westward for W-49 included passages near and among the Windward Islands of the Caribbean from the Virgin Islands to St. Vincent with brief stops at some of these islands as well as Great Inagua in the southern Bahamas. In some cases such as for Aves Island and Norman Island flora and fauna were observed, identified, and lists prepared. In other situations, general observations were made as to the suitability of the island for future Westward visits or studies. The following comments are on islands directly experienced either in some detail or superficially. A. St. Barthelemy The French island of S.t. Barts is located in the northern group of the .Lesser Antilles. Like the other islands in the archipelago, it is volcanic in origin. Though nearer the high, wet islands to the south, it is lower and drier, like the farther Virgin Islands to the north across the Anegada Passages. Westward, making an unscheduled 12 hour repair stop at St. Barts, anchored just outside the postage stamp harbor of the capital city, Gustavius. Staff and students briefly experienced St. Barts, a Caribbean island that is distinctly French with a Mediterranean flavor added by Gustavius and the villas in the surrounding hills. In addition to shore exploration for the off watches, science watches conducted dives in the water near several large rocks at the harbor en- i trance. I The island of St. Barts would serve as a desirable future port stop for Westward with some opportunity for reef work both on the Caribbean and Atlantic sides. 38 B. Martinique Following two weeks of mostly weather work in the northern Windward Islands, Westward anchored for two days in the harbor of Fort de France, Martinique. The contrast between the quiet of the sea and the noise of a large foreign city was immediately evident. Opinions of Fort de France were varied with some relishing its strangeness and exotic flavor and others wishing for a familiar sight or two in the city's narrow streets, small shops, cafes, and high population density. Martinique is one of the larger, higher volcanic islands in the eastern Caribbean archipel~go. The easterly trade winds against the mountains produce large quantities of rain, particularly at the higher elevations. -' ,... Mt. Pelee, Martinique's most recently active volcano, is often shrouded in clouds. Westward's staff and students toured the island on buses. Visits to rain forests, Mt. Pelee, black volcanic sand beaches, and the town of St. Pierre were included. St. Pierre, partially destroyed by an eruption of Pelee in the last century was picturesque and seemed 'a likely site for a future port stop for Westward. Unlike many other Caribbean islands, Martinique has a number of coves suitable for anchoring on the windward side, sites which appear suitable for future Westward reef studies. C. St. Lucia St. Lucia, lying south of Martinique, was the subject of Westward's island mass effect studies. Though a landing was not made on St. Lucia, the Westward coasted along the leeward shore of this dramatic island beneath the towering Gross and Petit Pitons to anchor briefly for soluble iron samples at the en- trance to Marigot Harbor. D. Aves Island Between vertical migration study stations near the Aves r~dge, Westward 39 sailed near Aves Island, a speck of land the size of a large tanker, that lies in the Caribbean 150 miles west of Guadeloupe. The island has a small Venezuelan naval installation staffed by a dozen or so men. A small boat put out from the island carrying an invitation from the commandant for West- ward to visit. Since opportunities for research vessels are non-existent in Venezuelan waters, the decision was made to accept and the Westward anchored just off the western side of the island. Westward's staff and students were given a tour of the small naval in- stallations and allowed to study the island and surrounding waters. The island is a nesting site for the green sea turtle, Chelonia mudas and many clutch areas were discovered. There were large numbers of sea birds nesting in the sparse grass at the southern end of the island. An organism list and a sketch chart based on the Aves Island study are included in this section. The Venezuelan officers were entertained at dinner aboard the Westward and in turn a contingent of Westward's staff and students were treated to a Venezuelan breakfast in the officer's mess. An atmosphere of mutual friend- ship and good will prevailed and strengthened during Westward's 24 hour stay. The time was one of the high points of W-49. The ship's company gratefully acknowledge the hospitality afforded by the Venezuelan people. AVES ISLAND 15 42'N, 63 38'W (- '>IXX. Rocky Intertidal Zone t,+ Sea Pursland, $esuvium spp. , .. # •• Coral Sands o Turtle Nest ~ Coral and Sponge Rubble 40 Birds ruddy turnstone sooty tern noddy tern barn swallow Reptiles green sea turtle Fish red hind rock hind coney graysby grouper fairy bass let barjack blue runner cherub fish b1uehead parrot fish ye110wfin mojarra barracuda E. Virgin Islands ORGANISMS FOUND ON AVES ISLAND Arenaria interpres Stern fuscata Anous sto1idus Hirundo rustica Chelonia mudas Epinephe1us guttatus Epinephe1us adscensionis Epinephe1us fu1va Epinephelus cruentatum Epinephe1us ~. Grannna loreto Caranx hippos Caranx fusus Centropyge argi Tha1assoma bifasciatum Me1ichthys niger Geres cinerus Sphyraena barracuda The British Virgin Islands provided an ideal location for the reef studies chosen by six students on W-49. In addition, the deep water to the south allowed Westward to make night Isaacs-Kidd midwater trawls and return for daytime reef studies. Westward's time in the Virgin Islands included entry into the country at Road town, Torto1a; a study of Norman Island; dives on the wreck of the Rhone; and reef studies primarily at Virgin Gorda. The Christmas port stop was in Virgin Gorda Sound. Reef studies in the Virgin Islands are abstracted in section VII of this report. The following description of Norman Island was prepared by Rob Moir. 41 F. Norman Island Norman Island is a narrow island, less than ~ mile in width and 2~ miles in length, situated southwest of Tortola. The island is marked by striking densely vegetated hills rlsing up 400 feet and sheer 100 foot cliffs, making it a likely setting for Robert Louis Stevenson's Treasure Island. A superficial survey of flora and fauna was conducted. The survey began before dawn when a light was hung over the port rail to attract marine life. Within minutes silversides (Atherinidae) were schooling under the light. An animal smaller than a sooty tern and larger than a common tern flew over the fish. Two finger bones extended back through each wing giving it ridges. There were feet where a tail should have been. Iden- tified as a bat, it appeared to have an approximate body length of 200 cm and a wing span of 250 cm. During the morning of Westward's visit, a diving party visited coral reefs while a shore party explored caves and the adjacent shore. One cave was large enough for our small dory to enter and travel approximately 70 feet to its end. Inside the high squeal of bats was heard. The afternoon was spent crossing the island. At the head of "The Bight" were cattle trails and dry stream beds. In the forest travel was blocked by dense vines. At higher elevations the slope became steeper. There dense thorn and other bushes as well as occasional cactus blocked travel. Stream channels were absent o~ steeper slopes. Over the ridge the south slope was more open at high elevations of 150 - 400 feet. Birds seen included Antillean mango, greater Antillean grackle, and red legged thrush. Two large birds were flushed from the mudpond. These were possibly green herons or shore birds. 42 G. Great Inagua Westward anchored in the open roadstead of Matthew Town, Great Inagua and cleared into the Bahamas on January 1, 1980. Great Inagua is a low lying coral island with a large area of lakes in the interior. The lakes provide a natural habitat for over 30,000 flamingoes (Phoenicopterus ruber). A portion of the island's interior is set aside and maintained jointly by the Bahamian Government and the Audubon Society in order to preserve this valuable area. Time was not allotted on W-49 for a visit to the flamingo preserve; however, such a visit would be worthwhile for future cruises. ...:.:. ;- , 0 00, , 0 0, \ <,".'.:' --- :'~;. .. 43 IJALOBATES MJCANS APPENDICES 44 A. Demonstration Organisms on W-49 Scientific name 1. Copepods 2. Trichodesmium~. 3. Cyphoma gibbosum 4. Fregata magnificens 5. Cypse1urus heterurus 6. Lo1igo pea1ei 7. Porpita~. 8. Dolio1um~. Common name Copepods Trichodesmium ~. Flamingo tongue Frigate bird Flying fish Squid Porpita Dolio1um 9. Ha10bates micans 10. leptocephalus eel larvae Water strider leptocephalus eel larvae 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. B. Sterna fuscatasooty tern Stene11a p1agiodon spotted dolphin Prionace glauca . blue shark )' Coendbita c1ypeatus land hermit crab Acanthephyra pe1agica scarlet praun Chaetodon capistratus butterfly fish Strombus gigas pink conch Coryphaena hippurus dolphin fish Megaptera novaeangliae humpback whale Siderastrea radians star coral Bird Sightings Reported During Cruise W-49 Date Time Lat(N) Long(W) Bird 29 Nov 1610 18 17.8 64 48.3 brown booby 1700 18 21 64 49 brown booby 30 Nov 630 18 21. 5 64 47.0 brown booby 630 18 21. 5 64 47.0 brown pelican 730 18 22.3 64 46.6 brown booby 730 18 22.3 64 46.6 brown booby 730 18 22.3 64 46.6 brown pelican 800 18 22.5 64 44.9 brown pelican Number 1 " 1 2 3 1 6 7 28 Phylum Arthropoda Cyanophyta Mollusca Chordata Chordata Mollusca Cnidarian Chordata Arthropoda Chordata Chordata Chordata Chordata Arthropoda Arthropoda Chordata Mollusca Chordata Chordata Cnidarian Notes immature fishing & roosting, St. Johns 840 18 23.3 64 40.5 brown pelican 75-100 fishing off a point,Tortola 1714 18 13.9 64 37.6 brown booby 2 2 Dec 721 18 14 64 22 cattle egret 1 1250 18 20 64 18 brown booby 1 immature 3 Dec 900 18 31 64 22 frigatebird 2 1 female, 1 male 900 18 31 64 22 brown pelican 3 1130 18 31 64 22 frigatebird 16 6 female, 6 male, 4 immature 4 Dec 1720 17 36 63 20 brown booby 6 1740 17 36 63 18 brown booby 16-24 1805 17 36 63 14 frigatebird 1 5 Dec 17 54 62 51 frigatebird 3 females in St. Barts Harbor 17 54 62 51 frigatebird 1 immature 17 54 62 51 frigatebird 2 males 17 54 62 51 brown booby 2 45 (con' t.) Date 6 Dec 7 Dec 10 Dec 12 Dec 13 Dec 14 Dec 15 Dec 16 Dec 17 Dec 18 Dec 19 Dec 20 Dec 28 Dec 30 Dec 1 Jan 4 Jan 5 Jan 6 Jan 7 Jan Time Lat(N) 1600 1220 1420 730 650 1250 625 2200 715 1045 1045 1750 1750 1155 1440 1345 1345 1345 1345 1500 1500 1500 1500 2350 945 1115 1500 1100 1100 1130 1130 1130 1745 1645 930 1610 725 725 725 1400 820 1040 1210 1045 700 855 1000 1000 16 13.6 15 14 15 06 14 35 13 58 13 58.3 13 42 14 15 14 30 14 58 14 58 15 20 15 20 1532 15 32 15 40 15 40 15 40 15 40 15 42 15 42 15 42 15 42 15 56 16 14 16 20 16 40 18 24 18 24 18 27 18 27 18 27 18 27 19 13 20 26 20 36 20 52 20 52 20 52 21 08 22 29 22 40 23 05 23 23 23 52 23 54 23 50 23 50 Long(W) 62 22.8 61 51 61 45 61 03 60 43 61 02.3 61 29 62 10 62 30 62 51 62 51 63 06 63 06 63 14 63 14 63 39 63 39 63 39 63 39 63 38 63 38 63 38 63 38 63 56 63 48 63 45 63 52 64 36 64 36 64 36 64 36 64 36 64 36 66 54 69 47 70 30 73 40 73 40 73 40 73 55 77 53 78 04 78 55 80 06 80 46 80 50 81 02 81 02 Bird Number Notes gannet or blue tropicbird brown booby frigatebird footed booby 1 poor iden. 3 100 - 200 ? 1 4 female, Martinique small birds offshore Osprey brown booby gannet 1 Marigot Bay, St. Lucia 3 1 2 poor iden. immature brown booby terns frigatebirds barn swallows 75 - 100 9 - 12 6 brown booby 2 Wilson's petrel 1 roosting in the lab 4 survive the night brown booby 40 - 60 immature and mature brown boob~ noddy tern 900-1100 on Aves Island frigatebird 1 audubon shearwater 1 noddy tern 300 - 400 on Aves Island sooty tern 200 - 300 on Aves Island barn swallow 12 ruddy turnstone 6 sooty tern calls in the dark brown booby 1 parasitic jaeger 3 immature parasitic jaeger 1 immature frigatebird 2 immature and female adult brown pelican 1 brown pelican 2 Road Harbor, Tortola brown booby 2 frigatebird 5 tricolored (Louisiana) heron 2 barn swallow 3 immature cattle egret 1 parasitic jaeger 2 immature royal tern 6 cattle egret 1 Audubon shearwater 2 osprey 1 in Matthew Harbor, G.I. frigatebird 2 female G.I. black-legged kittiwake 1 immature frigatebird 1 brown booby 1 laughing gull 2 second winter plumage black-legged kittiwake 3 mature brown booby 1 frigatebird 1 46 C. Summary of Bird Sightings Reported During Cruise W-49 Number of Observations Bird Number of 19 brown booby 350 - 1.4 frigatebird 47 7 brown pelican 91 3 cattle egret 3 3 parasitic jaeger 6 2 Audubon shearwater 3 2 osprey 2 2 ruddy turnstone 6 2 black-legged kittiwake 4 1 laughing gull 2 2 noddy tern 300 - 2 sooty tern 200 - 2 barn swallow 9 1 Wilson's pectrel 1 1 tropicbird 3 1 gannet 1 1 tricolored heron 2 Total 51 17 1030 - D. Aves Island Organism List Fish --blue tang balloon fish houndfish Schooling Fish yellowtail snapper wrasses squirrelfish peacock flounder black durgon smooth trunkfish pompano Invertebrates sea fan fire coral star coral Atlantic triton foraminefera rock urchin West Indies topshell helmet conch queen conch hermit crab mottled shore crab Acanthurus coeruleus Diodon holocanthus Tylosurus crocodilus Ocyurus chrysurus Halichoeres ~. Holocenturs ~. Bothus lunatus Melichthus niger Lactophrus triqueter Coryohaena equisetis Gorgonia ~. Millepora ~. Montastrea ~. Charonis variegate Homotiemia vubrum Echinometra lucunter Cittarium pica Cassistuberosa Strombus gigas Paguridae Grapsus grapsus 47 Birds 460 115 400 300 1364 E. Marine Mammal Sightings 1. Marine Mammal Sightings During Cruise W-49 Size North West Other Marine Mammal ID No. (ft.) Date Time Latitude Longitude Mode Position Species 1. Stene11a p1agiodon 1 4 4-6 12/2 1420 18°29' 64°15' Sail Bow -------- 2. Physeter catadon 1 2 22-25 12/9 0730 14°37' 61° 9.5' Sail Stbd. Bow -------- 14°37' 61 0 9.5 , 3. Physeter catadon 1 1 30 12/9 0740 Sail Stbd. Bow -------- 13°52.5 , 61° 8' :4.- Unidentified do1phins-- 30-50 3 12/13 1610 H Stbd. Bow -------- 5. Unidentified dolphins -~ 4 3 12/15 0120 15°10' 62°50' Sail Bow unidentified birds ,6. Stene11a p1agiodon 2 15-25 3-5 12/19 0730 15°58' 63°59' H Port Stern-Bow 2 Su1a 1eucogaster 2 Caranx bartho10maei ~ 7. 'Unidentified do1phins-- 3 3 12/19 1430 16°34' 63°52' Power Stbd. Bow --------- 8. Unidentified do1phins-- 6 12/20 0530 17~52.5' 64°19' Sail Bow --------- 9. Tursio~ Truncatus 2 12 3-6 12/28 1540 19°15' 66°29.5' Power Stbd. Bow ---------- *10. Megaptera novaen.glj.ae 3 18-23 12/29 1025 20° 3' 68°56' H \Bow-Stern ---------- \ **11. Megaptera novaeng1iae 3 4 12/30 0935 20°26' 69049' Sail l3ow-Stern ---------_ .. 12. Ba10enoptera 2 2 20-30 12/31 1630 20°36' 72°26 ' Sail Bow-Stern ---------- acutorostrata 13. Tursiops Trugcatus 1 9 6-8 1/8 0730 24 °,50' 81 048.5' Power Stbd. Bow ---------- Key: Quality of ID: 1 - Excellent, no chance of mistake; 2 - Good, high probability of correct ID.; 3 - Fair~ distance or conditions somewhat marginal * See section E-2: Marine Mammal Sightings - Navidad Bank Transect, 29 Oct. 1979 ** See section E-3: Marine Mammal Sightings - Silver Bank Transect, 30 Dec. 1979 ,~'\~ 2. Marine Mammal Sightings - Navidad Bank Transect, 29 Dec. 1979 North West Marine Mammal ID No. Time Latitude Longitude Position Behavior/Other 1. MegaEtera novaengliae 1 4-6 1025 20° 5.8' 68°49.7' Stbd. side Breaching, showing white pectoral 20° 3.2' 68°53.8' fins, continuously spouting 2. Megaptera novaengliae 3 2-4 1230 Stbd. side 3. Megaptera novaengliae 3 1 1305 20° 3' 68°55' Stbd. side Spouts sited 4. Megaptera nova~nglia~ 3 3-4 1310 20° 3' 68°55.5' Stbd. bow 3-4 spouts sited 5. Megapte~~ ~ov~enz1iae 3 2 1316 20° 3' 68°55.8' Stbd. bow 2 spouts sited 6. Megaptera novaengliae 3 2 1338 20°1. 5' 68°53.5' Stbd. beam 2 spouts sited ~ 19°57' 68°52' \0 7. Meg~ptera novaengliae 3 2 1600 Bow 2 spouts sited 8. Megaptera ~~v~engliae 3 1 1610 19°57.3' 68°54.4' Stbd. side sited 100 yds. off stbd. side 9. Megaptera novaengliae 3 1 1615 19°57.4' 68°56.2' Port beam ------ 3. ~rine Mammal Sightings - Silver Bank Transect, 30 Dec. 1979 1. Megapte~~ Il~va~nglia~ 3 1 0935 20°26' 69°47' --------- Breaching in horizon 2. Megapt_er~ novaengliae 1 1 1010 20°26.8' 69°48.5' Port beam 100 yards off 3. Megaptera novaengliae 3 1 1020 20°27' 69°49' Bow --------- 4. Megaptera novaengliae 3 1 1035 20°28' ° 69 51' Port bow --------- F. Halobates Data Neuston Location Tow II of Tow Time Date Number Caught 1 18°24.5'N 64°32.4 'w 1212-1242 11/30/79 2 3 180 06'N , 640 00'W 0000-0030 12/04/79 1 4 170 39.5'N, 630 30.5'W 1215-1245 12/04/79 30 5 170 48.6'N, 63 0 42'W 0005-0035 12/05/79 31 6 170 45'N, 63° 54'W 0030-0100 12/06/79 1 8 160 07.5'N, 620 20'W 2310-2340 12/06/79 7 10 14°18'N, 61 0 02'W 0025-0055 12/12/79 11 11 130 51'N, 61 0 45'W 1435-1505 12/14/79 6 12 14°21 'N, 620 14'W 2350-0020 12/14-12/15/79 99 13 150 05.8'N, 620 52'W 1205-1235 12/15/79 15 14 150 46.3'N, 63 0 39'W 1225-1255 12/18/79 3 15 160 21'N, 630 48'W 1215-1245 12/19/79 6 16 170 30.75'N, 640 06.5'W 0010-0050 12/20/79 17 ° 690 38'W 17 20 06'N, 0405-0435 12/30/79 8 18 200 50'N, 730 20'W 0120-0150 01/01/80 5 21 21 0 33'N, 750 14'W 0017-0047 01/03/80 3 Note: Developmental Stage data available on request from S.E.A. / 50 j G. Hxdrocast Station Data Latitude & Hydrocast Depth Salinity T CO O2 Accepted II (meters) 0/00 w ;;IT DeEth Date Longitude 30 Nov. 79 180 11'N, 64°25'W 2 surface 34.65 27.4 22.35 .79 surface 100 37.19 25.7 24.8 .77 89 200 36.92 20.1 26.25 .73 178 300 36.80 18.2 26.75 .61 257 400 36.32 16.6 26.70 .69 356 500 35.46 14.2 26.50 .63 445 400 36.03 .76 600 36.52 .19 1100 35.22 11. 4 .13 1600 35.18 04.6 28.87 .20 1 Dec. 79 18°25 'N; 64°13 'w 3 surface 35.44 .21.6 .79 V1 400 36.398 16.5 26.70 .70 I-' 800 35.06 07.2 27.45 .51 1200 35.00 04.6 27.70 .76 1600 35.05 04.2 27.75 .91 2000 34.92 03.8 27.87 1. 05 1130 II Dec. 79 14°16'N, 61 0 00.5'W 7 surface 35.45 27.92 22.70 .82 surface 400 35.28 13.64 26.50 .18 290 800 35.04 08.04 27.29 .14 580 1200 34.23 05.26 27.10 .65 870 1600 35.24 04.55 27.90 .76 1160 , 2000 04.30 .33 1450 , 12 Dec. 79 130 54.5'N, 600 37'w 8 surface 34.88 27.68 22.51 .88 surface 400 35.24 27.67 22.51 .88 surface 800 34.15 5.72 27.69 .55 666 1200 5.39 .64 999 . 1600 33.90 4.80 26.85 .97 1333 12 Dec. 79 130 51.5'N, 600 39.5'W 9 surface 35.81 28.20 23.10 .79 surface 150 37.52 24.75 25.25 .69 136 300 34.76 16.92 25.87 .55 272 450 35.89 11. 61 27.49 .50 408 600 34.92 7.72 27.20 .47 544 , I ~ " . "':~', .. • ~ VI N Date 13 Dec. 79 13 Dec. 79 13 Dec. 79 13 Dec. 79 14 Dec. 79 3 Jan. 80 Latitude & Hydrocast Depth Salinity T CO 0 Accepted Longitude II (meters) 0/00 W