Tetrodotoxin-Sensitive Sodium Channels Mediate Action Potential Firing and Excitability in Menthol-Sensitive Vglut3-Lineage Sensory Neurons

Theanne N. Griffith, Trevor A. Docter, and Ellen A. Lumpkin

1Department of Physiology and Cellular Biophysics, 2Undergraduate Program in Neuroscience and Behavior, 3Department of Dermatology, Columbia University, New York, New York, 10032, and 4Neurobiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Small-diameter vesicular glutamate transporter 3-lineage (Vglut3 lineage) dorsal root ganglion (DRG) neurons play an important role in mechanosensation and thermal hypersensitivity; however, little is known about their intrinsic electrical properties. We therefore set out to investigate mechanisms of excitability within this population. Calcium microfluorimetry analysis of male and female mouse DRG neurons demonstrated that the cooling compound menthol selectively activates a subset of Vglut3 lineage neurons. Whole-cell recordings showed that small-diameter Vglut3 lineage DRG neurons fire menthol-evoked action potentials and exhibited robust, transient receptor potential melastatin 8 (TRPM8)-dependent discharges at room temperature. This heightened excitability was confirmed by current-clamp and action potential phase-plot analyses, which showed menthol-sensitive Vglut3 lineage neurons to have more depolarized membrane potentials, lower firing thresholds, and higher evoked firing frequencies compared with menthol-insensitive Vglut3 lineage neurons. A biophysical analysis revealed voltage-gated sodium channel (NaV) currents in menthol-sensitive Vglut3 lineage neurons were resistant to entry into slow inactivation compared with menthol-insensitive neurons. Multiple in situ hybridization showed similar distributions of tetrodotoxin (TTX)-sensitive NaV transcripts between TRPM8-positive and -negative Vglut3 lineage neurons; however, NaV1.8 transcripts, which encode TTX-resistant channels, were more prevalent in TRPM8-negative neurons. Conversely, pharmacological analyses identified distinct functional contributions of NaV subunits, with NaV1.1 driving firing in menthol-sensitive neurons, whereas other small-diameter Vglut3 lineage neurons rely primarily on TTX-resistant NaV channels. Additionally, when NaV1.1 channels were blocked, the remaining NaV current readily entered into slow inactivation in menthol-sensitive Vglut3 lineage neurons. Thus, these data demonstrate that TTX-sensitive NaV1.1 drive action potential firing in menthol-sensitive sensory neurons and contribute to their heightened excitability.

Key words: action potential; dorsal root ganglion; excitability; sensory neuron; sodium channel

Introduction

Small-diameter dorsal root ganglion (DRG) neurons are sensory neurons that encode a diverse array of somatic sensations, including various forms of pain, thermosensation, itch, and touch (Dubin and Patapoutian, 2010; McGlone and Reilly, 2010; Schepers and Ringkamp, 2010; Bautista et al., 2014; Liljencrantz). Somatosensory neurons encode various sensory modalities including thermoreception, mechanoreception, nociception, and itch. This report identifies a previously unknown requirement for tetrodotoxin-sensitive sodium channels in action potential firing in a discrete subpopulation of small-diameter sensory neurons that are activated by the cooling agent menthol. Together, our results provide a mechanistic understanding of factors that control intrinsic excitability in functionally distinct subsets of peripheral neurons. Furthermore, as menthol has been used for centuries as an analgesic and anti-pruritic, these findings support the viability of NaV1.1 as a therapeutic target for sensory disorders.
and Olausson, 2014). This functional diversity is encompassed by small-diameter DRG neurons of the vesicular glutamate transporter 3 lineage (Vglut3 lineage), which comprise ~15% of DRG neurons (Lou et al., 2013). For example, a subpopulation of Vglut3 lineage neurons are unmyelinated, low threshold mechanoreceptors that encode tactile stimuli (Seal et al., 2009). Furthermore, transient receptor potential melatin (TRPM8)-expressing Vglut3 lineage neurons are proposed to mediate oxaliplatin-induced cold hypersensitivity (Draxler et al., 2014). The diverse physiological processes in which these neurons have been implicated suggest that they engage distinct transduction mechanisms to encode sensory information. Yet, the molecular determinants involved in transmitting electrical signals in discrete subpopulations of Vglut3 lineage neurons remain poorly understood.

Following membrane depolarization, activation of voltage-gated sodium channels (NaVs) initiate action potentials. In sensory neurons, both action potential shape and discharge frequency transmit important information (Djouhri et al., 1998; Mendell, 1992). The authors declare no competing financial interests.

Materials and Methods

Key resources. Table 1 contains a list of this study’s key resources, suppliers, and unique identifying information. RRIDs are provided for mouse strains and antibodies.

Animals. Animal use was conducted according to guidelines from the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals and was approved by the Institutional Animal Care and Use Committee of Columbia University Medical Center. Mice were maintained on a 12 h light/dark cycle, and food and water was provided ad libitum. Slc17a8 flox:: (stock #018417; Grimes et al., 2011) and Rosa26Ai14 mice (stock #007914; Madisen et al., 2010) were obtained from Jackson Laboratories and bred to produce Slc17a8 flox::Rosa26Ai14 mice. Genotyping was performed through Transnetyx. Adult Slc17a8 flox::Rosa26Ai14 mice (4–16 weeks old) of either sex were used for all experiments.

DRG culture preparation. DRGs were harvested from Slc17a8 flox::Rosa26Ai14 mice and transferred to Ca2+- and Mg2+-free HBSS (Invitrogen) containing the following (in mM): 137.9 NaCl, 5.3 KCl, 0.34 Na2HPO4, 0.44 K2HPO4, 5.6 glucose, 4.2 NaHCO3, 0.01% phenol red. Processes were trimmed to reduce the amount of plated non-neuronal cells. Ganglia were treated with collagenase (1.5 mg/ml; Type P, Sigma-Aldrich) in HBSS for 20 min at 37°C followed by 0.05% Trypsin-EDTA (Invitrogen) for 3 min with gentle rotation. Trypsin was neutralized with culture media (MEM, with l-glutamine, Phenol Red, without sodium pyruvate) supplemented with 10% horse serum (heat-inactivated; Invitrogen), 10 U/ml penicillin, 10 μg/ml streptomycin, MEM vitamin solution (Invitrogen), and B-27 supplement. Serum-containing media was decanted and cells were triturated using a fire-polished Pasteur pipette in a serum-free MEM culture media containing the supplements listed above. Cells were plated on laminin-treated (0.05 mg/ml) glass coverslips, which had previously been washed in 2N NaOH for at least 4 h, rinsed with 70% ethanol and UV-sterilized. Cells were then incubated at 37°C in 5% CO2. Cells were used for electrophysiological experiments 16–24 h after plating.

HEK cell culture and transfection. Stably transfected HEK293 cells lines expressing human NaV1.1 (Kahili et al., 2010), NaV1.6 (Dr. Lori Isom, University of Michigan), or HEK293 cells transiently transfected with a cDNA construct containing human NaV1.7 (Dr. Manu Ben-Johny, Columbia University) were used. The NaV1.7 plasmid was sequenced following transformation and extraction (GENEWIZ, see Mendelec dataset). HEK cells were grown in DMEM (Invitrogen, 11995) containing 10% FBS (ThermoFisher Scientific A18-40101), 1% penicillin-streptomycin (ThermoScientific, 15-140-122). Media for HEK cells stably expressing NaV1.1 or NaV1.6 also contained 400 μg/ml G418 (Fisher Scientific, 10-131-035) to select for transfected cells. A calcium phosphate protocol was used to co-transfect NaV1.7 and green fluorescent protein into HEK 293 cells. Briefly, 2 μl CaCl2, cDNAs, and sterile water were mixed together and added dropwise to a 2X solution of HEPES buffered saline. The final solution was added dropwise to HEK293 cells that were plated the day before on glass coverslips coated with 0.05 mg/ml laminin. Cells were incubated at 37°C in 5% CO2 with the transfection solution for 3 h, followed by two washes with sterile PBS and addition of new cell culture media. Electrophysiological recordings were performed 24–72 h post-transfection.

Electrophysiology. Whole-cell voltage-clamp and current-clamp recordings made from small-diameter (capacitance ≤25 pF), TdTomscounting (expressing Vglut3 lineage) dissociated DRG neurons and HEK cells were performed with patch pipettes pulled from standard borosilicate glass (1B150F-4, World Precision Instruments) with a P-97 puller (Sutter Instruments). For neuronal recordings, patch pipettes had resistances of 3–6 MΩ when filled with an internal solution containing the following (in mM): 120 K-methylsulfonate, 10 KCl, 10 NaCl, 5 EGTA, 0.5 CaCl2, 10 HEPES, 2.5 MgATP, pH 7.2 with KOH, osmolarity 300 mOsm. For HEK cell recordings, patch pipettes had resistances of 1.5–3 MΩ when filled with an internal solution containing the following (in mM): 140 CaCl2, 10 NaCl, 2 MgCl2, 0.1 CaCl2, 1.1 EGTA, 10 HEPES, pH 7.2 with CaCl2, osmolarity ~310 mOsm. Seals and whole-cell configuration were obtained in an external solution containing the following (in mM): 145 NaCl, 5 KCl, 10 HEPES, 10 glucose, 2 CaCl2, 2 MgCl2, pH 7.3 with
NaOH, osmolarity ~320 mOsm. Series resistance was compensated by 80%. In experiments with DRG neurons where currents from voltage-gated sodium channels were recorded, after the whole-cell configuration was established and neurons were tested for sensitivity to menthol, a modified solution was used containing the following (in mM): 105 NaCl, 40 TEA-Cl, 10 HEPES, 2 BaCl₂, 13 glucose, 0.03 CdCl₂, pH 7.3 with NaOH, osmolarity ~320 mOsm. This modified solution was used in HEK cell recordings following seal acquisition in a standard external solution. All solutions used were allowed to warm to ambient temperature before each experiment to ensure all recordings were made at room temperature (20–23°C). After each experiment, the recording chamber was thoroughly cleaned with Milli-Q water. For experiments using Nav inhibitors, drugs were applied to neurons for 1 min in current-clamp mode in the absence of injected current; therefore, cells were recorded at their intrinsic \(V_m \).

Table 1. Key resources, suppliers, and unique identifying information

<table>
<thead>
<tr>
<th>Reagent or Resource</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit polyclonal anti-DsRed</td>
<td>Clontech Laboratories</td>
<td>Catalog #632496, RRID:AB_10013483</td>
</tr>
<tr>
<td>Goat anti-rabbit polyclonal AlexaFluor 594</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #A-11037, RRID:AB_2534095</td>
</tr>
<tr>
<td>Chemicals, peptides, and recombinant proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagenase type P</td>
<td>Sigma-Aldrich</td>
<td>Catalog #11249002001</td>
</tr>
<tr>
<td>OCT compound</td>
<td>Tissue-Tek</td>
<td>Catalog #4583</td>
</tr>
<tr>
<td>Trypsin-EDTA 0.05%</td>
<td>Fisher Scientific</td>
<td>Catalog #25300054</td>
</tr>
<tr>
<td>Fluoromount-G</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #K00-4958-02</td>
</tr>
<tr>
<td>MEM</td>
<td>Sigma-Aldrich</td>
<td>Catalog #H11011</td>
</tr>
<tr>
<td>MEM</td>
<td>Fisher Scientific</td>
<td>Catalog #H11098050</td>
</tr>
<tr>
<td>Penicillin-streptomycin</td>
<td>Fisher Scientific</td>
<td>Catalog #H15-140-122</td>
</tr>
<tr>
<td>MEM vitamin solution</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #K5H359901</td>
</tr>
<tr>
<td>B-27 supplement</td>
<td>Fisher Scientific</td>
<td>Catalog #H17504044</td>
</tr>
<tr>
<td>Horse serum, heat inactivated</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #K2050070</td>
</tr>
<tr>
<td>Fura-2, AM</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #K1221</td>
</tr>
<tr>
<td>Pluronic F-127</td>
<td>ThermoFisher Scientific</td>
<td>Catalog #P3000MP</td>
</tr>
<tr>
<td>Human NaV1.1, 7 plasmid</td>
<td>Dr. Manu Ben-Johny</td>
<td>Catalog #K1195073</td>
</tr>
<tr>
<td>DMEM</td>
<td>Fisher Scientific</td>
<td>Catalog #A8120054</td>
</tr>
<tr>
<td>Fetal bovine serum</td>
<td>R&D Systems</td>
<td>Catalog #M6359/100U</td>
</tr>
<tr>
<td>TTX</td>
<td>Tocris Bioscience</td>
<td>Catalog #5931</td>
</tr>
<tr>
<td>AH-TTX</td>
<td>Tocris Bioscience</td>
<td>Catalog #5066/10</td>
</tr>
<tr>
<td>PF 05089771</td>
<td>Deuis et al. (2017)</td>
<td></td>
</tr>
<tr>
<td>ICA 121431</td>
<td>Qiagen</td>
<td>Catalog #12162</td>
</tr>
<tr>
<td>PN3a</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #320850</td>
</tr>
<tr>
<td>Critical commercial assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmid Maxi kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAseA Flourescent Multiplex kit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deposited data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Data (freely available through Mendeley)</td>
<td>This study</td>
<td>http://dx.doi.org/10.17632/bxsvmy2zh3.1</td>
</tr>
<tr>
<td>Movie of calcium imaging experiment</td>
<td>This study</td>
<td>http://dx.doi.org/10.17632/bxsvmy2zh3.1</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: Scn17a floxed; fgf/ROSA26Sortm14(CAG-tdTomato)Hze/J</td>
<td>The Jackson Laboratory</td>
<td>RRID:IMSR_JAX:018147</td>
</tr>
<tr>
<td>Mouse: B6.129(Cg)-Lck-Cre<sub>x</sub>/J</td>
<td>The Jackson Laboratory</td>
<td>RRID:IMSR_JAX:018147</td>
</tr>
<tr>
<td>Homo sapiens: embryonic kidney cells stably transfected with NaV1.1, β1 and β2 subunits</td>
<td>Kahlig et al. (2010)</td>
<td></td>
</tr>
<tr>
<td>Homo sapiens: embryonic kidney cells stably transfected with NaV1,6</td>
<td>Dr. Lori Isom</td>
<td></td>
</tr>
<tr>
<td>Oligonucleotide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tpnh probe channel 3</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #420451-C3</td>
</tr>
<tr>
<td>Scn1a probe channel 2</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #434181-C2</td>
</tr>
<tr>
<td>Scn8a probe channel 2</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #434191-C2</td>
</tr>
<tr>
<td>Scn9a probe channel 2</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #313341-C2</td>
</tr>
<tr>
<td>Scn10a probe channel 2</td>
<td>Advanced Cell Diagnostics</td>
<td>Catalog #426011-C2</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pClamp 10 Software Suite</td>
<td>Molecular Devices</td>
<td>www.moleculardevices.com</td>
</tr>
<tr>
<td>MATLAB 2017b</td>
<td>MathWorks</td>
<td>www.mathworks.com</td>
</tr>
<tr>
<td>Software, algorithm, custom (MATLAB)</td>
<td>This study</td>
<td>https://github.com/thelumpkinlab/Calcium-Imaging-Analysis-Script</td>
</tr>
<tr>
<td>MetaMorph v7.50.6</td>
<td>Molecular Devices</td>
<td>www.moleculardevices.com</td>
</tr>
<tr>
<td>MetaFluor v7.60.3</td>
<td>Molecular Devices</td>
<td>www.moleculardevices.com</td>
</tr>
<tr>
<td>Prism v7.0b</td>
<td>GraphPad</td>
<td>www.graphpad.com</td>
</tr>
</tbody>
</table>

Data acquisition and analysis. Currents and voltages were acquired and analyzed using pClamp software v10 (Molecular Devices). Recordings were obtained using an AxoPatch 200b patch-clamp amplifier and a Digidata 1440A, and filtered at 5 kHz and digitized at 10 kHz. Analysis was performed using Clampfit 10 (Molecular Devices). All voltages were corrected for the measured liquid junction potential (~7 mV) between internal and external recording solutions. Phase plots were constructed from the first derivative of the somatic membrane potential (dV/dT) versus the instantaneous somatic membrane potential. Action potential threshold was calculated as the membrane potential at which the phase plot slope reached 10 mV ms⁻¹ (Kress et al., 2008; Yu et al., 2008). Duration at the base was calculated by measuring the duration of the action potential starting at the resting membrane potential (\(V_m \)) and ending when the repolarization phase again passed the initial \(V_m \). Following determination of menthol sensitivity in gap-free recording mode,
some cells were not further analyzed using phase plot analysis due to low digital gain during recordings (n = 3) or deteriorating cell health (n = 2).

Pharmacology. TTX was from Abcam. PF 05089771 and ICA 121431 were from Tocris Bioscience. PN3a was a generous gift from Dr. Irina Vetter (Institute for Molecular Biosciences, University of Queensland). All other chemicals were from Sigma-Aldrich.

Calcium imaging. Dissociated DRG neurons were loaded for 45 min with 10 mxT Pura-2AM (Invitrogen), supplemented with 0.013% w/v Plutonic F-127 (Invitrogen), in external solution. Images were acquired using MetaMorph software v7 and displayed as the ratio of approximately 340–380 nm. Neurons were identified by eliciting calcium responses with a high potassium solution (140 ms) at the end of each experiment. Neurons were considered sensitive to an agonist if the average ratio during the 30 s following agonist application was ≥15% above baseline. Image analysis was performed using custom MATLAB scripts.

Multiplex in situ hybridization. DRG sections cut at 25 μm thickness were processed for RNA in situ detection using an RNAscope Fluorescent Detection Kit according to the manufacturer’s instructions (Advanced Cell Diagnostics) with the following modifications: upon harvesting, DRG were fixed in 4% paraformaldehyde for 15 min and then incubated in 30% sucrose for 2 h at 4°C. DRG were embedded in optimal cutting temperature compound (Sakura) and stored at −80°C until sectioned. The following RNAscope probes were used: Trpm8 (40451-C3-mouse), Scn1a (434181-C2-mouse), Scn1b (434191-C2-mouse), Scn9a (313341-

Results

Menthol-sensitivity is restricted to Vglut3 lineage DRG neurons

Vglut3 lineage sensory neurons are a heterogeneous population. To identify functionally distinct subpopulations within this group, we tested the responsiveness of Vglut3 lineage neurons to capsaicin, chloroquine and menthol (Fig. 1), which activate nociceptors, pruritoceptors, and cold receptors, respectively. We performed calcium microfluorimetry while applying various chemosensory stimuli to acutely cultured DRG neurons (<24 h) harvested from adult male and female Slc17a8iCre;Rosa26Ai1 mice. In these mice, neurons that express Vglut3 at any point during development are labeled with a TdTomato fluorescent reporter (Fig. 1A). Neurons were identified by robust calcium responses to high-potassium depolarization (784 total DRG neurons, 331 Vglut3 lineage, 453 non-Vglut3 lineage, n = 3 mice; Fig. 1B–D). Approximately 8% of Vglut3 lineage neurons were activated by the TRPM8 agonist menthol, whereas no non-Vglut3 lineage neurons responded to the compound (Fig. 1E). Conversely, both populations contained neurons that were activated by the TRP vanilloid 1 (TRPV1) agonist capsaicin; however, comparatively fewer Vglut3 lineage neurons were capsaicin-sensitive compared with non-Vglut3 lineage neurons (~9% vs ~46%, respectively). Few neurons of either group responded to both menthol and capsaicin (5/331 Vglut3 lineage neurons), or to chloroquine (1/331 Vglut3 lineage neurons and 4/453 non-Vglut3 lineage neurons), a pruritogen that signals through MrgrP3 and TRP ankyrin 1 (TRPA1; Wilson et al., 2011). Interestingly, a comparison of un-normalized baseline fura-2 ratios showed that menthol-sensitive neurons had slightly elevated baseline calcium signals compared with menthol-insensitive neurons (F340/F380 = 0.52 ± 0.05 vs 0.45 ± 0.03, n = 5 coverslips, p = 0.029, unpaired Student’s t-test, two-tailed; Fig. 1F). This analysis builds upon prior work (Draxler et al., 2014) by demonstrating that menthol sensitivity is restricted to the Vglut3 lineage population.

The majority of menthol-sensitive DRG neurons have small somata and give rise to unmynelated axons (Takashima et al., 2007; Dhaka et al., 2008). Thus, we targeted small-diameter, Vglut3 lineage neurons with a membrane capacitance (Cm) ≤ 25 pF for functional analysis. Neurons that did not meet these criteria were not analyzed further by electrophysiology. Using gap-free current-clamp recordings, we asked whether these neurons fire action potentials in response to menthol application (100 μM). Half of small-diameter Vglut3 lineage neurons (31/62 neurons) fired trains of action potentials in response to menthol application (Fig. 2A). A subset of neurons were subsequently exposed to 1 mM menthol, which activates TRPM8 ion channels but inhibits TRPA1 (Karashima et al., 2007; Xiao et al., 2008). All neurons examined showed a dose-dependent increase in menthol-evoked firing rates (Fig. 2B), suggesting that menthol elicits firing through TRPM8 rather than TRPA1 in Vglut3 lineage DRG neurons. We noted that menthol-sensitive neurons were among the smallest DRG neurons in vitro, whereas menthol-insensitive neurons were more varied in size (Fig. 2C). Consistent with this observation, the distribution of Cm among these menthol-sensitive neurons was well fit by a single Gaussian distribution (R2 = 0.986; 8.1 ± 2.9 pF; Fig. 2D). Conversely, menthol-insensitive neurons were better fit by a double Gaussian distribution (R2 = 0.818), with the two populations having means of 8.7 ± 3.4 and 20.6 ± 2.0 pF (Fig. 2D). These data suggest that menthol-sensitive Vglut3 lineage neurons are a more homogenous subpopulation compared with menthol-insensitive Vglut3 lineage neurons.

Menthol-sensitive Vglut3 lineage neurons fire robustly at room temperature

We next asked whether intrinsic excitability properties differed between menthol-sensitive and insensitive Vglut3 lineage neurons. During gap-free recordings, we noted that 87% (27/31) of menthol-sensitive Vglut3 lineage neurons exhibited unusually robust action potential firing before menthol application. Two firing patterns were observed, sustained and phasic firing (Fig. 2E, F). Of the menthol-sensitive neurons that exhibited non-evoked activity, 44% exhibited phasic firing, whereas 56% maintained sustained firing during gap-free recordings.

Griffith et al. • TTX-Sensitive Firing in Menthol-Sensitive Neurons

![Fig. 2](image-url)
Menthol-sensitive neurons with sustained action potential discharges showed higher average firing frequencies compared with burst firing frequencies of phasic neurons (Fig. 2C). By contrast, few menthol-insensitive neurons exhibited non-evoked firing during gap-free recordings (4/31), and these produced only occasional action potentials. This ongoing activity in menthol-sensitive neurons is consistent with the elevated baseline fluoro-2 fluorescence observed during calcium microfluorimetry experiments (Fig. 1F), as well as ex vivo data showing sustained firing upon cold or menthol-stimulation of TRPM8-expressing DRG neuron receptive fields (Jankowski et al., 2017). Together, these results suggest that the menthol-sensitive Vglut3 lineage population has heightened excitability under our in vitro recording conditions and that, within this population, firing properties vary.

The ability of menthol-sensitive neurons to fire robustly at room temperature, an activating stimulus for TRPM8 (McKemy et al., 2002; Andersson et al., 2004; Tajino et al., 2011; Fujita et al., 2013; Morenilla-Palao et al., 2014; Jankowski et al., 2017; Pertusa et al., 2018), led us to ask whether this firing was dependent upon TRPM8 ion channels. We applied the selective inhibitor, PBMC (25 nM; Knowlton et al., 2011) to menthol-sensitive neurons and analyzed its effect on action potential firing at room temperature. Whereas vehicle application did not have a significant effect on firing rates, PBMC drastically reduced action potential firing at room temperature within 2 min of drug application (n = 3 neurons per group, p = 0.0035, unpaired Student’s t test; Fig. 2G,H). Thus, activation of TRPM8 ion channels mediates robust ongoing action potential firing in menthol-sensitive Vglut3 lineage neurons.

Collectively, these data demonstrate that menthol-sensitive neurons are a highly excitable subpopulation of small-diameter Vglut3 lineage DRG neurons, capable of maintaining sustained action potential firing in vitro at room temperature.

Figure 1. Menthol-sensitivity is restricted to Vglut3 lineage DRG neurons. A. Representative confocal images of DRG sections (25 μm) from adult Slc17a8iCre; Rosa26Ai14 mice immunostained with anti-DsRed (TdTomato; red), anti-neurofilament heavy (NFH; blue), and anti-β3-Tubulin (green). Images were acquired using a 20×0.8 NA air objective. B, C. Baseline normalized, representative traces depicting Fura2-AM ratio (F340/F380) versus time traces of averaged responses from Vglut3 lineage (B) and non-Vglut3 lineage (C) DRG neurons to various chemosensory stimuli (menthol (M) 100 μM, blue trace; chloroquine (CQ) 1 mM; capsaicin (Cap) 1 μM, red trace; and high K⁺ Ringer’s (K⁺) 140 mM, black trace). Colored bar indicates time of agonist application. D. Images of calcium transients in live, dissociated Slc17a8iCre;Rosa26Ai14 DRG neurons quantified in B and C. Top, Fura2-AM calcium microfluorimetry following menthol application. Green circles indicate menthol-sensitive DRG neurons. Bottom, Fluorescent image showing TdTomato-expressing (Vglut3 lineage) DRG neurons. E. Quantification of percentage of Vglut3 lineage (n = 331) and non-Vglut3 lineage (n = 453) neurons responding to individual agonists. F. Quantification of baseline calcium signals between Vglut3 lineage menthol-sensitive neurons and menthol-insensitive neurons (both Vglut3 lineage and non-Vglut3 lineage). Significance was determined using an unpaired Student’s t test. *p < 0.05. Data represented as mean ± SD. Scale bars, 100 μm.
Intrinsic excitability differs between Vglut3-lineage menthol-sensitive and menthol-insensitive neurons

To investigate the heightened intrinsic excitability in menthol-sensitive DRG neurons, we compared responses of menthol-sensitive and -insensitive Vglut3 lineage neurons to 500 ms current injections using phase plot analysis (Fig. 3A, B). The threshold for action potential firing in menthol-sensitive neurons was significantly hyperpolarized (-28.5 ± 6.6 mV, $n = 28$) compared with menthol-insensitive neurons (-22.2 ± 10.4 mV, $n = 31$, $p = 0.0269$, unpaired Student’s t test; Fig. 3C). Menthol-sensitive neurons also fired more action potentials in response to a current injection of 50 pA (Fig. 3D). Action potential duration at the base (see Materials and Methods) was significantly shorter in menthol-sensitive neurons compared with menthol-insensitive neurons.

Figure 2. Menthol-sensitive Vglut3 lineage neurons fire action potential discharges at room temperature. A, Representative current-clamp recording from a menthol-sensitive Vglut3 lineage DRG neuron. Gray bar indicates menthol application (100 μM, left; 1 mM, right). B, Quantification of firing rates in response to 100 μM and 1 mM menthol. Lines connecting symbols indicate paired observations. Significance was determined using a paired Student’s t test (two-tailed). $**p = 0.0036$. C, Representative differential interference contrast image (20 x, 0.75 NA air objective) of a menthol-sensitive (MS; left) and a menthol-insensitive (MI; right) DRG neuron in culture during electrophysiological recordings. TdTomato fluorescence indicates Vglut3 expression at some point during development (Vglut3 lineage). D, Histogram of membrane capacitance measurements from MS (blue) and MI (black) Vglut3 lineage neurons. Lines indicate the mean(s) of the Gaussian core. E, Left, Representative current-clamp recording from a MS neuron exhibiting sustained firing at room temperature. Right, A different MS neuron firing with a phasic action potential discharge pattern. F, Quantification of average non-evoked firing frequency of MS Vglut3 lineage neurons at room temperature. Each individual point represents the average firing frequency of a single neuron over a 5 s period. Firing frequencies for phasic-firing neurons were quantified during bursts of action potentials only. Significance was determined using an unpaired Student’s t test (two-tailed). $**p = 0.0009$. G, Left, Representative current-clamp trace of room temperature action potential firing in a MS neuron. Vehicle treatment did not impact firing rate. Gray bar indicates vehicle application. Right, Representative current-clamp trace of inhibition of action potential firing in a MS neuron following application of the TRPM8 blocker, PBMC (25 nM). Gray bar indicates PBMC application. H, Quantification of relative firing rate following 90 s of vehicle or PBMC treatment. Significance was determined using an unpaired Student’s t test. $**p < 0.01$. Data represented as mean \pm SD. Scale bars, 100 μm.
neurons (Fig. 3E). Interestingly, in gap-free recordings before menthol application, menthol-sensitive neurons had significantly more depolarized membrane potentials (V_m) than menthol-insensitive neurons (-45.5 ± 4.4 mV vs -51.2 ± 5.8 mV, $n = 31$ for each group, $p < 0.0001$, Mann–Whitney test; Fig. 3F). Thus, menthol-sensitive Vglut3lineage neurons maintain a V_m that more closely borders action potential threshold compared with menthol-insensitive neurons. C–H, Quantification of action potential threshold (C), number of action potentials generated in response to a 50 pA current injection (D), duration at base (E), membrane potential (F), membrane potential (G), and sag ratio (H) for MS (blue) and MI (black) Vglut3lineage DRG neurons. Significance was determined using unpaired Student’s t tests for normally distributed populations (C, E, G, H) or Mann–Whitney tests for non-normal distributions (D, F). *$p < 0.05$, ****$p < 0.0001$. Bars denote mean \pm SD and filled circles show data from each neuron.

Figure 3. Intrinsic excitability of menthol-sensitive Vglut3lineage DRG neurons. A, Representative current-clamp traces from a menthol-sensitive (MS; left, blue) and -insensitive (MI; right, black) Vglut3lineage DRG neuron in response to -200 and 50 pA current injections. The single action potential for each represents the first action potential elicited by the 50 pA current injection. B, Phase-plots of single action potentials shown in A. Plots show the first derivative of the somatic membrane potential (dV/dt) versus the instantaneous somatic membrane potential. The blue curve represents the MS neuron and the black curve represents the MI neuron. Arrows indicating “threshold” are the points at which the membrane potential of the phase plot slope reached 10 mV ms$^{-1}$. The arrow indicating shoulder represents the momentary slowing of membrane repolarization seen in a subpopulation of menthol-insensitive neurons. C–H, Quantification of action potential threshold (C), number of action potentials generated in response to a 50 pA current injection (D), duration at base (E), membrane potential (F), membrane potential (G), and sag ratio (H) for MS (blue) and MI (black) Vglut3lineage DRG neurons. Significance was determined using unpaired Student’s t tests for normally distributed populations (C, E, G, H) or Mann–Whitney tests for non-normal distributions (D, F). *$p < 0.05$, ****$p < 0.0001$. Bars denote mean \pm SD and filled circles show data from each neuron.

Differences in Na_v current slow inactivation kinetics in small-diameter Vglut3lineage neurons

Na_v slow inactivation has been linked to adaptation of action potential firing in small-diameter DRG neurons, whereby sequestration of tetrodotoxin-resistant Na_v subunits Na_v1.8 and Na_v1.9 in the slow inactivated state restricts the duration of action potential discharges in response to sustained stimulation (Blair and Bean, 2003). As we found that menthol-sensitive Vglut3lineage neurons are capable of maintaining prolonged action potential discharges for several minutes in vitro (Fig. 2) and fire robustly in response to current injection (Fig. 3), we hypothesized that Na_v slow inactivated states are unstable in menthol-sensitive Vglut3lineage neurons. To test this model, we first measured Na_v entry into slow inactivation by delivering a conditioning pulse from -100 to 0 mV for 50–1600 ms between 3 ms test steps to -20 mV (Fig. 4A).

Consistent with our hypothesis, entry of Na_v currents into the slow inactivated state was almost fourfold slower in menthol-sensitive neurons compared with menthol-insensitive neurons ($\tau = 1485$ ms,
Figure 4.

A Entry into slow inactivation

B Recovery from slow inactivation

C Voltage dependence of slow inactivation

D Recovery from fast inactivation

Na\textsubscript{v} recovery from slow inactivation in small-diameter Vglut3lineage DRG neurons. **A**, Left, Quantification of entry into slow inactivation for menthol-sensitive (MS; blue) and -insensitive (MI; black) Vglut3lineage DRG neurons. The current elicited following a conditioning pulse to 0 mV is normalized to the current elicited during an initial test step and plotted against the duration of the conditioning pulse. Lines show exponential fits to the data. Top right, Voltage protocol used to measure Na\textsubscript{v} entry into slow inactivation. Channel slow inactivation was elicited by a conditioning pulse ranging from 10 to 1600 ms. A test step to −20 mV given 12 ms after the conditioning pulse was used to determine entry into slow inactivation. Bottom right, Representative whole-cell voltage-clamp traces of currents elicited from MS and MI neurons. Blue or black traces represent initial test steps; red traces represent test pulses given after a 200 ms conditioning step. **B**, Left, Quantification of recovery from slow inactivation kinetics for MS and MI neurons. Recovery during the second test step is normalized to the current during the initial test step and plotted against the recovery interval. Lines show double-exponential fits to the data. MS neurons: n = 9, \(\tau_1 = 571.1 \) ms, \(\tau_2 = 59.5 \) ms; MI neurons: n = 6, \(\tau_1 = 764.6 \) ms, \(\tau_2 = 80.2 \) ms; p < 0.0001, extra sum-of-squares F test. Top right, Voltage protocol used to measure Na\textsubscript{v} recovery from slow inactivation. Slow inactivation was induced by a 1 s conditioning pulse to 0 mV. Recovery was assayed by 3 ms steps to −20 mV with increasing recovery durations, beginning at 50 ms following the conditioning pulse. Bottom right, Representative whole-cell voltage-clamp traces of currents elicited from a MS (blue) and a MI (black) neuron. Blue or black traces represent initial test steps; red traces represent test pulses given 50 ms after the conditioning step. **C**, Left, Quantification of steady-state voltage dependence of slow inactivation. Both groups were well fit by a single Boltzmann equation (\(V_{1/2} = -20 \) mV, slope factor = −15.6 mV, n = 7–8 neurons per group, p = 0.1031, extra sum-of-squares F test). Top right, Protocol for measuring voltage dependence of slow inactivation. A conditioning pulse of 5 s to membrane potentials between −100 and +40 mV were followed by a 20 ms step to −100 mV and then a test step to −20 mV. Bottom right, Representative traces of currents elicited from a MS (blue) and a MI (black) neuron. Red traces represent test pulses to −40 mV. **D**, Left, Quantification of recovery from fast inactivation kinetics. Lines show monoexponential fits to the data. Top right, Protocol to measure recovery from fast inactivation. A 20 ms step to −20 mV from −100 mV is followed by varying durations at the recovery potential (−100 mV) before a second test step to −20 mV. MS and MI datasets were well fit by a single monoequation. \(\tau = 10.5 \) ms, n = 10 for both groups. Bottom right, Representative traces of currents elicited from a MS (blue) and a MI (black) neuron. Red traces represent test pulses 5 ms following the initial test step. Error bars indicate SD; absent error bars are smaller than symbols.

We next analyzed recovery from slow inactivation by delivering a 3 ms test pulse to −20 mV, followed by a 1 s conditioning step from −100 to 0 mV, and a second 3 ms test pulse given at recovery intervals of increasing duration. Recovery time constants from both populations were well fit with double-exponential functions. Consistent with the slow inactivated state being unstable in menthol-sensitive Vglut3lineage neurons, Na\textsubscript{v} currents in these cells recovered faster from slow inactivation than those in menthol-insensitive neurons (Fig. 4B); however, note that the 1 s conditioning pulse did not drive all channels into the slow inactivated state. Sodium currents in menthol-sensitive Vglut3lineage neurons recovered from slow inactivation with an average weighted time constant of 244.3 ms, whereas menthol-insensitive Vglut3lineage neurons recovered slower, with an average weighted time constant of 311.2 ms (p < 0.0001, extra sum-of-squares F test). Indeed, after 50 ms, ~80% of the Na\textsubscript{v} current had recovered in menthol-sensitive neurons compared with ~50% in menthol insensitive neurons. The steady-state voltage dependence of slow inactivation was comparable in menthol-sensitive and -insensitive Vglut3lineage neurons (Fig. 4C). These data suggest that in menthol-sensitive neurons, slow inactivated states are less stable across membrane voltages. Finally, recovery from fast inactivation was not distinguishable between menthol-sensitive and -insensitive Vglut3lineage neurons (Fig. 4D).
Collectively, these data indicate that the slow inactivated state of NaV_s expressed in menthol-sensitive Vglut3 lineage neurons is unstable, which could explain the capacity of these neurons to sustain action potential firing for prolonged periods of time. Moreover, the kinetics of slow inactivation we obtained for NaV currents in this population of small-diameter neurons suggest they do not rely upon TTX-resistant NaV_s, which readily enter into the slow inactivated state (Blair and Bean, 2003; Choi et al., 2007).

Figure 5. NaV expression profile of small-diameter Vglut3 lineage DRG neurons. A–D, Representative confocal images of single molecule multiplex in situ hybridizations performed on cryosections of adult DRG (25 μm). Images were acquired with a 40×/0.13 NA oil-immersion objective. Scale bar, 50 μm. Sections were hybridized with probes targeting TRPM8 (Trpm8; blue) and the following voltage-gated sodium channel subunits (green): (A) NaV1.1 (Scn1a), (B) NaV1.6 (Scn8a), (C) NaV1.7 (Scn9a), and (D) NaV1.8 (Scn10a). Sections were stained using immunohistochemistry with anti-dsRED (TdTomato; red) to label Vglut3 lineage neurons. White arrowheads indicate representative TRPM8+/NaV+ neurons. E, F, Schematic representation of the percentage of TRPM8+ (E) or TRPM8− (F) small-diameter Vglut3 lineage neurons that colabeled for each given NaV subunit.
Figure 6. TTX-sensitive Na\textsubscript{v} mediates action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons. **A**, Representative current-clamp traces from menthol-sensitive (MS; top, blue) and -insensitive (MI; bottom, black) Vglut3\textsubscript{lineage} DRG neurons before (left) and after (right) a 1 min application of TTX (1 \textmu M). **B**, Top, Quantification of firing rates before and after TTX application (n = 6 MS neurons, n = 11 MI neurons). Lines connecting symbols indicate paired observations. Bottom, Quantification of the percentage of control firing rate that remained following TTX application for MS and MI neurons. Blue symbols indicate MS neurons and black symbols indicate MI neurons. Orange symbols indicate firing rates of MS neurons before and after application of 300 nM TTX (n = 4). **C**, A dose–response curve obtained for inhibition of recombinant human Na\textsubscript{v}1.1 channels stably expressed in HEK293 cells by AH-TTX, a blocker of Na\textsubscript{v}1.6 channels. Red dashed line indicates apparent IC\textsubscript{50}. **D**, Representative whole-cell voltage-clamp traces of Na\textsubscript{v}1.1 currents elicited from HEK293 cells. Black trace indicates current elicited before application of AH-TTX. Red trace shows reduction in Na\textsubscript{v}1.1 current after application of 200 nM AH-TTX. Red inhibitory sign indicates the inhibition of denoted Na\textsubscript{v} subunits by the blocker. **p < 0.01.**

Na\textsubscript{v} expression profiles in small-diameter Vglut3\textsubscript{lineage} DRG neurons

Given the functional differences in membrane excitability and Na\textsubscript{v} currents between menthol-sensitive and -insensitive Vglut3\textsubscript{lineage} neurons, we next asked whether these two populations have distinct expression profiles of Na\textsubscript{v} \textalpha subunits, nine of which are encoded in the mammalian genome (Na\textsubscript{v}1.1-Na\textsubscript{v}1.9; Catterall, 2012). To do so, we performed single-molecule multiplex in situ hybridization experiments (Fig. 5). Menthol-sensitive Vglut3\textsubscript{lineage} neurons were identified based on TRPM8 mRNA expression. Similarly sized, small-diameter Vglut3\textsubscript{lineage} neurons lacking TRPM8 expression were considered menthol-insensitive neurons.

We focused our analysis on Na\textsubscript{v}1.1, Na\textsubscript{v}1.6, Na\textsubscript{v}1.7, and Na\textsubscript{v}1.8 subunits, which are commonly found in adult murine DRG neurons (Black et al., 1996; Ho and O’Leary, 2011; Fig. 5A–D). Quantification of Na\textsubscript{v} mRNA staining from 848 DRG neurons (n = 3 animals) revealed broad and comparable expression of TTX-sensitive Na\textsubscript{v}1.1, Na\textsubscript{v}1.6, and Na\textsubscript{v}1.7 subunits between TRPM8− and TRPM8− small-diameter Vglut3\textsubscript{lineage} neurons (Fig. 5E,F). Transcripts for the TTX-resistant isoform Na\textsubscript{v}1.8, although widely expressed, was lower in TRPM8− compared with TRPM8− Vglut3\textsubscript{lineage} neurons, [59% (47/80) vs 96% (97/101), respectively]. These data suggest that differential expression of Na\textsubscript{v}1.8 at the mRNA level cannot account for the differences in excitability observed between menthol-sensitive and -insensitive Vglut3\textsubscript{lineage} DRG neurons.

TTX-sensitive Na\textsubscript{v}s mediate action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons

Considering the overlap in Na\textsubscript{v} mRNA expression between putative menthol-sensitive and -insensitive neurons, we next used a pharmacological approach to assess the complement of functional Na\textsubscript{v} isoforms in these two populations. We first asked whether evoked firing from menthol-sensitive Vglut3\textsubscript{lineage} neurons is blocked by TTX (Fig. 6A). A 1 min application of TTX (0.3 or 1 \textmu M) abolished action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons (Fig. 6B). On the other hand, 1 \textmu M TTX abolished action potential firing in only 3/11 menthol-insensitive Vglut3\textsubscript{lineage} neurons. The inhibitory effect of TTX on action potential firing was significantly greater in menthol-sensitive neurons compared with menthol-insensitive neurons (p = 0.0053, unpaired Student’s t-test; Fig. 6B). Thus, these results demonstrate that menthol-sensitive and -insensitive Vglut3\textsubscript{lineage} neurons have functionally distinct complements of Na\textsubscript{v} subunits, with TTX-sensitive channels driving action potential firing in the former and TTX-resistant channels playing a major role in spike firing in the latter.

We next aimed to dissect the specific contributions of individual TTX-sensitive Na\textsubscript{v} subunits to action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons. A metabolite of TTX, 4,9-anhydro-TTX (AH-TTX), has been reported to selectively block Na\textsubscript{v}1.6 channels (Rosker et al., 2007); however, its effect on Na\textsubscript{v}1.1 channels was not examined. Accordingly, we analyzed inhibition by AH-TTX of sodium currents in HEK cells stably transfected with human Na\textsubscript{v}1.1 channels (Kahlig et al., 2010). The average peak amplitude for Na\textsubscript{v}1.1 currents recorded from this cell line was −2499 ± 1499 pA (n = 15). The dose–response curve obtained showed an apparent IC\textsubscript{50} of 120.7 nM (n = 3–5 observations per concentration; Fig. 6C). Indeed, there was no inhibitory effect of TTX on action potential firing in the latter.
A role for Na\textsubscript{v}1.1 in menthol-sensitive Vglut3\textsubscript{lineage} neurons

The TTX-sensitive channels Na\textsubscript{v}1.1 and Na\textsubscript{v}1.7 are both expressed in adult DRG neurons and have been implicated in various forms of pain processing (Cummins et al., 2004; Nassar et al., 2004; Osteen et al., 2016). Whether or not they function in small-diameter Vglut3\textsubscript{lineage} DRG neurons has yet to be determined. We therefore investigated the contribution of these subunits to action potential firing in menthol-sensitive neurons.

We first tested ICA 121431, an inhibitor of the Na\textsubscript{v}1.1 and Na\textsubscript{v}1.3 channels (Fig. 7A, B). Na\textsubscript{v}1.3 is expressed at only low levels in uninjured adult rat, mouse and human DRGs (Waxman et al., 1994; Felts et al., 1997; He et al., 2010; Usoskin et al., 2015; Chang et al., 2018). Thus, we used ICA 121431 as a blocker of Na\textsubscript{v}1.1 channels in adult mouse DRG preparations (McCormack et al., 2013). Application of 500 nM ICA 121431 drastically reduced action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons (baseline: 37.1 ± 7.8 Hz, post-ICA 121431: 4.6 ± 4.9 Hz; n = 11; Fig. 7B). Action potential firing was also reduced in a subset of menthol-insensitive Vglut3\textsubscript{lineage} neurons (5.5 ± 4.4–2.0 ± 1.9 Hz; n = 8). Like TTX, however, the effect of ICA 121431 was significantly greater in menthol-sensitive compared with menthol-insensitive neurons (p = 0.0363; Fig. 7B).

The specificity of ICA 121431’s block of Na\textsubscript{v}1.1 currents was confirmed by testing inhibition of recombinant Na\textsubscript{v}1.1, Na\textsubscript{v}1.6, and Na\textsubscript{v}1.7 mediated currents (IC\textsubscript{50} = 25.2 nM, 2.7 μM, and 2.8 μM respectively, n = 4–6 observations per concentration; Fig. 7C, D). The average peak currents recorded for Na\textsubscript{v}1.6 and Na\textsubscript{v}1.7 channels were −1545 ± 1134 pA and −1147 ± 1391 pA (n = 6 and n = 9, respectively).

We next investigated the contribution of Na\textsubscript{v}1.7 channels to action potential firing in menthol-sensitive neurons using PF 05089771 (25 nM; Alexandrou et al., 2016; Theile et al., 2016), a selective blocker of this channel. PF 05089771 had little effect on mean firing rates in menthol-sensitive Vglut3\textsubscript{lineage} neurons (Fig. 8A, B). Moreover, when cells were analyzed as a percentage of control firing, the effects of PF 05089771 did not differ between menthol-sensitive and menthol-insensitive neurons. A dose–response curve performed in HEK293 cells transiently transfected with recombinant Na\textsubscript{v}1.7 showed an apparent IC\textsubscript{50} of PF 05089771 for inhibition of Na\textsubscript{v}1.7 of 10.7 nM (n = 4–5 observations per concentration; Fig. 8C), consistent with published values (Alexandrou et al., 2016; Theile et al., 2016). Thus, at the concentration used in this study, PF 05089771 blocked ~70% of the Na\textsubscript{v}1.7-mediated current (Fig. 8D). We also tested the spider venom toxin Pn3a (300 nM), a structurally unrelated Na\textsubscript{v}1.7 antagonist whose mechanism is distinct from that of PF 05089771 (Deuis et al., 2017). Consistent with results obtained using PF 05089771, Pn3a had no effect on action potential firing in menthol-sensitive neurons (control: 38.7 ± 5.0 Hz, after Pn3a perfusion: 38.0 ± 4.0 Hz, n = 3; Fig. 8B). Together, these results demonstrate that action potential firing in menthol-sensitive Vglut3\textsubscript{lineage} neurons depends upon TTX-sensitive Na\textsubscript{v}1s including Na\textsubscript{v}1.1.

Figure 7. A critical role for Na\textsubscript{v}1.1 channels in action potential firing by menthol-sensitive Vglut3\textsubscript{lineage} DRG neurons. A, Representative current-clamp traces from menthol-sensitive (MS, top, blue) and -insensitive (MI, bottom, black) Vglut3\textsubscript{lineage} DRG neurons before (left) and after (right) a 1 min application of ICA 121431 (500 nM). B, Top, Quantification of firing rates before and after ICA 121431 application (n = 11 MS neurons, n = 8 MI neurons). Lines connecting symbols indicate paired observations. Bottom, Quantification of the percentage of control firing rate that remained following ICA 121431 application. C, A dose–response curve quantifying inhibition of recombinant human Na\textsubscript{v}1.1 (black circles), Na\textsubscript{v}1.6 (green triangles), and Na\textsubscript{v}1.7 (magenta diamonds) by ICA 121431. The apparent IC\textsubscript{50} for Na\textsubscript{v}1.1 is indicated by a red dashed line. The concentration of ICA 121431 used in this study is indicated by a black dashed line. D, Representative whole-cell voltage-clamp traces of Na\textsubscript{v}1.1, Na\textsubscript{v}1.6 and Na\textsubscript{v}1.7 currents elicited from HEK293 cells before (black trace) and after (red trace) application of 500 nM ICA 121431. Red inhibitory sign indicates the inhibition of denoted Na\textsubscript{v} subunits by the blocker. *p < 0.05.

Na\textsubscript{v}1.1 channels are critical determinants of entry into slow inactivation in menthol-sensitive Vglut3\textsubscript{lineage} neurons

As Na\textsubscript{v} currents in menthol-sensitive Vglut3\textsubscript{lineage} neurons are resistant slow inactivation, we next asked whether this biophysical feature depended upon the activity of Na\textsubscript{v}1.1 channels. To accomplish this, we analyzed rates of entry into, and recovery from, slow inactivation in menthol-sensitive Vglut3\textsubscript{lineage} neurons in the presence of 500 nM ICA 121431. Analysis of whole-cell currents found that the ICA-sensitive component was 38.3 ± 20.2% of the total Na\textsubscript{v} current in these neurons (Fig. 9A, B). In
line with Na\textsubscript{v}1.1 channels being critical to the excitability of menthol-sensitive DRG neurons, we found the rate of entry into slow inactivation drastically increased in the presence of ICA 121431. The previously observed rate of 1485 ms fell to 327.7 ms when Na\textsubscript{v}1.1 channels were blocked (without ICA 121431: 311.2 ms). Conversely, the average weighted time constant of recovery from slow inactivation more than doubled (without ICA 121431: 686.4 ms; with ICA 121431: 252.1 ms) (Madrid et al., 2009).

Consistent with previous studies, we observed a prominent sag ratio, a current-clamp readout of \(I_{o} \), in menthol-sensitive Na\textsubscript{v} channels. The sag ratio, a current-clamp readout of \(I_{o} \), is defined as the ratio of the peak sodium current to the sodium current at a more hyperpolarized voltage. In menthol-sensitive Na\textsubscript{v} channels, this ratio is typically high due to the presence of HCN channels, which are hyperpolarization-activated cyclic nucleotide-gated channels (HCN) that contribute to the intrinsic excitability of these neurons.

Figure 8. Na\textsubscript{v}1.7 channels do not contribute to action potential firing in small-diameter Vglut\textsubscript{3} lineage DRG neurons. A, Representative current-clamp traces from menthol-sensitive (MS; top, blue) and -insensitive (MI; bottom, black) Vglut\textsubscript{3} lineage DRG neurons before (left) and after (right) a 1 min application of PF 05089771 (25 nM). B, Top, Quantification of firing rates before and after PF 05089771 application (n = 11 MS neurons, n = 9 MI neurons) or Prn3a (300 nM, orange symbols in F, n = 3 MS neurons). Lines connecting symbols indicate paired observations. Bottom, Quantification of the percentage of control firing rate that remained following PF 05089771 application. C, A dose–response curve measuring inhibition of recombinant human Na\textsubscript{v}1.7 channels by PF 05089771. The apparent IC\textsubscript{50} is indicated by a red dashed line. The concentration of PF 05089771 used in this study is indicated by a black dashed line. D, Representative whole-cell voltage-clamp traces of Na\textsubscript{v}1.7 currents elicited from HEK293 cells before (black trace) and after (red trace) application of 25 nM PF 05089771. Red inhibitory sign indicates the inhibition of denoted Na\textsubscript{v} subunits by the blocker. Significance was determined by unpaired Student's t tests. ns = not significant.

Discussion

Small-diameter Vglut\textsubscript{3} lineage DRG neurons are a heterogeneous population that encode distinct somatic senses. This study reveals two important findings about the functional heterogeneity in such neurons. First, menthol-sensitive Vglut\textsubscript{3} lineage DRG neurons possess a unique excitability profile, which allows them to maintain prolonged spike discharges. Second, TTX-sensitive Na\textsubscript{v}8 mediate action potential firing in these sensory neurons, with a notable contribution of Na\textsubscript{v}1.1. We propose that cation influx through TRPM8 ion channels produces an excitatory drive that activates Na\textsubscript{v}1.1 ion channels at room temperature. Once activated, these channels cycle through open and fast-inactivated states, with the majority of channels bypassing long-lived slow inactivated states. This is likely attributable to unique features of Na\textsubscript{v}1.1-containing macromolecular complexes in menthol-sensitive neurons, including association with auxiliary proteins or posttranslational modifications (Aman and Raman, 2007), with the end result being continuous action potential firing (Fig. 10). Thus, menthol-sensitive Vglut\textsubscript{3} lineage DRG neurons represent a highly excitable population of small-diameter sensory neurons in which action potential firing depends upon TTX-sensitive Na\textsubscript{v}8 complexes.

Prior work has focused on the role of potassium channels as excitability breaks in TRPM8-expressing sensory neurons. A molecular profiling study identified the TASK-3 leak potassium channel as highly enriched in TRPM8 lineage DRG neurons and suggested that inhibition of this channel decreases cold activation thresholds (Morenilla-Palao et al., 2014). There was only a modest effect, however, of TASK-3 genetic deletion on intrinsic excitability. H-current (\(I_{h} \)), a conductance mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, is reportedly pronounced in cold-activated sensory neurons (Viana et al., 2002; Orio et al., 2009). Furthermore, genetic deletion of Hcn1 converts firing patterns in cold-sensing optic nerve fibers from regular to burst spiking (Orio et al., 2012). Consistent with previous studies, we observed a prominent sag ratio, a current-clamp readout of \(I_{o} \), in menthol-sensitive Vglut\textsubscript{3} lineage neurons; however, our study revealed no difference in sag ratio between menthol-sensitive and -insensitive Vglut\textsubscript{3} lineage neurons. Thus, TASK-3 and HCN channels, though important for cold detection, are unlikely to mediate the differences in intrinsic excitability between these two populations. Future studies are needed to determine whether other potassium conductances, such as those mediated by K\textsubscript{1.1} (Madrid et al., 2009; González et al., 2017a,b), contribute to differences in intrinsic excitability between menthol-sensitive and -insensitive DRG neurons.
In addition to potassium channels, previous studies investigated TTX-resistant NaVs in menthol-sensitive DRG neurons. NaV1.8 is found in ~90% of small-diameter DRG neurons (Shields et al., 2012) and has been implicated in menthol-sensitized cold responses (Zimmermann et al., 2007). However, NaV1.8-null mice show normal physiological and behavioral responses to cold (Luiz et al., 2019). A recent study identified a subpopulation of DRG neurons that are both Vglut3 lineage and NaV1.8 lineage (Patil et al., 2018). These neurons possess properties similar to the menthol-sensitive neurons analyzed in the present work, including fast action potential durations, insensitivity to capsaicin, and small somata. Moreover, NaV1.9, the other TTX-resistant NaV isoform, was reported to be expressed in nociceptors that respond to cooling, as well as contribute to pain perception in response to noxious cold (Lolignier et al., 2015). In that study, however, NaV1.9 mRNA coexpressed with only ~20% of TRPM8 DRG neurons. The proportion of adult menthol-sensitive neurons that express functional NaV1.8 or NaV1.9 protein is unknown; nonetheless, our pharmacological studies indicate that TTX-resistant NaVs do not drive action potential firing in menthol-sensitive neurons under our experimental conditions.

Instead, we provide evidence that functionally distinct NaVs contribute to the different excitability profiles of menthol-sensitive and -insensitive Vglut3 lineage DRG neurons. Although multiplex in situ hybridization data showed widespread expression of several NaV transcripts, our pharmacological analysis revealed a more restricted functional contribution, with NaV1.1 comprising over one-third of the total NaV current and mediating most action potential firing in menthol-sensitive neurons under our experimental conditions.

Figure 9. NaV1.1 channels determine entry into slow inactivation rates in menthol-sensitive Vglut3 lineage neurons. A, Representative whole-cell voltage-clamp traces of currents elicited from a MS neuron in the before (blue trace) and after application of 500 nM ICA 121431 (red trace). The subtracted NaV1.1-mediated current is shown in black. B, Quantification of peak NaV current amplitude before (blue circles) and after ICA 121431 application (black circles). Gray dashed lines indicated paired observations. C, Quantification of entry into slow inactivation for MS Vglut3 lineage DRG neurons during blockade of NaV1.1 channels by ICA 121431 (filled circles, blue lines). Data for MS neurons from Figure 4A is shown for comparison (clear circles, dashed lines). The current elicited following a conditioning pulse to 0 mV is normalized to the current elicited during an initial test step and plotted against the duration of the conditioning pulse. Lines show exponential fits to the data. Top right, Voltage protocol used to measure NaV current entering slow inactivation. Bottom right, Representative whole-cell voltage-clamp trace of current elicited from a MS neuron in the presence of ICA 121431. Blue trace represents initial test step; red trace represents test pulses given after a 200 ms conditioning step. D, Left, Same as C except Quantification represents recovery from slow inactivation kinetics. Data for MS neurons from Figure 4B is shown for comparison (clear circles, dashed lines). Recovery during the second test step is normalized to the current during the initial test step and plotted against the recovery interval. Lines show double-exponential fits to the data. Top right, Voltage protocol used to measure NaV recovery from slow inactivation. Bottom right, Representative whole-cell voltage-clamp trace of current elicited from a MS neuron in the presence of ICA 121431. Blue trace represents initial test step; red trace represents test pulses given 50 ms after the conditioning step. E, Individual entry into slow inactivation rates for MS neurons plotted against the percentage of the total NaV current that was sensitive to ICA 121431; $r^2 = 0.43$, $p = 0.04$. F, Same as E but individual recovery from slow inactivation rates are plotted; $r^2 = 0.37$, $p = 0.20$. The r^2 value is a measure of the explained variance in a linear regression model, and the p value is the probability of observing the data if the null hypothesis (no relationship) is true.
tion potential firing in menthol-sensitive Vglut3^{lineage} DRG neurons. Conversely, TTX-resistant channels dominated in menthol-insensitive neurons. In DRG, Na_V1.1 is reported to be predominantly localized to medium-diameter neurons that mediate mechanical pain (Osteen et al., 2016). Interestingly, that study showed that ~40% of trigeminal neurons that express functional Na_V1.1 channels also exhibit menthol-evoked calcium transients. Our study extends these findings by demonstrating that action potential firing in menthol-sensitive Vglut3^{lineage} DRG neurons is dependent upon TTX-sensitive Na_V1.8, with the Na_V1.1/Na_V1.3 antagonist ICA 121431 dramatically reducing firing rates. Furthermore, although TTX-sensitive Na_V1.7 channels are important to the function of small-diameter nociceptors and pain signaling (Cox et al., 2006; Minett et al., 2012; Yang et al., 2018), these channels are likely inactivated at the resting membrane potential of menthol-sensitive neurons. Indeed, the V_{1/2} of inactivation of Na_V1.7 is ~ −75 mV (Alexandrou et al., 2016). Conversely, the V_{1/2} inactivation of Na_V1.1 is ~ −17 mV (Aman et al., 2009), a membrane potential that is much more depolarized than the resting potential of menthol-sensitive Vglut3^{lineage} DRG neurons in our study. Thus, we have identified a new role for TTX-sensitive Na_V1.1 channels in action potential firing in small-diameter DRG neurons.

Na_V1.1 channels promote excitability and high-frequency firing in several neuronal populations. In mouse models of irritable bowel syndrome and chronic visceral hypersensitivity, Na_V1.1 is functionally upregulated, leading to hyperexcitability of mechanosensory fibers innervating the colon (Osteen et al., 2016; Salvatierra et al., 2018). Moreover, mutations in Na_V1.1 are most frequently associated with inherited forms of epilepsy, including Dravet syndrome (Catterall et al., 2010). In this disorder, loss of Na_V1.1 in hippocampal interneurons leads to reduced sodium current and attenuated action potential firing (Yu et al., 2006), resulting in disinhibition of hippocampal circuits that cause seizures (Oakley et al., 2013). To our knowledge, our results provide the first functional evidence for Na_V1.1-dependent action potential firing in small-diameter somatosensory neurons.

Our data also indicate that the biophysical properties of Na_V1.1-containing channel complexes could explain the heightened excitability of menthol-sensitive DRG neurons. Na_V currents in these neurons entered into slow inactivation much more slowly than what has been reported for other DRG populations (Blair and Bean, 2003), with a time constant of ~1.5 s (Fig. 4A).

This contrasts with capsaicin-sensitive nociceptors and IB_V ⁺ DRG neurons, where slow inactivation of TTX-resistant Na_Vs is reported to produce action potential adaptation in response to sustained depolarization (Blair and Bean, 2003; Choi et al., 2007). Importantly, application of ICA 121431 drastically enhanced the rate of entry into slow inactivation in menthol-sensitive DRG neurons (Fig. 9C). Thus, the resistance of Na_V1.1 currents to slow inactivation could be a mechanism by which menthol-sensitive neurons sustain action potential firing for extended periods of time.

Previous studies have reported that Na_V1.1 channels are subject to use-dependent inactivation at high firing frequencies (Spampanato et al., 2001). It is therefore possible that in menthol-sensitive neurons, Na_V1.1 α subunits associate with auxiliary proteins that destabilize inactivated states, such as the β4 subunit (Aman et al., 2009). Moreover, because of the lack of selective pharmacological tools, we were unable to test the contribution of Na_V1.6 channels to action potential firing in small-diameter Vglut3^{lineage} DRG neurons. It has been hypothesized, however, that synergistic activity of Na_V1.1 and Na_V1.6 is important for overcoming the high action potential threshold set by voltage-gated potassium channels of the K_V1 family in pyramidal cells and GABAergic interneurons (Lorincz and Nusser, 2008). K_V1 channels are also expressed in TRPM8[−] trigeminal neurons, where they are proposed to determine thermal excitability (Madrid et al., 2009). We cannot rule out the possibility that action potential firing patterns in menthol-sensitive Vglut3^{lineage} DRG neurons are tuned by the concerted actions of Na_V1.1 and Na_V1.6 channels that counterbalance an opposing K_V1 conductance, thus regulating the responsiveness of these neurons (Fig. 10).

The finding that menthol-sensitive neurons are a subset of Vglut3^{lineage} neurons raises the possibility that Vglut3 protein plays a role in synaptic transmission from TRPM8-expressing DRG neurons to second order neurons in the spinal cord. In contrast to this model, Vglut3^{−/−} mice are reported to have normal responses to cold stimuli, indicating that Vglut3 protein is not required for TRPM8-dependent behaviors in mice (Draxler et al., 2014). Furthermore, in sensory neurons innervating the dura and cerebral blood vessels, TRPM8 and Vglut3 protein expression do not overlap in adult mice (Ren et al., 2018). Thus, we speculate that menthol-sensitive neurons express the Slc17a8 locus during development rather than in mature DRG.

Collectively, our data indicate that, unlike many other small-diameter DRG populations, action potential firing in menthol-sensitive DRG neurons is dependent upon TTX-sensitive Na_V1.8 including Na_V1.1. Genetic approaches using Na_V1.1-null mutations are needed to define the exact contributions of this subunit to the function of menthol-sensitive neurons, as well as sensory-driven behaviors (Cheah et al., 2012). It also remains to be determined whether Na_V1.1 channels are viable therapeutic targets for pathologies that produce cold hypersensitivity. Additionally, menthol has been used for centuries as a topical analgesic and anti-pruritic. Indeed, it has been shown that TRPM8-expressing DRG neurons are required for inhibition of itch by cooling and furthermore, that topical application of menthol inhibits chloroquine-evoked itch behaviors (Palkar et al., 2018). Thus,
targeting TTX-sensitive Na\textsubscript{v}1.1 channels in menthol-sensitive DRG neurons might prove to be a new direction for the treatment of various sensory disorders.

References

Waxman SG, Kocsis JD, Black JA (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is re-expressed following axotomy. J Neurophysiol 72:466–470.

