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The texts show a benchmark calculation for our two-phase flow code. 

 

Text S1. 
Solitary Wave Benchmark: 
 
The Darcy flow of melt, coupled with mantle convection, supports the emergence of non-

linear solitary waves [See references in main article: Scott & Stevenson, 1984, 1986; 

Richter & McKenzie, 1984; Barcilon & Richter, 1986]. The incompressible solitary wave 

case has become a classic benchmark for examining magma migration codes. We tested 

our code with 1D solitary wave. In practice, we follow the parameters (Table S1) used in 

the solitary wave model by Dannberg & Heister [2016] (See references in main article). 

For a constant shear and compaction viscosities, the shape of the solitary wave can be 

described by an analytical solution  

𝑥𝑥(𝜑𝜑) = ±(𝐴𝐴 + 0.5) �−2�𝐴𝐴 − 𝜑𝜑 + 1
√𝐴𝐴−1

𝑙𝑙𝑙𝑙 √𝐴𝐴−1−�𝐴𝐴−𝜑𝜑
√𝐴𝐴−1+�𝐴𝐴−𝜑𝜑

�            (S1),    

where A is the non-dimensional amplitude of the wave and bigger than 1 [See references 

in main article: Barcilon & Richter, 1986]. This equation describes a wave with the 

amplitude Aφ0 propagating with a fixed shape and constant phase speed c = u0(2A/φ0+1) 

in a background porosity (φ=φ0). This background porosity is assumed to be small, i.e., 

φ0<<1. 

 

We consider a pseudo-1-D profile with a vertical length of 438 m but several elements in 

the horizontal direction, as our model geometry of 1-D solitary wave. The vertical length 

is chosen to be 128 times the compaction length. We vary our model resolution in the 

vertical direction based on the compaction length of 3.42 m (Table S1). We set the end 

time of the model to t = 2.643x103 kyrs to allow the wave to propagate 128 times the 

compaction length. Most of our parameters are taken from Dannberg & Heister [2016] 

(See references in main article) except for the resolution (Table S1). The phase velocity is 

set to be negative so that the wave is stationary at its origin position. Figure S1(A) 

displays the shape of the solitary wave after traveling 64 times compaction length, as well 

as the analytical solution. 
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We estimate our model accuracy by comparing the shape of the wave after the model 

runtime to this analytical solution (See references in main article: Dannberg & Heister 

[2016]). For this purpose, we calculate the deviation of the shape of the modelled wave 

from the analytical solution as  

              𝑒𝑒𝜑𝜑 = ‖𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛(𝑧𝑧+∆𝑧𝑧)−𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎(𝑧𝑧)‖2
𝐴𝐴

                                             (S2), 

where φnum is our numerical solution, φana is the 1D analytical solution, and Δz=cΔt is the 

phase shift.   

 

Figure S1(B) demonstrates the evolution of this porosity error with spatial resolution of 
the compaction length. After an initial transient stage, the shape error remains constant. 
This shows that our code can capture the expected behavior of a solitary wave that moves 
with a constant phase speed without changing its shape. The errors decrease with 
increasing resolution, but saturate at a level of around 0.25 grid resolution (Figure S1(C)). 
The convergence becomes slower after the mesh size is less than the compaction length, 
as solitary waves are the solution of a simplified formulation of the porous flow equations 
that is only valid in the limit of small porosity. 
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Figure S1. Shape of the porosity wave (A) with the resolution of 3.4 m and amplitude 0.01, after 
propagating 64 times its compaction length. The solid curve in (A) shows the analytical solution 
for the 1D solitary wave. The dashed curve in (A) indicates the numerical solution obtained with 
our code. The error (defined in the eq. S2) relative to the 1D analytical solution against time, and 
against grid resolution plotted in (B) and (C), respectively.  
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Table S1. Parameters for the solitary wave benchmark. 

Parameters Value 

Compaction length, δc 3.42 m 

Phase speed, c 1.66x10-4m/yr 

Solid matrix density, ρs  3000 kg.m-3 

Melt density, ρf 2500 kg.m-3 

Reference permeability, K0 5x10-18 m2 

Reference porosity, φ0 10-3  

Shear viscosity of solid matrix, η0 1020 Pa·s 

Melt viscosity, µ 100 Pa·s 

Bulk viscosity, ζ 1020 Pa·s 

Gravitational acceleration, g 10 m/s2 

Reference velocity, u0 2.5x10-13 m s-1 

Vertical grids number, nz 64,128,256, 512 

Resolution, h 6.84, 3.42, 1.71, 0.855 m 
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Captions for Datasets S1 to S5: 
 
Dataset S1: The matlab script to produce the Fig.1B. 
 
Dataset S2: The matlab script to reproduce the trajectory. 
 
Dataset S3: The data file for the mantle wedge thermal structure and matlab script to plot it. 
 
Dataset S4: The temperature-pressure-time determination. Combining S2 and S3, the T-P-t 
trajectory is obtained.  
 
Dataset S5: The source code for the case of the impermeable large diapir. This source code is 
based on deal.ii libraries; installation information can be found at 
(https://dealii.org/9.0.0/index.html). 
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