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ABSTRACT

The hypothesis that planktonic larvae of benthic invertebrates sink
through the water like passive particles in turbulent flows near the
seabed was tested in the field using several groups of geometrically
different sediment trap designs. A priori predictions regarding the rank
order that the various traps would-coiiect larvae in the field were
dictated from laboratory flume experiments to determine the relative
particle collection efficiencies of traps. The flume flow was seeded
with particles having fall velocities similar to those measured, in the
laboratory, for nonswimming polychaete larvae. The flume flow speed (of
- 10 cm!sec) was within the range of near-bottom current velocities
measured during trap collecting intervals at the study site.

In seven field experiments, each lasting from one to eleven days,
trap collections of Mediomastus ambiseta (a polychaete worm) postlarvae,
total bivalve larvae and postlarvae, sabellariid polychaete larvae, and
enteropneust postl a rvae generally fi t the patterns predi cted for pass i ve
particle collections between or among the trap designs. While the
results were statistically more significant during some intervals than
during others, the rank order of larval collections within each group of
trap desi gns tested nearly always corresponded preci sely to the rank order
of passive particle collections by the traps in the flume experiments.
Thus, the hypothesis that larvae sinking toward the seabed in the field
and passive particles (with fall velocities similar to larvae) sinking in
a fl ume are coll ected in the same rank order of abundance by near-bottom
traps could not be falsified for collections of organisms from three
invertebrate phyl a.

Collections of the polychaete, Pectinaria gouldii, and of
metamorphosing seastar larvae between or among trap designs significantly
di ffered from the patterns predi cted for passi ve parti cl e coll ecti ons. A
testable hypothesis to explain the Pectinaria collections involves unique
hydrodynami c properti es of these postl arvae, rel ati ve to the other

organisms collected, and is consistent with the passive sinking
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ABSTRACT (cont.)

hypothesis. Trap collections of the seastars may have resulted, at least
in part, from larvae adhering to solid trap surfaces during metamorphosis.

The passive sinking hypothesis could not be falsified in most of the
field experiments conducted in this study. Thus, hydrodynamical processes
must be i ncl uded in any future studies of processes that determine
patterns of larval settlement. However, passive sinking by larvae is not
the explicit result of this experimental study. Other processes that
could have produced the observed patterns of larval collections among the
trap designs now must be tested against the passive sinking alternative
hypothesis. However, much more information on the biology and ecology of
the larvae collected in this study is required before future process-
ori ented experiments can be desi gned.

If larvae sink like passive particles to heights of - 50-cm above the
seabed, as the results of this study suggest, then it is possible that
larvae initially reach the seafloor at sites where particulates, with fall
velocities similar to larvae, initially settle. This hypothesis requires
experimental testing. Larvae may not remain at these initial settlement
sites; however, after larvae initially reach the seafloor via passive
physical processes, the larvae may redistribute by actively choosing a
preferred microenvironment within that location, by actively swimming
above the bottom or remai ni ng on the sediment surface to be resuspended
and transported away, by resuspensi on only duri ng storm events, and/or by
passively accumulating around microtopographic structures.

As a precursor to the flume tests of traps, a theoretical analysis of
the physical nature of trap biases was conducted. A dimensional analysis
of the independent variables involved in the process of trapping
particulates suggested that trap collection efficiencies should be a
function primarily of trap Reynolds number, trap aspect ratio, the ratio
of the fluid velocity to the particle fall velocity, and trap geometry.
A review of data from previous studies that flume-tested various trap
designs further suggested that particle collection efficiencies of
cylindrical traps should decrease over some range of increasing trap
Reynolds number, decrease over some range of decreasing particle fall
velocity and increase over some range of increasing trap aspect ratio.
Theoreti cal model s were then provi ded to account for these effects. Fl ume
tests, in the present study, of cylinders varying by one order of
magni tude in trap Reynol ds number supported one of the predi cti ons:
particle collection efficiencies of the cylinders decreased by a factor of
two over this range of increasing trap Reynolds number. Results of this
theoretical and experimental study of trap collection characteristics
suggest that more fl ume experiments to quantitatively determine the nature
of trap biases are required before flux estimates, using traps in the
field, can be adequately interpreted.
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