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Abstract Rapid climate change at high latitudes is projected to increase wildfire extent in tundra
ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2)
cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These
changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral
exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we
investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous
silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned
areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in
plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased
prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned
areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in
peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica
dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from
unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these
results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation
and associated weathering, but that changes in lateral silica export may depend on vegetation uptake
during the first decade of postwildfire succession.

Plain Language Summary Climate change in the Arctic is leading to more frequent and severe
wildfire in Arctic tundra ecosystems. Studying the silica (SiO2) cycle in Arctic ecosystems is important
because the amount of silica exported from land to sea can control uptake by marine primary producers in
Arctic coastal waters. We investigated how tundra wildfire affects silica cycling by returning to a large Arctic
wildfire 10 years after the burn to collect samples of streamwater, vegetation, and peat. We found that plants
growing on burned landscapes contained 73% more silica in their aboveground biomass compared to
unburned areas nearby. While the fire thawed permafrost underneath it, we did not observe increased levels
of silica in streams draining burned areas. This pattern indicates that elevated rates of silica uptake via plants
may prevent increased silica export to marine waters following tundra wildfire. We conclude that the effect
of tundra fire on silica cycling depends on the recovery trajectories of terrestrial and aquatic ecosystems in
the Arctic.

1. Introduction

The permafrost zone, which contains half of Earth's soil organic matter (Hugelius et al., 2014), is warming
approximately 6 times faster than the global mean (Huang et al., 2017). This rapid climate change at high
latitudes is accelerating ecosystem disturbances, including permafrost collapse and wildfire (Jones et al.,
2015; Rocha et al., 2012). Wildfire is a dominant disturbance type in the boreal forest (Kasischke &
Turetsky, 2006), but until recently, it has been relatively rare in Arctic tundra because of cold and
wet conditions. Increased temperature and evapotranspiration have increased tundra fire in some
regions (Chipman et al., 2015; Hu et al., 2015, 2010; Rocha et al., 2012; Turetsky et al., 2011), and by the
end of the century, tundra wildfire frequency and extent are projected to increase by 60% to 480%
(Abbott et al., 2016; Flannigan et al., 2009; Kloster et al., 2012). Wildfire in the permafrost zone can drama-
tically alter fundamental ecosystem properties, such as surface albedo, plant community composition, net
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primary productivity, nutrient cycling, and lateral export (Goetz et al., 2005; Larouche et al., 2015; Loranty et
al., 2018; Mack et al., 2011).

There is a growing understanding of how wildfire affects carbon and nitrogen dynamics in permafrost land-
scapes (Bret‐Harte et al., 2013; Burd et al., 2018; Larouche et al., 2015; Mack et al., 2011), but little is known
about how post wildfire succession affects the biogeochemical exchange of silica (SiO2) between terrestrial
and aquatic systems. Silica export from land to sea influences coastal primary productivity (Baines et al.,
2012), where silica‐requiring diatoms account for roughly half of marine primary productivity globally
(Nelson et al., 1995; Rousseaux & Gregg, 2014) and >80% of high latitude marine primary productivity
(Rousseaux & Gregg, 2014; Tremblay et al., 2012). Lithological weathering is the ultimate source of dissolved
silica delivered to coastal waters, with geochemical factors, such as climate, runoff, and bedrock type
exerting large controls on silica export rates from terrestrial systems at the global scale (Dürr et al., 2011;
Gaillardet et al., 1999; Kump et al., 2000). However, terrestrial plants mediate this flux by incorporating large
amounts of dissolved silica into their tissue, estimated at 84 ± 29 Tmol Si/year (Carey & Fulweiler, 2012b). At
a planetary scale, this terrestrial silica pump is roughly a third the amount consumed each year by oceanic
diatoms (Tréguer & De La Rocha, 2013). The magnitude of the terrestrial silica pump depends on vegetation
type and phenology, as plant silica content varies substantially among plant species (Hodson et al., 2005).
Consequently, changes in plant community composition and land cover alter terrestrial silica retention
and lateral export to freshwater and marine ecosystems (Carey & Fulweiler, 2012a, 2012b; Chen et al.,
2014; Conley et al., 2008; Struyf et al., 2010). The strength of the terrestrial silica pump in the Arctic is unde-
termined, representing an important unknown because the chemistry of Arctic Ocean is strongly influenced
by terrestrial runoff, receiving ~10% of global land‐derived runoff but containing only ~1% of total ocean
volume (Opsahl et al., 1999).

Silica has often been considered relatively immune to disruption by human activities because geochemical
drivers, such as bedrock lithology, hydrology, and climate, strongly influence its biogeochemistry
(Abbott et al., 2018; Dürr et al., 2011). During the past few decades, a greater appreciation of the silica
cycle's sensitivity to human perturbation has emerged, through recognition that silica export to the
global oceans can be influenced by river damming (Humborg et al., 2000), nutrient overenrichment
(Conley et al., 1993), permafrost thaw from climatic warming (Frey & McClelland, 2009; Guo et al., 2004;
Smedberg et al., 2006), and recently, watershed land use (Carey & Fulweiler, 2012a, 2012b; Conley et al.,
2008; Marçais et al., 2018; Struyf et al., 2010). Urbanization and agricultural land cover influence silica
turnover and flux (Carey & Fulweiler, 2016; Clymans et al., 2011; Maguire & Fulweiler, 2016, 2019;
Vandevenne et al., 2012), but little work has focused on wildfire as a disruptor of silica transfer between
terrestrial and aquatic systems.

Wildfire could alter the Arctic terrestrial silica pump through three, nonexclusive mechanisms. First,
combustion can increase reactive surfaces of soil material, increasing the solubility of silica in soils
(Unzué‐Belmonte et al., 2016) and the amount of silica available for plant uptake or lateral export post burn
(Engle et al., 2008; Pereira et al., 2011). Second, fire removes surface organic soil layers and increases the
depth of the seasonally thawed active layer (Rocha & Shaver, 2011a; Schuur et al., 2008; Zhou et al.,
2019), exposing silica‐rich mineral layers to chemical weathering. Permafrost thaw, be it from climatic
warming or wildfire, increases infiltration rates and soil‐water interactions, resulting in increased silica
release from soils to aquatic systems (Frey & McClelland, 2009; Guo et al., 2004; Smedberg et al., 2006).
Furthermore, warmer soil temperatures accelerate lithological weathering rates (Kump et al., 2000), further
increasing silica mobilization with permafrost thaw and increased active layer depths (Millot et al., 2003;
Smedberg et al., 2006). Third, fire alters plant community composition and aboveground primary productiv-
ity (Belsky, 1992; Melzer et al., 2010; Morrison et al., 1995). Because plant silica content varies by 2 orders of
magnitude among plant species (Epstein, 2009), plant community composition can influence ecosystem‐

level silica retention (Carey & Fulweiler, 2012a, 2012b; Conley, 2002; Hodson et al., 2005). Plant‐mediated
differences in silica storage could be particularly pronounced in Arctic tundra because the relative
prevalence of gramminoids (high silica accumulators) and dwarf shrubs (presumably lesser silica
accumulators; Carey et al., 2017; Hodson et al., 2005) depends on disturbance type and history
(Elmendorf et al., 2012; Pearson et al., 2013; Tape et al., 2006). Additionally, environmental stressors (e.g.,
desiccation, herbivory) can alter the mode of silica uptake by plants, shifting accumulation from being pas-
sive in nature (i.e., dissolved silica consumption from soil solution via transpiration) to active (i.e., active root

10.1029/2019EF001149Earth's Future

CAREY ET AL. 1045



uptake of dissolved silica against a concentration gradient) (Carey & Fulweiler, 2014; Cooke et al., 2016;
Cooke & Leishman, 2011; Cornelis, Delvaux, et al., 2010; Cornelis, Ranger, et al., 2010; Raven, 2003).

In this context, we hypothesized that tundra wildfire would increase the amount of silica stored in plant
biomass (the terrestrial silica pump), due to shifts in plant community and increased silica bioavailability.
We also hypothesized that tundra wildfire would alter stream silica exports, either by increasing lateral
losses due to deepening of active layer and hydrologic flowpaths, or by decreasing lateral losses due to
increased silica retention in vegetation. To investigate these hypotheses, we measured plant silica concentra-
tions and net accumulation in dominant plant species along a burn severity gradient at a large, 10‐year‐old
Arctic tundra burn in northern Alaska. We compared dissolved silica concentration in streams draining
burned and unburned catchments to assess the legacy effects of tundra wildfire on lateral silica export.
Together, these data provide the first analysis of the effects of wildfire on silica cycling in tundra ecosystems.

2. Methods
2.1. Site Description

We collected samples on the North Slope of Alaska (United States) at the Anaktuvuk River fire scar
(150.6385°W, 69.1352°N; Figure 1), the largest recorded fire on the North Slope in the past 50 years
(Jones et al., 2009; Mack et al., 2011). The ~1,000 km2 burn was ignited by lightning in July of 2007 and
burned for nearly 3 months. Over 80% of the scar was classified as moderately to severely burned
(Boelman et al., 2011). Continuous permafrost underlays this region, with bryophytes and tussock‐forming
sedges, consisting mostly of Eriphorum vaginatum and Carex bigelowi dominating the site (~70% cover)
and dwarf shrub species (e.g., Ledum palustre, Betula nana, Vaccinium vitus‐idaea, and Salix pulchra) consti-
tuting the rest of the species cover prior to the burn (Bret‐Harte et al., 2013; Jones et al., 2009). Mean annual
temperature is−10 °C andmean annual precipitation is 30 cm. The period leading up to the burnwasmarked
by elevated temperature and extremely dry conditions (e.g., average snow depth during the 4‐year period
prior to the fire was 50% of normal and 2007 was the driest year in the prior 29‐year record; Jones et al., 2009).

2.2. Plant and Soil Collection

In 2017, a decade after the fire, wemeasured total above and belowground biomass at unburned and severely
burned locations near or within the fire scare (Figure 1). Following standard long‐term ecological research
(LTER) protocols (Bret‐Harte et al., 2013), we collected biomass from 20 quadrats (10 × 40 cm) along 100 m
transects at the severely and unburned sites in the eastern and western portion of the fire scar during the last
week of July, which is the period of peak biomass (Rocha & Shaver, 2011a, 2011b). Harvested quadrats
included all above and belowground vegetation and organic matter above the mineral soil layer. We col-
lectedmaterial in large plastic bags in the field for transport to the laboratory. Wemeasured organic and peat
layer depths in situ along the four sides of each quadrat pit, and we collected soil bulk density from 10 pro-
files at each quadrat. From 2008 to 2017, thaw depth was measured twice a month at the plots via manual
frost probing using a rigid metal rod (~1‐cm diameter) from June through September. Following standard
LTER protocols (Rocha & Shaver, 2011a, 2011b), we inserted the rod vertically into the peat and recorded
the depth at which permafrost prevented further penetration.

During the first week of August 2017, we collected additional aboveground plant material for silica analysis.
In total, we collected 67 samples from 11 plots that span the burn severity gradient: four severely burned
plots, three moderately burned plots, and four unburned plots. We randomly chose these plots from a subset
of existing plots previously studied at the burn scar (Table S1), for which burn severity was already defined
using a severity index (Jandt et al., 2012). At each plot, we collected material from the six most prevalent
plant species. We collected the entire aboveground portions of the bryophytes and gramminoids. We
collected leaves of the shrub species, as transpiration termini (i.e., leaves rather than woody material) are
the plant parts where the majority of plant silica is located (Epstein, 1994; Raven, 2003). Because plant silica
concentration varies widely among individual plants (Carey & Fulweiler, 2014; Hodson et al., 2005), we
collected material from five plants of each dominant species at each plot. Thus, each plot‐level plant species
silica value represents a composite sample of five individual plants of a given species.
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2.3. Stream Silica Concentration

To assess the legacy effects of tundra fire on lateral silica export, we collected water samples from streams
draining 22 burned and 23 unburned catchments in early June, mid‐July, and late August of 2017
(Figure 1). These sampling dates represented the early‐season freshet (June), when the bulk of hydrological
export occurs in many Arctic and Boreal catchments (McClelland et al., 2014), the peak growing season
when plant‐mediated changes in silica availability was most likely to be apparent (July), and the time of
maximum thaw depth (August; Abbott et al., 2015), when geogenic silica release from degrading permafrost
was most likely (Frey & McClelland, 2009). Due to the remoteness of the sites, we collected samples from a
helicopter in prewashed high‐density polyurethane bottles attached to a retractable pole. Immediately upon
return to the lab, we filtered samples with a 0.2‐μm cellulose acetate membrane filter and refrigerated in the
dark until analysis (Figure 2).

Figure 1. Map of the Anaktuvuk River Fire scar, terrestrial and aquatic sampling sites, and tributary catchment
boundaries.
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For each stream, we extracted catchment areas and characteristics based on a 5‐m digital elevation model.
Catchment sizes ranged from 0.2 to 196 km2 (24 ± 6 km2, mean ± standard deviation, SD). We extracted
characteristics for each delineated catchment from existing data layers using geospatial software (ESRI
ArcMap 10.3). We classified stream catchments that fell within the burn perimeter as “burned,” with most
burned catchments consisting of >80% burned area. In addition to this binary classification, we also used
two continuous variables to examine the relationship between catchment properties and stream chemistry:
the Normalized Difference Vegetation Index (NDVI) as a proxy of primary productivity using National
Aeronautics and Space Administration's 30‐m Landsat Enhanced Thematic Mapper Plus moscaics from
2002 to 2012 (South Dakota State University, 2013) and differenced normalized burn ratio (dNBR) based
on repeat NDVI measurements taken in 2006, 2008, and 2012 as a proxy of burn severity (Allen & Sorbel,
2008; Boelman et al., 2011). We regressed NDVI and dNBR against stream silica concentration using least
squares regression (Figure S1 in the supporting information).

2.4. Laboratory Analysis

We separated harvested biomass from each of the 20 quadrats into new and old aboveground and below-
ground vegetation and litter to the species or plant functional type level. We assigned peat to O‐ or A‐layers
based on visually distinct changes in organic matter composition, bulk density, and color. We washed plant
samples for silica analysis prior to drying. Material was dried at 60 °C for 2–3 days, at which point mass was
recorded. To measure plant silica concentrations in plants and amorphous silica content of peat, we used
the wet alkaline digestion technique. Plant and amorphous silica was extracted from 30 (±1) mg of
homogenized, oven‐dried material with 1% Na2CO3 solution (Conley & Schelske 2002; DeMaster, 1981).
This material was digested in flat‐bottom, polyethylene bottles in a hot water shaking bath (85 °C at
100 rpm). We digested plant samples for 4 hr and peat samples for 5 hr, with subsamples for mineral silica
correction taken at hours 3 and 4. Analysis of an internal plant silica standard was always <6% of the
expected value. We analyzed aliquots of dissolved silica from the alkaline extractions on a flow analyzer
using the molybdenum blue colorimetric method, with sodium hexafluorosilicate (Na2SiF6) used as the
silica standard. We used external dissolved silica standards (Hach) to ensure accuracy and these were always
within 5% of the expected value. Stream silica samples were analyzed by inductively coupled plasma
spectrometry (iCAP 7000 series, Thermo Scientific, Waltham, United States).

2.5. Standing Silica Stock Calculations

We estimated total plant silica in aboveground biomass by multiplying measured plant silica concentration
with total biomass values. Based on our plant biomass harvest data, total woody biomass made up <10% of
total aboveground biomass at unburned sites and <20% at burned sites; we used literature values of silica

Figure 2. Plant silica concentrations in unburned (open bars) and burned (filled bars) plots, grouped by plant functional
type. Asterisk indicates significant difference between burned versus unburned plot plant silica concentrations for a
particular plant functional type.

10.1029/2019EF001149Earth's Future

CAREY ET AL. 1048



concentrations for woody material (0.02 ± 0.004 % SiO2 by wt.; Clymans
et al., 2016; Cornelis, Delvaux, et al., 2010; Cornelis, Ranger, et al., 2010),
as we did not measure silica content of woody tissue because of its low
plant silica content relative to leaves and minor component of total
biomass. Indeed, our estimate was that woody silica constituted <1% of
total plant silica at all plots. We represent plant and amorphous silica
values as % SiO2 of dry weight.

To compare responses between burned versus unburned plots, we used a
two‐tailed, one‐way Student's t test. To compare differences in silica con-
tent between plant species and plant functional types, we used a one‐way
analysis of variance. We used a decision criterion of α = 0.05 to determine
statistical significance and all statistics were done in R (version 3.3.2).

3. Results
3.1. Aboveground Plant Biomass and Shifts in Plant Community Composition

Catchment NDVI was 38% lower in burned catchments in 2008 than in 2006, but by 2012, NDVI had recov-
ered and was 5% higher than in 2006. In 2017, 10 years after the burn, total biomass was 777 ± 101 g/m2 at
the burned plots and 926 ± 59 g/m2 at the unburned plots. Bryophyte biomass recovered less quickly than
vascular plant biomass, meaning that burned plots had higher vascular plant biomass than unburned
(Table 1). Differences in total aboveground biomass between burned and unburned plots was driven largely
by shifts in community composition at the plant functional type level. For example, burned plots contained 3
times more gramminoid biomass (214 ± 52 versus 72 ± 17 g/m2) and twice the biomass of deciduous shrubs
(182 ± 66 versus 84 ± 6 g/m2), compared to unburned plots, while moss biomass was three times higher at
unburned plots. Moreover, lichen was not observed at any burned plots but was considerable (86 ± 21 g/m2)
at unburned plots (Table 1). In both unburned and burned areas, the bulk density of the O‐layer was an order
of magnitude lower than the A‐layer (~0.05 and ~0.25 g/cm3, respectively; Table 4), but bulk density was
very similar in burned and unburned plots in both layers (Table 4).

3.2. Plant Silica Content

Plant silica concentration was not significantly different (p = 0.27, n = 16) between moderate and severely
burned plots, so we combined data from these two categories in all subsequent analyses. As expected, silica
concentration varied among plant species (p = 0.007, n= 9), with the highest concentration in gramminoids
(E. vaginatum and C. bigolowii), and the forb Equisetum spp. (Table 2). Grouping all samples together, mean
plant silica concentration was higher at burned plots (0.49 ± 0.12 %) compared to unburned plots
(0.28 ± 0.04%), though this difference was not significant (p = 0.13, n = 67; Table 2). Silica concentrations
of individual species were not significantly different between burned and unburned plots in any case.

Table 1
Total Average (±SE) Biomass in Aboveground Vegetation in Unburned
and Burned Plots

Total aboveground biomass (g/m2)

Plant functional type Unburned Burned

Byrophyte 352.1 (42.5) 122.0 (37)
Evergreen shrub 297.7 (28.4) 219.5 (42.4)
Deciduous shrub 84.3 (5.9) 181.5 (65.8)
Forb 34.8 (6.3) 40.6 (12.4)
Gramminoid 71.7 (17.2) 214.0 (51.6)
Lichen 85.9 (20.9) 0.0 (0.0)
Total 926.6 (58.5) 777.6 (101.6)

Table 2
Plant Silica Concentrations (%SiO2 by Dry wt.) at Unburned and Burned Tundra

Unburned Burned

Plant species Plant functional type Plant silica concentration Standard error n Plant silica concentration Standard error n

Sphagnum spp. Bryophyte 0.20 0.02 4 0.35 0.03 5
Carex bigelowii Gramminoids 0.70 0.13 4 1.48 0.61 7
E. Vaginatum Gramminoids 0.36 0.05 3 0.40 0.04 7
Rubus chamaemorus Forb 0.23 0.04 4 0.25 0.05 4
Equisetum spp. Forb na na na 1.65 na 1
Letum palustre Evergreen Shrub 0.15 0.01 3 0.18 0.02 6
Betula nana Deciduous Shrub 0.17 0.01 3 0.17 0.02 7
Salix spp. Deciduous Shrub na na na 0.15 0.01 3
Petacites frigidus Deciduous Shrub 0.27 na 1 0.16 na 1

Note. Burned samples include plants from bothmoderate and severely burned plots. Each sample (n) represents a composite of five individual plants, which were
combined in the field.
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Although these differences across species were not significant, aver-
age silica concentrations were consistently higher from burned plots
for all species, except in the case of Petacites frigidus (Table 2). At the
plant functional type level, significant differences were only observed
for the byrophytes, where silica concentrations were significantly
higher at burned compared to unburned plots (0.35 and 0.20 %,
respectively; p = 0.006, n = 9; Table 2). We note that we did not iden-
tify mosses to the species level and therefore, shifts in sphagnum spe-
cies compositions after the burn could contribute to the observed
shifts in moss silica concentrations post burn. Total plant silica in
aboveground biomass was higher at burned plots compared to
unburned plots (3.14 ± 0.51 and 1.81 ± 0.14 g SiO2/m

2, respectively;
Table 3). This large difference in standing plant silica stock was pri-
marily driven by gramminoids, which had higher silica concentration
and higher total biomass at the burned plots, resulting in five times
more silica in gramminoids at burned plots compared to unburned
plots (2.01 ± 0.48 and 0.40 ± 0.10 g SiO2/m

2, respectively).

3.3. Peat Amorphous Silica Concentrations and Stocks

Mean peat loss was 6 cm across the burned area (Mack et al., 2011), consisting of the entire soil O‐layer and
part of the deeper peat (A‐layer). Therefore, the O‐layer samples from the burned plots consist entirely of
material that accumulated since the fire. The O‐layer, which is the top‐most soil layer, consisted of 80 to
90% of dead moss material, as we removed all plant litter prior to analysis. This layer had extremely low
density (~0.055 g/cm3). Amorphous silica concentration in the O‐layer was significantly higher in burned
plots (p = 0.03, n = 9, 0.59 ± 0.07 and 0.33 ± 0.02% in the burned and unburned plots, respectively;
Figure 3 and Table 4). The average depth of the O‐layer at the burned plots was 1.7 cm (±0.35, n = 31),
73% less than the depth at unburned plots (Table 4). Therefore, despite the significantly higher silica
concentrations and similar bulk density of the O‐layer in burned plots, the shallower depth of the O‐layer
resulted in roughly half the amorphous silica in burned O‐layers than in unburned O‐layers (6.5 ± 0.01
and 12.3 ± 0.02 g SiO2/m

2; Table 4).

Amorphous silica concentration in the A‐layer peat (the layer between the O‐layer and deeper mineral layer,
consisting largely of organic material), was not significantly different between burned and unburned plots
(Figure 3 and Table 4). Depth of the A‐layer in burned plots was generally lower than unburned plots

(4.5 and 6.9 cm, respectively), explaining the slightly lower total silica
values (51 ± 0.15 and 69 ± 0.15 g SiO2/m

2; Table 4).

Maximum annual thaw depth (i.e., active layer depth) at burned
plots was 30 ± 5.3 cm, which was 4.8 ± 0.92‐cm deeper than the mean
at unburned plots in 2017 (n = 16; Figure 4). Differences in
active‐layer depths in previous years were much greater than the last
2 years (Figure 4).

3.4. Stream Silica Concentration and Catchment Properties

Dissolved silica concentration ranged from 7.9 to 114 μM (mean
35 ± 2 μM, n = 90) across the entire sampling period (June–August
2017). Dissolved silica concentration behaved similarly in burned
and unburned catchments, increasing through the sampling period,
but with no significant differences for any of the months (Figure 5).
Monthly or total stream silica concentration was not correlated with
catchment NDVI or burn severity (R2 consistently <0.17; Figure S1).

4. Discussion

We hypothesized that wildfire could alter plant silica uptake and
stream silica exports from tundra ecosystems by increasing active

Table 3
Average (±SE) Silica Stock in Aboveground Vegetation in Unburned and
Burned Plots

Total aboveground biogenic Si stock (g SiO2/m2)

Plant functional type Unburned Burned

Byrophyte 0.72 (0.09) 0.43 (0.13)
Evergreen Shrub 0.45 (0.04) 0.38 (0.07)
Deciduous Shrub 0.05 (0.02) 0.10 (0.03)
Forb 0.08 (0.01) 0.21 (0.07)
Gramminoid 0.40 (0.10) 2.01 (0.49)
Lichen 0.12 (0.03) 0.0 (0.0)
Total 1.81 (0.14) 3.14 (0.51)

Note. Lichen was not sampled during our field campaigns (no lichen was pre-
sent at burned sites; Table 1), so lichen silica concentration at unburned plots is
based on values from a nearby station on the North Slope (Carey et al., 2017).
SE = standard error.

Figure 3. Amorphous silica concentration in O‐layer and A‐layer peat at
unburned (open bars) and burned (filled bars) plots. O‐layer silica concentra-
tions were significantly (p = 0.03, n = 9) higher after fire disturbance, while no
significant difference in A‐layer peat was observed between treatments (p = 0.95,
n = 9).
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layer depth, changing chemical structure of soils, and shifting plant community and growth. We found that
10 years after a large wildfire, the silica reservoir in Arctic tundra was nearly twice as large, surface peat
amorphous silica stocks were 29% lower, but stream silica concentration was unchanged. Below, we
discuss these changes in detail and address several mechanisms that explain the differing plant, peat, and
stream silica responses to burning.

4.1. Differential Plant Silica Response to Wildfire

Bryophytes exhibited the most pronounced legacy effect of wildfire in terms of silica biogeochemistry, with
both living bryophytes and O‐layer peat (which consists of 80–90% dead bryophyte material) having signifi-
cantly higher silica concentrations at burned plots. Bryophytes are often the first colonizers during second-
ary succession (Johnstone et al., 2010; Turetsky et al., 2010), and the O‐layer is entirely newly formed since
the burn. The higher concentration of silica in bryophytes following the burn may be because they grew
directly on the A‐layer, which is more silica‐rich than the O‐horizon in unburned plots (Figure 3). Higher
silica availability could have also contributed to this difference because water‐soluble silica, the form taken
up by plants, has been shown to increase immediately after burning in laboratory (Unzué‐Belmonte et al.,
2016) and field studies (Pereira et al., 2011). While this is not always the case, especially in situations of ele-
vated mineral content where crystallization may occur (Unzué‐Belmonte et al., 2016), combustion increases
reactive surfaces of soil material, often releasing water soluble silica to the surrounding environment.

Table 4
Peat Properties at Unburned and Burned Plots

Layer properties

Unburned Burned

O‐layer A‐layer O‐layer A‐layer

Average ±SE Average ±SE Average ±SE Average ±SE

Bulk density (g/cm3; n = 31) 0.061 0.003 0.215 0.03 0.052 0.011 0.248 0.027
Layer depth (cm; n = 31) 6.21 0.63 6.9 0.75 1.66 0.35 4.54 0.76
Total mass (g/m2; n = 31) 3763 384 14859 1613 1108 219 11245 1874
Amorphous silica (%SiO2 by wt.; n = 18) 0.33 0.02 0.47 0.09 0.59 0.07 0.46 0.11
Total ASi by mass (g SiO2/m2; n = 18) 12.3 0.02 69.4 0.15 6.5 0.01 51.3 0.15

Note. SE = standard error.

Figure 4. Average annual active layer depth (cm) in unburned (open bars) and burned (both severe and moderately
burned; filled bars) plots. Error bars represent standard errors (each year of data represents an average of n = 7 and
n = 14 for unburned and burned plots, respectively).
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Unlike the mosses, dwarf shrubs had similar plant silica concentra-
tion in burned and unburned sites, corresponding with the similar
nature of silica in A‐layer peat between the plots. Dwarf shrubs
usually have relatively shallow rooting strategies, with their roots
typically penetrating only into peat layers (Chapin et al., 1996;
Hewitt et al., 2018; Wang et al., 2017). Conversely, gramminoids gen-
erally extend roots annually to the full depth of the active layer
(Chapin et al., 1996; Hewitt et al., 2018), where they could likely
access the deeper, silica‐rich mineral layers (Carey et al., 2017).
Although not significantly different, the elevated silica concentra-
tions in gramminoids after burn disturbance (0.94 ± 0.33 versus
0.55 ± 0.1 in burned versus unburned plots; Table 2 and Figure 2)
may be a result of higher silica concentration and availability after
burning due to the significantly increased thaw depth (Figure 4),
which increases water‐soil interaction in space and time.

At the Anaktuvuk River fire scar, plant community composition
shifted to favor gramminoids and deciduous shrubs at the expense
of evergreen shrubs and byrophytes (Table 1). This shift corresponds
to prior studies demonstrating altered plant community composition

and rates of primary productivity following wildfire (Hu et al., 2010; Melzer et al., 2010). Thus, although
we did not observe significant differences in plant silica concentrations between burned and unburned plots
at the species level, the rapid biomass accumulation of relatively silica‐rich gramminoids during burn
recovery (Table 1) resulted in a near doubling of silica in terrestrial vegetation pool after the burn
(3.14 ± 0.51 g SiO2/m

2 versus 1.81 ± 0.14 g SiO2/m
2 in unburned and burned plots; Table 3).

4.2. A diminished Terrestrial Silica Pool With Burning

Peat amorphous silica concentrations were low (range of 0.13–0.79%, n = 18), in agreement with values
observed in temperate regions (Unzué‐Belmonte et al., 2016) and elsewhere throughout the Arctic
(Alfredsson et al., 2016). Amorphous silica concentrations of A‐layer peat in burned versus unburned plots
were strikingly similar, but the shallower nature of the peat layers that persist a decade into postfire
succession (Table 4) resulted in 29% less amorphous silica stored in peat at burned plots, compared to
unburned plots (58 versus 82 g SiO2/m

2 in burned and unburned plots, respectively; Table 4). This peat data,
in conjunction with the vegetation data, does not support the hypotheses that fire increases silica storage in
terrestrial landscapes (Melzer et al., 2010); total plant and amorphous silica stocks in aboveground vegeta-
tion and peat were 27% lower in burned plots than unburned plots after 10 years of postfire succession
(61 versus 84 g SiO2/m

2 in burned and unburned plots, respectively; Tables 1, 3). However, these values
do not include belowground vegetation silica stocks. We can estimate total belowground plant silica
accumulation based on our total belowground biomass values (1,153 ± 260 and 1408 ± 202 g/m2 at burned
and unburned plots) and known concentrations in belowground tussock tundra vegetation from the region
(0.40%; Carey et al., 2017). Including these estimates of the belowground silica reservoir (4.6 ± 1.0 and
5.6 ± 0.81 g SiO2/m

2 in burned and unburned plots, respectively) into our calculations continues to
demonstrate a 27% smaller plant and amorphous silica pool in burned plots 10 years after the burn.

4.3. Stream Silica Unchanged With Burning

The stream silica concentrations we observed were low compared to global average dissolved silica
concentrations in rivers (~150 uM; Dürr et al., 2011; Tréguer & De La Rocha, 2013), but within the typical
range of other North American Arctic rivers (Holmes et al., 2012). An important objective of this work
was to determine how ecological processes occurring on the terrestrial landscape impact silica export to
aquatic systems. In contrast to prior studies showing increased lateral silica exports with increased thaw
depth (Frey & McClelland, 2009; Guo et al., 2004) and Engle et al. (2008), who observed elevated dissolved
silica exports 9 years after a prescribed burn in a temperate North American Sequoia forest, we find no dif-
ferences in stream silica concentrations in tributaries draining unburned versus burned plots 10 years after
the tundra burn. Two potential explanations for this discrepancy are that our sampling 10 years after the
burn missed a large pulse of silica released through streams or that terrestrial plant silica uptake offsets

Figure 5. Box plots of stream dissolved silica concentrations (μM) in tributaries
draining unburned (open white boxes) and burned (filled gray boxes) catch-
ments during each month of sampling in 2017. Box plots represent median,
quartiles, minimum, and maximum values within 1.5 times the interquartile
range. Open points represent values beyond 1.5 times the interquartile range
(mean n per box plot = 15).
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increases in postfire silica availability. First, it is possible that the fire resulted in an initial pulse of bioavail-
able silica directly after the burn, as the deepening of the active layer likely mobilized silica directly after the
burn (Frey & McClelland, 2009), but this release may have occurred on timescales shorter than a decade.
Thus, it is possible that stream silica chemistry has recovered from the burn in regards to silica exports.
We see such signs of recovery in metrics of total biomass production and catchment greening (i.e., NDVI;
Table 1 and Figure S1).

The second potential explanation for the lack of stream silica signal from the burn is the increased uptake by
terrestrial vegetation during recovery, which may limit stream silica exports despite deeper thaw depths
(~5 cm in 2017; Figure 4) following the burn. A deeper active layer should increase dissolved silica availabil-
ity to the system due to increased weathering and soil water residence time (Frey & McClelland, 2009).
However, additional plant silica uptake during postburn succession may be great enough to retain burn‐
released silica in the terrestrial landscape, resulting in no change in stream silica concentrations from
burned catchments, despite deeper thaw depths. To determine if this mechanism for silica retention is rea-
sonable, we compared the additional mass of silica taken up by plants during a decade of postburn succes-
sion to known lateral silica fluxes in the Arctic. To do this, we calculated the difference between plant silica
in burned (3.14 g SiO2/m

2) and unburned (1.81 g SiO2/m
2) plots (Table 3, estimating that 1.3 g SiO2/m

2 was
taken up by plants during the 10‐year period of postburn succession). We then compared this value to lateral
fluxes measured in two large Arctic rivers in North America (Yukon and Mackenzie Rivers), which ranged
from 0.72 to 1.81 g SiO2 m

−2 year−1 on average from 1999 to 2008 (Homes et al., 2012). While differences in
bedrock lithology across this large region may result in different baseline silica fluxes, this comparison indi-
cates that each year of postburn recovery results in additional silica uptake by plants equal to 7–18% of aver-
age annual lateral silica fluxes from large North American Arctic rivers. From this, it appears that increased
plant silica accumulation could indeed retain enough silica in terrestrial systems to limit increased stream
exports from deeper thaw depths following a burn.

4.4. Complex and Persistent Effects of Wildfire on Tundra Silica

This study reveals that postwildfire succession has complex and persistent effects on biogeochemical cycling
of silica in Arctic ecosystems, some of which are similar to the effects of other ecological disturbances on
silica cycling in lower latitude ecosystems. For example, the magnitude of plant silica increase we observed
following wildfire is similar to effects from CO2 enrichment observed in a temperate forest, though those
changed were associated with increased biomass production, rather than shifting species composition or
plant silica concentrations (Fulweiler et al., 2015). Conversely, our observations of unchanged silica
chemistry in small streams draining the tundra burn scar differ from deforestation treatments in a temperate
hardwood forest where stream silica concentration remained elevated several decades after the disturbance
(Conley et al., 2008). A likely explanation for the differing response of stream silica chemistry to these
disturbances is the relatively low total stocks of biogenic and amorphous silica in the Arctic relative to lower
latitudes (Alfredsson et al., 2016), especially in the soils where the majority of ecosystem amorphous silica is
stored (Conley, 2002). For example, A‐layer amorphous silica concentrations at our site (Table 4) are an
order of magnitude lower than those observed from the Hubbard Brook Experimental Forest (United
States; average 1.4 ± 0.37% SiO2 by dry weight), where the long‐term silica release was observed after defor-
estation (Conley et al., 2008). This reasoning aligns with several other studies showing no increased stream
dissolved silica export following deforestation (Bäumler & Zech, 1999), where sandstone bedrock and asso-
ciated vegetation composition prevented substantial soil amorphous silica accumulation (Conley et al., 2008;
Saccone et al., 2007). It appears that the response of the silica cycle to disturbance depends on the amount
and location of local soil silica stocks, the bedrock type, and the composition and abundance of the
vegetation community.

These results add to the growing body of research documenting how ecological disturbances alter the global
silica cycle. However, substantial uncertainties remain about how the silica cycle will respond to changes in
wildfire in the tundra biome, as this is the first study on this subject, to our knowledge. Much of this
uncertainty stems from the temporal limitations of our study. Our measurements are from a decade after
the burn, and we do not know the impacts of wildfire on silica cycling immediately following the burn
nor how they will evolve in the years and decades to come. Whether an initial lateral pulse of silica was
exported following a burn, as well as the magnitude and duration of such a pulse, directly influences the
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mass balance of silica. Additionally, it remains unknown how long this newly accumulated reservoir of silica
in terrestrial biomass will persist on site before dissolution or export to downstream systems occur; plant
decomposition rates will likely differ with burn succession and shifting plant community composition
(Barbe et al., 2019; Hobbie et al., 2000; Turetsky et al., 2010; Wickland et al., 2007), impacting lateral silica
export rates from terrestrial systems over the long term.

Ten years after the largest known tundra fire, we observed a rapid increase in the size of the terrestrial
vegetation silica reservoir, driven by increased plant silica concentrations and shifts in plant community
composition. This is in contrast to the starkly diminished size of the peat amorphous silica pool, resulting
in a cumulative loss of 27% in vegetation and nonmineral peat pools a decade after wildfire. Stream silica
chemistry, which is similar regardless of catchment burn disturbance, appears resilient to such shifts in
the size and structure of terrestrial silica pools. Our data suggest that a portion of the silica mobilized
during postwildfire succession is retained in land plants, rather than being stored in peat or exported to
downstream systems. The period preceding this unprecedented tundra fire was marked by extreme heat
and record low precipitation, conditions likely to persist in the Arctic in the foreseeable future (Chapin,
2005; Jones et al., 2009). Continued examination of the role of fire on silica exchange in Arctic ecosystems
is particularly important, as a shifting disturbance regime could alter rates of terrestrial silica retention
and lateral export to aquatic ecosystems, with impacts to silica availability in coastal waters.
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