PHYLM ECTOPROCTA

By Mary D. Rogick

Ectoprocta, the "true" Bryozoa or "true" Polyzoa are a large and diverse group, composed of animals always individually minute, but organized into colonies of varied form. Since ectoprocts are important as fossils, much of the basic systematic work on the group has been done by paleontologists (see works of Canu and Bassler, particularly); consequently, reliance in taxonomy has been largely upon the external skeletal characters.

In the field, the beginner may confuse ectoprocts with hydroids, sponges, seaweeds, or compound ascidians, because of their growth forms. The colony texture varies from gelatinous, to membranous, to chitinous, to calcareous, depending upon the species.

Identification to genus and species is often a matter of considerable difficulty. Original descriptions of some of the commonest species are too incomplete, too general and do not always include really distinguishing key characters. An original description was sometimes so broad that several species could be included under one specific name and one species could fit with equal justification in more than one genus. Some genera, like Collepora, Lepalia, Membranipora, and Smittina actually became catch-alls for many diverse and hard-to-identify species.

If possible, bryozoans should be studied alive, with their tentacles extended. Tentacle number is important in distinguishing some species. Use a compound microscope with 100x to 280x magnification and direct (reflected) lighting for the study of calcareous or opaque species and transmitted lighting for transparent forms. Calcified colonies are sometimes calcined or treated with Eau de Javelle to remove organic matter from the skeleton. Calcining produces beautiful results but is risky and may destroy the specimen, so is recommended only where ample material is available.

GLOSSARY OF TERMS USED IN DESCRIBING ECTOPROCTA

"The study of ectoprocts is burdened by a large and fantastic terminology, much of it dating from a period when the structure of the animals was not understood. Hence the terminology lacks relation to terms employed for other groups of animals. Frequently the ectoproctologists seem to get themselves entangled in their own terminology, using the same word (e.g., aperture) in several different senses". This statement by Dr. Libbie Hyman should be borne in mind when looking up bryozoan literature. The general zoologist will find an illuminating discussion of ectoproct structure and terminology in Vol. 5 of Hyman's "The Invertebrates".

Ancestrula: Primary zoid produced by the metamorphosis of a larva. The rest of the colony develops from it by budding.
Alveolus: Small cavity, pit, or fenced in area between zoecia, chiefly in Cyclostomata.
Aperture: Variously used for any opening, sometimes for the zooidal orifice. Best to avoid its use.
Areolae or areolar pores: One or more rows of pores around the periphery or margin of the zooidal front, often larger than other pores. Remainder of frontal wall, the central part, is usually imperforate if areolae are present.
Autozoid: Normal, "typical", or sometimes asexual individual in a colony, if colony has male and female zoids (as in Hippothoa).
Avicularium: Highly modified zoid, with or without a polypide but with muscles which operate its operculum, called the mandible. It may be adventitious, i.e. attached to some part of the parental zoid's front, or it may be vicarious, i.e. an independent unit, replacing a regular zoid in the colony, or be placed between other zoids in the colony. Many sizes and shapes: larger than autozoids, smaller than autozoids; shaped like a bird's head, like the sole of a shoe, or round, elliptical, spatulate, triangular. May be imbedded in the calcareous wall of parent zooecium or swing freely on a stalk which is sometimes much longer than the whole parent zoid. May even occur on ovicells of some species. Function unknown, although sometimes avicularia ward off other organisms or may keep other larvae from settling on the colony.

Brood chamber: Used especially for cyclostomes. It is an enlarged space, compartment or ovicell in which zygotes develop into larvae.

Brown body: A ball of brownish-orange tissue representing the remains of a degenerating or degenerated polypide. Found either in empty or in inhabited zooecia.

Cardelle: Denticle placed at each side within the orifice for hingement of the operculum; also called condyle. May be peg-like, unicusped, bicusped or even ledge-like.

Communication pore: Opening in zooecial wall between adjacent zoids, for soft tissue connecting the two zoids.

Connate: Firmly united or in close order, as in rows of zoids of Amathia.

Cryptocyst: Shelf-like calcareous lamina extending inward from the front edges of the side walls, beneath the frontal membrane (like inward turned edges of pie crust). In Anasca, especially in the membraniporid group.

Dietellae: Blister-like chambers present in the basal-lateral walls of some Cheilostomes. They contain communication pores and are also called pore chambers.

Distal: Direction of growth away from the ancestrula. That part of the zoid or colony that is farthest away from the ancestrula.

Frontal side: The free or "ventral" side of an attached encrusting ectoproct, or the wall bearing the orifice and other decorations (avicularia, ovicells, pores, sculpturings, etc.) of a zoid.

Genozoid: Identifiable male or female zoid of a colony. Sometimes differ in size or in orifice from autozoids. Cyclostomes may develop brood chambers for developing young. Cheilostomes develop ovicells of various types.

Gymnocyst: Peripheral calcified portion of frontal membrane in some Cheilostomes, developed especially in proximal region, not covered by membranous ectocyst. See figure 48 (Plate 26).

Heterozoid: Incomplete or highly modified zoid as opposed to autozoid. Includes avicularia, dwarf zoids, vibracula, gonozoids, some types of spines. Preferable to use term heterozoecium, since the zoid or soft parts may be vestigial.

Lophophore: Circular or semicircular fold of tissue which bears the tentacles.

Lyrula: A tooth, commonly anvil-shaped, low, of varying width, placed in the center of the proximal edge of the primary orifice. Characteristic of the "smit tinid" orifice. Sometimes it may become very worn down.

Mandible: The operculum closing the beak of an avicularium.

Multiporous: Refers to a sieve-like plate in the lateral or distal walls of calcareous Cheilostomes which serves as an interzoidal connection.

Ooeccium: Brood chamber containing the developing zygote or larva in Cheilostomes. Same as ovicell.

Operculum: Membranous, chitinous or very rarely calcareous flap closing the orifice of Cheilostomata. Often works like a drawbridge, after tentacles have been withdrawn into the zooecium.

Opesia: A large uncalcified membrane covered area on the front side of many Anascan Cheilostomes (Membraniporids). It surrounds the orifice and extends proximally. It is bordered by a cryptocyst.

Oral avicularium: An avicularium that is either in the wall of the orifice or next to the orifice. Suboral would be just below or proximal to the orifice. Lateral oral would be to the side of the orifice.
Orifice: The zoosocial opening through which tentacles are extruded from the zooecium. In Cheilostomes, it is covered by an operculum. In some heavily calcified forms the original orifice (called the primary orifice) may be hidden by a growing calcareous collar (peristome) whose free rim now forms a secondary orifice (peristomicle) which may have an entirely different shape or appearance than that of the primary orifice.

Orificial collar: See Peristome and Orifice.

Oricell: General term for any structure serving to contain bryozoan larvae during their development, according to Bassler. May be of varied shapes and sizes and located conspicuously or inconspicuously on or within zooecia. Often placed at distal end of zoid, like a cap or hood. Sometimes placed in lateral position.

Peristome: An extension of the calcareous rim of the orifice in some Cheilostomes. See also Orifice.

Pleurocyst: The calcareous frontal wall of some Cheilostomes. It is generally granulated and usually not porous over its central area but may have areolar pores around the edge.

Polyple: The protrusable part of the bryozoan individual and that part which is suspended in the body cavity, namely: the tentacles, gut and associated musculature. Early workers on bryozoa thought that the bryozoan individual consisted of a box (zooecium) containing a soft individual (the polypide).

Pore chambers: See Dietellae.

Primary orifice: See Orifice.

Proximal: Direction toward origin of growth, or region nearest the ancestrula. That part of the zoid which is nearest its point of origin.

Rhizoid: Same as radicle, a rootlike structure formed by zooecia for attachment of the colony to the substratum or to various objects. May be calcareous or chitinous.

Scutum: Large flabellate spine or shield in front of opesia; attached laterally.

Secondary orifice: See Orifice.

Septula: Communication pores between neighboring zoids. The pores may be single (uniporous) or grouped together in a sieve-like plate (multiporous) and located in the lateral and distal walls of zoids.

Sinus: A slit or excavation or notch in the proximal part of the orifice. Especially characteristic of the Schizoporellid group but may occur in other Cheilostomes.

Stolon: Tubular strand, usually horizontal or recumbent (upright in Amathia) from which either new zoids or other structures (peduncles or secondary stolons) may be budded. More common in Ctenostomata than in other orders, but sometimes present in the latter.

Tremocyst: Perforated calcareous frontal wall of some Ascophoran Cheilostomes. If the wall is more or less perforated all over it is a tremocyst. If wall is perforated only around the margin and imperforate in center, then it is a pleurocyst.

Vibraculum: Highly modified chitinous or calcareous heterozoid found in Cheilostomes, resembling an avicularium whose mandible has been replaced by a very long bristle or chitinous whip, which may be considerably longer that the zooecium. The vibracular chamber contains powerful muscles for moving the whip.

Zoarium: The entire bryozoan colony, composed of individuals called zoids or bryozoans or bryozoites.

Zooecium: The external skeleton and body wall of the zoid. Originally coined for the compartments in which the polypides are housed. Term especially useful to paleontologists to whom only the hard skeletal structures are available for study.

Zoid: A single individual of the colony. Term includes the zooecium and its contained polypide.
PREPARATION OF SPECIMENS

Preservation of soft or small calcareous specimens. Ryland (1962) suggests preservation of Ctenostomes in 4% sea-water formalin and preservation of calcareous forms in 70% alcohol. If calcareous forms are on large stones or shells, two courses are open to the worker: (1), to store the stones and intact colonies or (2), to burn off (calcine) the colonies and mount them on slides. In either case wash the stone or shell in fresh water and allow them to dry. Store dry.

Calcining. To prepare permanent slide mounts of calcareous Ectoproct skeletons, one often resorts to calcining. To calcine (burn off the organic, membranous tissues), use an alcohol lamp or Bunsen burner and a geologist's blowpipe. Select a dry colony on a suitable rock or shell; blow with the blowpipe so as to direct a narrow jet of flame against the specimen. The colony will first blacken, then turn red and finally turn white. Protective glasses should be worn to protect the eyes and face from flying fragments of rock, shell or bryozoan. Caution: Do not burn the colony to a crumbly whiteness, but continue calcining only to the point where some white begins to show and the fine diagnostic pattern is retained. Colony fragments will lift up right off the rock and can be transferred on to the surface of very thick balsam on a slide. No coverslip is needed. If possible, mount a fragment of an uncalcined colony right alongside the calcined fragment for comparison or in case the calcined fragment disintegrates. For further details, consult Rogick, 1945.

Some people prefer to use a bleach like Clorox (sodium hypochlorite) or Javelle water for cleaning and whitening specimens.

KEY TO THE MORE COMMON GENERA OF LOCAL MARINE ECTOPROCTA
(Figure references are to Plates 23-26)

1. Zooecia are white calcareous tubes pitted with pores; orifice terminal, unconstricted in autozooids, i.e. not narrower than the autozoid, but small and constricted in the greatly swollen ovicells or brood chambers; tube tips free but rest of tube is either partly free or else immersed in the common zoarial crust; vibracula, avicularia and opercula absent; colonies may be arboreous, encrusting, or raised into stiff flattened lobes
 Order CYCLOSTOMATA ("STENOLOMATA Berg, 1926; =STENOSTOMATA Marcus, 1938") 2
1. Zooecia (and gonozoids, if present) otherwise 4

2. Erect, twig-like colonies articulated (having chitinous joints), attached at their origin to a primary calcareous disc; rhizoids present; zooecia slender; inflated vase-like oovicells densely pitted with pores (fig. 4) Crisia eburnea
2. Colonies compact, discoid, wart-like, encrusting: the tubular zooecia open on the free surface out of the common crust; zooeicial tubes arranged in series or fascicles radiating from a free central area; between them are adventitious tubes or incomplete partitions (aveoli or cancelli); brood chambers spread over and among several zooids 3
3. Brood chamber roof overgrown with secondary alveoli, looking reticulated Lichenenopora
3. Brood chamber roof not covered thus, not reticulated (fig. 5) Diasporella
4. Zoocia soft, gelatinous, membranous, corneous or leathery but not calcareous; zoids may be distinctly isolated or else closely packed, encrusting, erect, stolonate, or some may burrow into mollusc shells; zoocial orifice terminal, closed by a puckering of the invaginated tentacle sheath usually, or occasionally by special structures (two lips in the Flustrellidae, a setigerous membrane in others (fig. 10), or an operculum in boring Penetrantiidae); true ovicells lacking but gonozoids may occur. Order CTENOSTOMATA

4. Colonies usually calcareous, but in some families are corneous or membranous; great variety of growth forms: encrusting, freely lamellate, arborescent, nodulate, stolonate, or reticulate; zoocia are rounded or angular chambers budding distally and/or laterally to form contiguous rows; zoocia orifice terminal or subterminal, more commonly at the distal end of zoid's frontal surface, and closed by a hinged operculum; avicularia and ovicells present in many species. Order CHEILOSTOMATA

5. Stolons or stolon-like extensions of zoids absent. Zoids are squat, opaque, their lateral walls fused together. Colony a gelatinous to leathery crust; common on coarse brown algae.

5. Stolons or stolon-like zoidal extensions present; zoids are membranous or chitinous, separate, tubular, more or less transparent and never leathery.

6. Colony rubbery, brownish. Closed orifice is a transverse bilabiate slit, purse-like (fig. 6); chitinous spines mounted on small pads (koxozooecia) that appear at edges of frontal wall, oftenest about the orifice. Flustrellidra

6. Colony a gelatinous to rubbery gray or brown crust sometimes arising into sac-like lobes; orifice at tip of a mound-like papilla closed by a puckering of the body wall (fig. 7); spines absent. Alcyonidium

7. Stolon false, non-septate, representing only the drawn out, narrowed, adherent proximal part of the zoid. Only transverse septum present is usually near point of origin of stolon. Remainder of zoid erect, tubular, with orifice squared.

7. Stolons genuine, divided into one or more segments by transverse septa. Erect zoids bud directly from stolon or from an intermediate peduncle.

8. Stolons long, zoocia tall (up to 3.8 mm); tentacles number 8 to 22; gut very long (figs. 12, 13). Nolella

8. Stolons shorter, zoocia very tall (up to 4.85 mm) and close together; new zoids may sprout from the lateral wall of erect zoids; 8 tentacles; funiculus long. In brackish water. Victorella

9. Stolon broad, tubular, often branches dichotomously; gizzard present.

9. Stolon slender, generally not dichotomous; short or small lateral segments (peduncles) arise from it and give rise to zoocia.
10. Zoecia very regularly disposed in a parallel series (forming a double row of closely packed, touching, parallel zoids) either in a continuous or an interrupted spiral around the stolon, or in palisade-like groups (fig. 11); colony arbor- escent ... Amathia
10. Zoecia occur in irregularly clumped groups, or singly, along stolon. Zoids soft, flexible, rather transparent. When re- tracted their tips are squared, with corners reinforced. Mem- branous or setigerous collar shorter than in Aeverillia Bowerbankia

(1) Bowerbankia gracilis, the more common species, has 8 tentacles (fig. 8)
(2) Bowerbankia imbricata, less common, has 10 tentacles (fig. 10)

11. Gizzard present. Zoids yellowish, horny, husk shaped, with membranous frontal area; occur in pairs near end of each internode (fig. 9) ... Aeverillia
11. Gizzard absent ... 12

12. Zoecia clavate, with long slender stalk which attaches to the stolon peduncles; 12 to 21 tentacles Triticella
12. Zoecia ovoid to cylindrical, originating from lateral branching sprouts of the stolon. Zoecia sometimes bunched up at nodes; 8 tentacles Valkeria

13. Colony erect .. 14
13. Colony recumbent or encrusting 21

14. Avicularia, vibracula and true ovicells completely absent 17
14. One or more of the above (avicularia, or vibracula or true ovicells) may be present ... 15

15. Ovicells and avicularia may be present but both vibracula and scuta are absent ... 18
15. Either vibracula or scuta, or both, may occur 16

16. Vibraculum lacking but scutum present Tricellaria
16. Vibraculum and scutum usually both present (fig. 40) Scrupocellaria

17. Zoids tiny, single, erect, isolated, glassy, firm walled, and connected basally by stolonate extensions. Proximal part rec-umbent, swollen and punctate near where the upright spoon- shaped part diverges from it. Upright stalk reinforced by fine closely wound spiral thread. Colonies diffuse, white, inconspicuous but very common on bases of Bugula, hydroids and other colonial growths (fig. 14) Aetea
17. Zoids biserial, back to back (fig. 44). New zoids and branches bud from the sides of the zoecia near distal end. Colonies yellowish, bushy. Opesia occupies about half the zooecial front and slants obliquely Eucratea

18. Zoecia uniserial, budding from distal end and also from front- al wall just below the opesia; oviceil on dwarfed zoid; avicular- aria absent (figs. 15, 19) .. Scruparia
18. Bird's head type avicularia usually present, zoecia biserial or multiserial rather than uniserial 19
19. Colony biserial; zooecia trumpet shaped, divided into three parts; opesia rounded, nearly terminal, at enlarged obliquely truncated end of zooecium. Upward facing orifice surrounded by 4 to 8 extremely long spines. Avicularia and oviceils lateral (fig. 16) ... **Bicellariella**

19. Zooecia not trumpet shaped but more tubular. Opesia very large, occupying from half to nearly the whole of the zooecial frontal surface ... 20

20. Base of zooecium transverse at its place of origin dorsally and proximally; zooecia multiserial (fig. 52) **Dendrobeta**

20. Base of zooecium strongly forked at its place of origin dorsally and proximally. Zoarium biserial to narrowly multiserial (figs. 17, 18) .. **Bugula**

Two species are common at Woods Hole:
(1) **Bugula simplex** (fig. 17), formerly called B. flabellata, tan in color with flattened, somewhat fan-like fronds. Common in such protected places as the Eel Pond.
(2) **Bugula turrita** (fig. 18), yellow to orange-brown; colony of conical form with a marked spiral or whorled arrangement of branches. Found in more exposed situations.

21. Colony a fragile calcareous lace; zooecial front has a large uncalcified membraneous area (opesia); side walls and their interturning ledges (cryptocyst) calcified ... 23

21. Zooecial frontal wall more extensively calcified ... 22

22. Frontal wall covered by two rows of calcareous flattened ribs (costae), more or less fused, with rows of pores or perforations where ribs did not quite meet **Cribrilina**

(1) **Cribrilina annulata** (fig. 28): Frontal costae and rows of pores regular and distinct; avicularia absent; ooeicia small.
(2) **Cribrilina punctata** (fig. 29): Ooeicia large; avicularia present at sides of orifice.

22. Frontal wall not costate but well calcified except for the orifice and possible pores ... 26

23. Oviceils absent; avicularia wanting in most species 24

23. Oviceils and avicularia present; avicularia located proximally or laterally on front wall; opesial spines often present ... 25

24. Avicularia absent; spines usually present around opesial border (figs. 21, 22, 23). Well developed gymnocyst usually present **Electra**

24. Avicularia absent from most species. No calcareous spines on opesial walls but tubercular processes may occur at zooecial corners. Cryptocyst may develop into a proximal shelf under frontal membrane but a regular gymnocyst (calcareous outer front wall) is wanting or greatly reduced (fig. 20) **Membranipora**

The genus **Membranipora** is a temporary "dumping genus" for hard-to-identify "open-faced" species. Species are shifted from it and its daughter genera **Conopeum**, **Acanthodesia**, etc. and then returned to the mother genus. Membraniporan classification is still very fluid.
25. Several large blister-like pore chambers present in basal-lateral walls of zoid; they are punctured by communication pores (fig. 24) Callopora
26. Pore chambers absent; instead, zoocelic walls contain several uniporous or multiporous septules (pore plates) Tegella
27. Primary orifice without a proximal median tooth, the lyrula 27
28. Primary orifice rounded to subcircular, with median proximal lyrula; cardelles (denticles) usually present 35
29. Orifice semicircular, with straight proximal border, without a cardelle (dentine) in each corner; median suboral ascopore present; frontal wall with many pores; avicularia and/or ovicell on some zooids (fig. 25) Microporella
30. Orifice otherwise; special ascopore absent 28
31. Proximal border of orifice forms a shallow cradle-like sinus as wide or wider than the rest of the orifice. Frontal wall coarsely perforated all over 29
32. Proximal border of orifice forms a sinus narrower than the rest of the orifice (a "keyhole" orifice); frontal wall either areolate or with pores all over 30
33. Orifice somewhat bell shaped because of sinus width (fig. 30); avicularia and ovicell absent Cryptosula
34. Orifice rounded; perforate oovicell and occasional avicularia present Hippodiplosia
35. Orifice with beaded distal vestibular arch separated from the wide proximal sinus by a broad bicusped or bifid cardelle at each side. Ovicell with large uncalcified frontal area Hippoporina contracta (fig. 26) but not other Hippoporinae
36. Orifice arch not beaded; oovicells and cardelles not as above 31
37. Avicularia absent; frontal wall non-porous; oovicells with small number of pores; ovicelled zooids of smaller size than autozooids 32
38. Avicularia present; frontal wall variously porous 33
39. Male zoid with rounded notched orifice like that of autozooid, but smaller; cardelles unicusped or bicusped; female gonozoid orifice differently shaped from that of autozooid. Female gonozoid on same face of colony as autozooids. Colony small, vitreous, uniserial to multiserial (fig. 27) Hippothoa
40. Female gonozoid on back surface of autozooids. Colony uni- or biserial Haplopa
41. Frontal wall a tremocyst, i.e., perforated all over by pores; cardelles small or wanting; oovicells generally with pores 34
42. Frontal wall imperfectly except for areolar pores; oviceell evenly perforated by pores; small oral avicularium on asymmetrical suboral umbo; other avicularia elsewhere, of various shapes and sizes (fig. 36) Schismopora and some of the other Celleporae
34. Avicularium present in midline proximal to orifice.................. Schizomavella
34. Avicularium not in midline below orifice but located elsewhere about orifice or frontal (figs. 32-35)........ Schizoporella
35. Avicularia present.. Schizoporella
36. A median suboral avicularium present.................................. 36
37. Suboral avicularium median and longitudinally directed........ 37
38. Suboral avicularium transverse or obliquely placed on a suboral umbo just in front of or partly obscuring the orifice.............. Rhamphostomella
39. Ovicell center area perforate... 39
40. Ovicell usually imperforate, or at most with an occasional pore.......................... Porella

ANNOTATED LIST OF ECTOPROCTA
(Figures of genera mentioned in key are not mentioned here)

CLASS GYMNOCLADIA Allman, 1856

Order Cyclostomata (= Stenolaemata or Stenostomata)

Crisia cribraria Stimpson, 1853. Rare. At Crab Ledge.
Crisia denticulata (Lamarck, 1836). Doubtful identification.
Crisia subrenta (Linnaeus, 1758). Delicate white brittle upright slender branching sprigs. Common on algae, especially *Chondrus crispus*, driftweed and holdfasts.
Discomorpha hispida (Fleming, 1826). Flat rounded white calcareous patches resembling lichens; about 1/8 inch in diameter; edges crinkly, center part with slightly raised tubes or jagged projections. On algae, hydroids, bryozoa and stones.
Oncoscoeca diastoporides (Norman, 1866). Fig. 37: *Stomatopora* of some authors. Rare, from Crab Ledge.
Tubulipora atlantica (Johnston, 1847). At Crab Ledge, on stones and shells.
Tubulipora filabellaris (Fabricius, 1780). Fig. 43. Uncommon, on shells and stones at Crab Ledge and near Nantucket.
Tubulipora liliacea (Pallas, 1766). Uncommon, on algae, eel grass, shells and stems of hydroids and *Bugula*, in Vineyard Sound.

Order Ctenostomata Busk, 1852

Aeverrillia armata (Verrill, 1873). On piles and seaweed (*Laminaria* and *Phyllophora*).
Ectoprocts

Aeverrillia setigera (Hincks, 1887). On hydroids and such algae as Chondrus and Ascophyllum. Indistinguishable in field from Aeverrillia armata.

Alcyonium gelatinosum (Linnaeus, 1767). Questionable.

Alcyonium hirsutum (Fleming, 1828). Vineyard Sound, on algae.

Alcyonium parasiticum (Fleming, 1828). Vineyard Sound, Crab Ledge and No Man's Land.

Alcyonium polymum (Hassall, 1841). A. mytili of Osburn's 1912 paper. Encrusts piles, barnacles, stones, algae, and even skate egg cases. Color very variable, from gray to yellow to red to brown.

Alcyonium verrilli Osburn, 1912. Rare at Vineyard Sound.

Anquillina palmata Van Beneden, 1845. Rare, mud encrusted. Not in key.

Bowerbankia gracilis var. caudata (Hincks, 1877). On stones, shells, ascidians, and on stems of hydroids, bryozoa and algae.

Bowerbankia gracilis Leydig, 1855. On piles, stones, and about 18 species of seaweeds.

Bowerbankia imbricata (Adams, 1800). The least common Bowerbankia, indistinguishable in field from B. gracilis. Colonies pinkish in breeding season (July and August) because of reddish larvae. Found on algae (Chondrus, Fucus, Ascophyllum, Corallina).

Flustrellidra hispida (Fabricius, 1780). Once known as Flustra or Flustrella.

Forms a brown, rubbery crust on such algae as Ascophyllum, Chondrus, Fucus, Ulva.

Triticella elongata (Osburn, 1912). Commensal on legs, shells or branchial chambers of such crabs as Callinectes sapidus, Libinia, and on pinnotherid crabs in Chaetopectus tubes.

Triticella pedicellata (Alder, 1857). Recorded as Vesicularia familiaris in Osburn's 1912 paper. On algae.

Walkeria uva (Linnaeus 1758). From Vineyard Sound, on hydroids and bryozoa.

Victorella pavidus Kent, 1870. Membranous, soft, white tracery or tuft; in brackish water.

Order Cheilostomata Busk, 1852

Suborder Anasca Levinsen, 1909

Aetida anguina (Linnaeus, 1758). Tiny but common on stems of algae, and animals, and on stones and shells.

Anphilestrum Flemingii (Busk, 1854). Fig. 49; Membranipora Flemingii in Osburn, 1912. On shells, stones and algae. Not in key.

Bicellariella ciliata (Linnaeus, 1758). On piles, stones, shells and hydroids.

Embryos in ovicells in July and August.

Bugula avicularia (Linnaeus, 1758). Not in key; see fig. 50.

Bugula cucullifera Osburn, 1912. Not in key; see Rogick and Croasdale (1949).

On algae (Fucus, Laminaria, Rhodymenia and Phyllophora) along with Aetida and Crisia.

Bugula simplex Hincks, 1886. This has been extensively used experimentally under the name of B. flabellata. Forms thick yellow-orange tufts in protected places such as floats in Bel Pond and piles elsewhere.

Bugula turrita (Desor, 1848). Occurs in more exposed situations than B. simplex, and easily recognized by its spiral growth. Also much used in laboratory studies. Larvae released from late June throughout August. Grows on at least 16 algal species.
Ectoprocts

Bulgulopsis peachii var. beringia Kluge, 1952. Fig. 47. Cellularia peachii in Osburn 1912. Rare; on shells and on Dendrobeta murrayana. Not in key.

Cabeena ellisi (Fleming, 1818). Fig. 41; on shells and Pebbles. Not in key.

Callocrella aurita (Hincks, 1877). Formerly in Membranipora. Small white colonies on rocks and less commonly on such algae as Phyllopora, Phycodeya and hollfasts of Laminaria.

Callocora lineata (Linnaeus, 1767). (= Membranipora in Osburn 1912). Rare; on shells, stones and algae.

Cauloraphus cymbaeformis (Hincks, 1877). Fig 38; formerly in Membranipora. Encrusting stalks of hydroids and Dendrobeta murrayana.

Cellaria fistulosa (Linnaeus, 1758). Not in key.

Conopeum reticulum (Linnaeus, 1767). Fig. 39; Membranipora lacroixii of Osburn, 1912, and Rogick and Croasdale, 1949. Delicate encrusting lace on rocks, shells and less frequently on such algae as Ascophyllum, Fucus and Phyllopora; sometimes covers an area of several square inches.

Cribrilina annulata (Fabricius, 1780). Rare; on stones, shells, and algae (Phycodrys and Laminaria).

Cribrilina punctata (Hassall, 1841). Not common, but has been found encrusting shells, pebbles and 7 algal species.

Dendrobeta murrayana (Johnston, 1847). Height 0.5 to 1.5 inches; common in outer waters from dredged shells and pebbles.

Elettra cruenta (Pallas, 1766). As Membranipora monostachys in fig. 29b of Plate XXII, Osburn 1912.

Elettra hastingsae Marcus, 1938. As Membranipora monostachys in fig. 29a of Plate XXIV, Osburn 1912. Mostly on rocks and shells but occasionally on Fucus, Laminaria, and even on gill chambers of the spider crab Libinia.

Elettra pilosa (Linnaeus, 1767). Very common on Laminaria; occurs also on about 16 other algal species, as a fine calcareous lace, one layer thick, sometimes a foot in length.

Eucratea loricata (Linnaeus, 1758). Bushy phytloid colonies up to 10 inches high in outer waters (Crab Ledge, Nantucket, and No Man's Land). Formerly called Gemellaria.

Membranipora tenuis Desor, 1848. Cryptocyst forms a jagged shelf that covers the proximal half of the opesia. Encrusts stones and shells.

Membranipora tuberculata (Bosc, 1802). (= Membranipora tehuelca). Exceedingly abundant on Sargassum, sometimes on Laminaria and driftweeds.

Scruparia ambigua (d'Orbigny, 1841). Fig. 19. Found on Bugula turrita and about 11 algal species (Laminaria, Fucus, etc.).

Scruparia chelata (Linnaeus, 1758). Fig. 15. Not common, but has been reported on Bryozoa, hydroids and algae, and also on piles.

Scrupcellaria scabra (Van Beneden, 1848). Rare; on shells, stones and in drift.

Tegella arctica (d'Orbigny, 1851). (= Membranipora). Colonies one inch in diameter, on shells and stones.

Tegella armifera (Hincks, 1880). Membranipora arctica var. armifera of Osburn (1912).

Tegella unicorns (Fleming, 1828). (= Membranipora). Encrusts dredged shells.

Tricellaria gracilis (Smit, 1867). Memnepa ternata in Osburn's 1912 paper. Attaches to shells, stones, hydroids and Bryozoans.

Suborder Ascosphora Levinsen, 1909

Cellepora canaliculata Busk, 1881. On hydroids and Bryozoans.

Cellepora dichotoma Hincks, 1862. On such algae as Chondrus, Gracilaria and Phyllophora. See fig. 36.
Cryptosula pallasiana (Moll, 1803). (= Lepralia). Living colonies an orange color, especially around the periphery. Colonies flat, calcareous, about 2 cm in diameter; common on rocks and shells; also occur on 11 species of algae such as Laminaria, Fucus, Ascophyllum, Ulva, etc.

Cylindroporella tubulosa (Norman, 1868). Fig. 51. Porina tubulosa in Osburn, 1912.

On stones and shells, in outer waters; not common. Not in key.

Haplospora clavata (Hincks, 1857). Fig. 42. (= Scruparia). Rare; on Dendrobeta mur-rayana and Eucratea loricata.

Hippodiplosia americana (Verrill, 1875). (= Lepralia). On shells and stones; colonies white to reddish.

Hippodiplosia pertusa (Esper, 1796). (Formerly Lepralia). White to reddish calcareous colonies of considerable extent on rocks and shells.

Hippoporina contracta (Waters, 1899). Lepralia serrata of Osburn. White to buff-colored calcareous colonies encrusting rocks, shells and some algae (Phylophora). Zoids small and crowded. The beaded orifice is distinctive.

Hippothoa divaricata Lamouroux, 1821. On stones, shells and occasional algae; rare.

Hippothoa hyalina (Linnaeus, 1767). Exceedingly common and cosmopolitan species, encrusting red and brown algae especially but also found on stones, shells, hydroids and bryozoans. Forms tiny glistening white to iridescent patches about 2 or 3 mm in diameter, usually twining around small algal stems or in protected spots, as on holdfasts. Embryos plentiful in July and August.

Microporella ciliata (Pallas, 1766). On rocks, shells and 5 algal species.

Microporella ciliata var. stellata (Verrill, 1875). On shells.

Mucronella immersa (Fleming, 1828). Mucronella peachii in Osburn, 1912. On stones and shells; occasionally on algae.

Mucronella ventricosa (Hassall, 1842). Rare; on stones and shells.

Parasmitina nitida (Verrill, 1875). Smittina trispinosa var. nitida of Osburn.

Colonies very fine grained; form lightweight multilayered porous nodules several inches in diameter; color gray to sulfur yellow. Abundant in dredgings.

Parasmitina trispinosa (Johnston, 1838). On stones, shells, and occasionally on algae. Colonies whitish to yellow.

Porella acutirostris Smitt, 1867. On shells and stones; colonies rounded, pattern often of great regularity. At Crab ledge.

Porella concinna (Busk, 1852). Common at Crab Ledge on stones and shells.

Porella proboscidea Hincks, 1888. White or yellow frilly bilaminolate colonies rising erect from a base that encrusts shells, stones, and the ascidian Boltenia, sometimes several inches high; from Nantucket Shoals, No Man’s Land, and Crab Ledge.

Porella propinqua (Smitt, 1867). On shells and hydroid stems.

Rhamphostomella bilinata (Hincks, 1877). On hydroid stems.

Rhamphostomella costata Lorenz, 1886. Colony encrusts stems of various kinds, rising frill-like to a height of one-half inch; at Crab Ledge and Nantucket Shoals.

Rhamphostomella ovata (Smitt, 1886). Rare, encrusting stones and shells.

Schizomavella auriculata (Hassall, 1842). (= Schizoporella). Colorless to yellow to reddish colonies encrust stones, shells and occasionally hydroid stems; at Crab Ledge and Nantucket Shoals.

Schizoporella biaperta (Michelin, 1841-42). (= Stephanosella). Multilaminate ruf-fly reddish-orange colonies encrust piles, stones, shells, hydroid stems and 9 algal species (Chondrus, Fucus, Laminaria, etc.).

Schizoporella unicornis (Johnston, 1847). Multilaminate red calcareous colonies encrust shells, stones, piles, worm tubes and 6 algal species (Chondrus, Fucus, Laminaria, etc).

Smittina majuscula Nordgaard, 1905. Smittia porifera of Osburn’s 1912 paper. Colony encrusts stones, shells and stems of various kinds; off Nantucket and Crab Ledge.

Stomachosellus sinuosus (Busk, 1860). Fig. 45. (= Schizoporella). Circular red, purple or brown colonies encrust stones and shells at Crab Ledge. Not in key.
Umbonula arctica (Sars, 1851). Fig. 46. Muironella pavonella of Osburn's 1912 paper. Colony encrusts stones and shells or forms fan shaped expansions on stems of hydroids, etc. Not common. Not in key.

REFERENCES ON ECTOPROCTA

Ectoprocts

Plate 23

ENTOPROCTA AND ECTOPROCTA

Figures 1, 7, and 11 after Osburn 1912; figs. 2, 4-6, 8-10 after Rogick and Croasdale 1949; figs. 3 and 12-13 after Rogick 1949; all redrawn by Mrs. Emily Reid

Fig. 1. Loxosoma davenporti.

2. Pedicellina cornua.

4. Criisia eburnea; note inflated ocelli and joints or nodes.

5. Disporella hispida, a complete small colony.

6. Flustrillidra hispida, portion of colony; note spines and slit-like closure of orifices.

7. Alocyonidium verrilli, portion of colony; note puckered closure of orifices.

8. Bowerbankia gracilis, zoids with retracted tentacles.

9. Aeverrillia armata, portion of colony; note paired zooecia on short peduncles, and the 4 terminal spines on each zooecium.

10. Single polypide of Bowerbankia imbricata with tentacles extended; note setigerous collar directly below the tentacles, here constricting the tentacle sheath.

11. Amathia vidovici; note close-set spiral bands of zoids.

12. Nolella blakei, retracted individual, very young, with squared orifice.

13. Nolella blakei, very young zoid, with tentacles extended. The four basal extensions are "false" stolons. The bottom right represents the attenuated proximal end of the shown zoid. The other three are cut off by septa from the base of the shown zoid and likewise represent the proximal extensions of their own zoids.
Plate 24
Ectoprocta (2)

Figures 15, 16, 20 and 21 after Osburn (1912); rest after Rogick and Croasdale (1949), redrawn by Mrs. Emily Reid

Figure 14A, B. Aethea recta, note proximal recumbent parts of zoids, connected by stolonate extensions.

15. Scruparia chelata; a zoid at left bears ooeicum. Opesia oblique and shorter than in S. ambigua.

16. Ricellariella ciliata; A, portion of colony; B, ovicell borne on a zoid; C, avicularium with serrated beak.

17. Bugula simplex; small part of branch, with 3 bird head avicularia and 3 overhanging ovicells.

18. Bugula turrita; small part of branch, shows 4 ovicells and one bird head avicularium. Note spines on zooecia.

19. Scruparia ambigua, portion of colony arising from basal attached row of zooecia. Opesia parallel to back wall and longer than in S. chelata.

20. Membranipora tuberculata; note large opesia and pairs of tubercles.

21. Electra crustulenta, a more or less spineless species.

22. Electra pilosa, a lightly calcified spiny species. Note porous gymnocyct (frontal proximal wall), and spines bordering opesia.

23. Electra hastingsae, a species with delicate spines, sometimes lacking or broken off.

24. Callopora aurita, part of a colony showing 9 zooecia, 10 ovicells (with triangular front area) and 13 avicularia (some smaller than others).

25. Microporella ciliata; note the spine bordered hemispherical orifice under which is a small median crescent shaped ascopore. Four globose ovicells at bottom conceal orifices.

26. Hippoporina contracta; note bifid denticles and beaded arches of the orifices. Ovicells are not pictured but note spatulate avicularia on the two extreme right zoids, and areolar pores.
Plate 25
ECTOPROCTA (3)

Figure 30 after Osburn, rest after Rogick and Croasdale, all redrawn by Mrs. Emily Reid

Fig. 27. Hippothoa hyalina, one ooeicum at upper right of group.

28. Cribrilina annulata, no ooeia shown.

29. Cribrilina punctata, three ooeia shown at right in group.

30. Cryptosula pallasiana.

31. Parasmittina trispinosa, portion of colony without ooeia. Note avicularia beside orifices.

32. Schizoporella unicornis, portion of colony without ooeia. Note avicularia beside orifices.

33. Schizoporella unicornis, zooecia with ovicells.

34. Schizoporella biaperta, heavily calcified portion of colony; note avicularia close to orifices.

35. Schizoporella biaperta, portion of less heavily calcified colony, without oovicells.

36. Cellulosa dichotoma, portion of colony, with oovicells. Note avicularium borne on umbo on front of each zooecium.
Plate 26

ECTOPROCTA (4)

Figures modified from indicated sources; redrawn by Mary Rogick. Some of the genera figured are not in the key.

Fig. 37. Colony fragment of Oncousoecia diastoporides, after fig. 12A of Osburn, 1912.

38. Five zoids and two pedicellate avicularia of Cauloramphus cymbaeformis, after figs. 36, 36A of Osburn, 1912.

39. Five zoids of Conopeum reticulum, after fig. 9 of Rogick, 1940. The large opesia is here blacked in.

40. Branch of Scrupocellaria scabra, after Plate 6, fig. 7 of Hincks, 1880, showing frontal and lateral avicularia, and scuta (aperture shields).

41. Caberea ellisi from dorsal aspect, showing three long vibracula, after Pl. 8, fig. 7 of Hincks, 1880.

42. Haplopa clavata from dorsal aspect, showing ovicell arising from back of zoid on branch at left; from fig. 107 of Marcus, 1940. Detail of aperture (orifice) above at right.

43. Very young colony of Tubulipora flabellaris, showing the "primitive disc" at point of colony origin; after Pl. 64, fig. 2 of Hincks, 1880.

44. Eucratea longicosta, showing back-to-back zoecia, from fig. 16 of Osburn, 1912.

45. Three zoids and an ovicell (at bottom) of Stomachetosella sinuosa, from fig. 51 of Osburn, 1912.

46. Umbonula arctica zoid with 2 adventitious avicularia and the characteristically large orifice; from fig. 16 of Osburn, 1912. Note the areolar pores and small denticles or umbo (not a lyrula).

47. A single internode of Buliolopsis pechii var. beringa after fig. 20 bis of Osburn, 1912. Note dark "joints" at bottom and top.

48. A composite diagram, modified from fig. 116 of Bassler, 1953, showing two membranoid zoids, and a vicarious (independent) avicularium at right. The lowest zoid shows a pointed adventitious frontal avicularium. This zoid's non-porous frontal surface is an olocystal gymnocyct. The upper zoid has a frontal wall with pores, a tremocyst gymnocyct. The cryptocyct is the shelf immediately framing the opesia. The cap shaped structure overhanging the distal end of the top zoid is an ovicell.

49. An ovicelled zoid of Amphilestrum flemingii similar to Callopora except for the design on the ovicell; after fig. 38 of Osburn, 1912.

50. Dorsal surface of a Bugula avicularia branch, showing the forked proximal ends of zoids (where zoids originate distally and dorsally), after Pl. 10, fig. 2 of Hincks, 1880.

51 A, 51B, 51C. Cylindroporella tubulosa, after figs. 43, 43A, 43C of Osburn, 1912. Fig. 51A is a side view of an ovicelled zoid; fig. 51B is the frontal view of another ovicelled zoid; 51C shows several bottle shaped autozoids.

52. Dorsal surface showing the transverse proximal ends of Dendrobeania murrayana; after Pl. 14, fig. 6 of Hincks, 1880.