Entanglements of North Atlantic right whales increase as their distribution shifts in response to climate change: The need for a new management paradigm

Daniel Pendleton², Heather Pettis¹, Philip Hamilton¹, Amy Knowlton¹,
Scott Landry², Michael J Moore³, William McLellan⁴, Peter Corkeron², Scott Kraus²
1. Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston MA USA.
2. Center for Coastal Studies, Provincetown MA USA.
3. Woods Hole Oceanographic Institution, Woods Hole MA USA.
4. University of North Carolina Wilmington, Wilmington VA USA.

Rapid warming in the Gulf of Maine linked to right whale distribution changes since ~2008 - 2012

What may have caused increased entanglement rates?

OBSERVATION Rapid warming at surface and at depth began ~2004 resulted in:
- changed supply of NARW prey
- redistribution of NARW
- increased lobster recruitment
- changed seasonality of fishery

HYPOTHESIS Warming waters have led to higher GOM lobster recruitment and more fishing activity (e.g., more rope and/or longer fishing seasons), leading to greater encounter rate between whales and rope as NARWs forage outside of historic feeding grounds.

OBJECTIVE OF THIS ANALYSIS Address our hypothesis given extremely limited data on fixed gear fishing activity and the times and locations of entanglement events.

Detection rate of severely injured or entangled NARWs began to increase around 2004 - 2007

Knowlton et al (2012) entanglement rates updated through 2017

Increased landings from fixed-gear fisheries that overlap with NARW habitat.

Increased rate of observed severe injury & entanglement

Redistribution of NARWs post ~2010

Climate change has changed NARW distributions in a nonlinear and unpredictable fashion

Dynamic management of fisheries that threaten species facing extinction is too risky, since managers cannot respond quickly enough.

Broadscale changes to fishing practices are needed to minimize and eliminate human-caused injury and mortality

References: