#Project title: Larvae of deep-sea marine invertebrates harbor low-diversity bacterial communities #Project authors: Tyler J. Carrier, Stace E. Beaulieu, Susan W. Mills, Lauren S. Mullineaux, and Adam M. Reitzel #What: Computational pipeline for the V3/V4 region of the 16S rRNA gene (i.e., phylogenetic marker for bacteria), QIIME2 (v 2019.1), SILVA (v 132), and Amplicon Sequence Variants (ASVs) ### STEP 1: IMPORT RAW FILES INTO QIIME2 ### qiime tools import \ --type 'SampleData[PairedEndSequencesWithQuality]' \ --input-path --input-format CasavaOneEightSingleLanePerSampleDirFmt \ --output-path ### STEP 2: TRIM PRIMERS OFF RAW READS # qiime cutadapt trim-paired \ --i-demultiplexed-sequences --p-front-f CCTACGGGNGGCWGCAG \ --p-front-r GACTACHVGGGTATCTAATCC \ --p-error-rate 0 \ --o-trimmed-sequences ### STEP 3: JOIN/MERGE PAIRED-ENDS ### qiime vsearch join-pairs \ --i-demultiplexed-seqs --o-joined-sequences --p-minovlen 20 \ --p-maxdiffs 10 \ --p-minmergelen 350 \ --p-maxmergelen 550 \ --p-allowmergestagger \ --p-truncqual 10 \ --p-minlen 100 \ --p-qmax 41 \ --p-qmaxout 41 ### STEP 4: QUALITY CONTROL PAIRED-END READS ### qiime quality-filter q-score-joined \ --i-demux --o-filtered-sequences --o-filter-stats --p-quality-window 5 \ --p-min-quality 25 ### STEP 5: REIMPORT FILTERED FILES WITH MODIFIED NAMES ### #NOTE: THIS IS OPTIONAL qiime tools export \ --input-path --output-path qiime tools import \ --type 'SampleData[SequencesWithQuality]' \ --input-path --output-path --input-format SingleEndFastqManifestPhred33 ### STEP 6: DENOISE PROCESSED READS ### qiime deblur denoise-16S \ --i-demultiplexed-seqs --p-trim-length 400 \ --o-representative-sequences --o-table --p-sample-stats \ --o-stats ### STEP 7: CREATE PHYLOGENY ### #ALIGNMENT OF REPRESENTATIVE SEQUENCES qiime alignment mafft \ --i-sequences --o-alignment #MASK HIGHLY VARIABLE NOISY POSITIONS IN ALIGNMENT qiime alignment mask \ --i-alignment --o-masked-alignment #CREATE PHYLOGENY WITH FASTTREE qiime phylogeny fasttree \ --i-alignment --o-tree #ROOT PHYLOGENY AT MIDPOINT qiime phylogeny midpoint-root \ --i-tree --o-rooted-tree ### STEP 8: ASSIGN TAXONOMY WITH TRAINED CLASSIFIER ### qiime feature-classifier classify-sklearn \ --i-classifier silva-132-99-classifier.qza \ --i-reads --o-classification --p-confidence --p-read-orientation same ### STEP 9: FILTER ARCHAEA ### qiime taxa filter-table \ --i-table --i-taxonomy --p-exclude Archaea \ --p-mode contains \ --o-filtered-table ### STEP 10: FILTER FEATURES FROM DNA SAMPLES ### #IDENTIFY FEATURES IN DNA KIT BLANKS qiime tools export \ --input-path --output-path biom convert \ -i -o --to-tsv #FILTER FEATURES FOUND IN DNA KIT BLANKS qiime feature-table filter-features \ --i-table --m-metadata-file --o-filtered-table ### STEP 11: RAREIFY TABLE ### qiime feature-table rarefy \ --i-table --p-sampling-depth 392 \ --p-with-replacement \ --o-rarefied-table # NOTE: ALL STEPS ABOVE ARE PART OF PRE-PROCESSING. BELOW IS TAILORED TO THE DATASET AND APPROACH OF INTEREST AND, HERE, IS SPECIFIC TO THIS DATASET # ### FIGURE 2: Alpha rarefaction curve for deep-sea larvae ### qiime diversity alpha-rarefaction \ --i-table --p-max-depth 392 \ --i-phylogeny --m-metadata-file --output-dir ### FIGURE 3 and S1: Alpha diversity for deep-sea larvae ### #alpha-diversity, faith qiime diversity alpha-phylogenetic \ --i-table --i-phylogeny --p-metric faith_pd \ --output-dir #alpha-diversity, observedOTUs qiime diversity alpha \ --i-table --p-metric observed_otus \ --output-dir #alpha-diversity, McintoshE qiime diversity alpha \ --i-table --p-metric mcintosh_e \ --output-dir #alpha-diversity, McintoshD qiime diversity alpha \ --i-table --p-metric mcintosh_d \ --output-dir ### FIGURE 4: Relatedness of the bacterial communities of deep-sea larvae ### #beta-diversity, unweighted UniFrac qiime diversity beta-phylogenetic \ --i-table --i-phylogeny --p-metric unweighted_unifrac \ --p-variance-adjusted \ --o-distance-matrix qiime diversity pcoa \ --i-distance-matrix --o-pcoa qiime tools export \ --input-path --output-path # export "ordination.txt" and change all '-' in sample labels to '.' and then make q1-mapping file that cooresponds with q2-metadata file. Import both q1-compatible files # # in QIIME1 # make_2d_plots.py \ -i -o -m -b --ellipsoid_opacity --scree qiime diversity beta-group-significance \ --i-distance-matrix --m-metadata-file --m-metadata-column --p-method permanova \ --p-pairwise \ --o-visualization #microbial dendrograms qiime diversity beta-rarefaction \ --i-table --p-metric unweighted_unifrac \ --p-clustering-method upgma \ --m-metadata-file --p-sampling-depth 392 \ --i-phylogeny --o-visualization #beta-diversity, weighted UniFrac qiime diversity beta-phylogenetic \ --i-table --i-phylogeny --p-metric weighted_unifrac \ --p-variance-adjusted \ --o-distance-matrix qiime diversity pcoa \ --i-distance-matrix --o-pcoa qiime tools export \ --input-path --output-path # export "ordination.txt" and change all '-' in sample labels to '.' and then make q1-mapping file that cooresponds with q2-metadata file. Import both q1-compatible files # # in q1 # make_2d_plots.py \ -i -o -m -b --ellipsoid_opacity --scree qiime diversity beta-group-significance \ --i-distance-matrix --m-metadata-file --m-metadata-column --p-method permanova \ --p-pairwise \ --o-visualization #microbial dendrograms qiime diversity beta-rarefaction \ --i-table --p-metric weighted_unifrac \ --p-clustering-method upgma \ --m-metadata-file --p-sampling-depth 392 \ --i-phylogeny --o-visualization ### Figure 5: Bacterial taxa for deep-sea larvae ### qiime taxa barplot \ --i-table --i-taxonomy --m-metadata-file --output-dir