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Abstract  

 Samples of particulate organic matter from the water column and anoxic 

Holocene sediment layers from the Small Meromictic Basin (SMB) in Ellis Fjord (eastern 

Antarctica) were analyzed to study the early incorporation of reduced inorganic sulfur 

species into highly branched isoprenoid (HBI) alkenes. HBIs were not detected in the 

water column samples from austral winter, whereas compounds containing the C25 HBI 

skeleton were abundant in all analyzed Holocene sediment layers. The structure of the 

C25:2 HBI alkene together with its enriched stable carbon isotopic composition suggest 

that the HBI alkene is produced by a diatom or diatoms probably belonging to the 

Navicula genus present in the sea-ice which covers the area most of the year. Within just 

500 years of deposition, all of the HBI alkene was sulfurised. A mixture of products was 

formed, including components tentatively identified as a C25 HBI thiane and three S-

containing dimers composed of two C25:1 HBI skeletons linked together by a sulfide bond. 

Most of the HBI alkene, however, was converted to polar S-containing compounds. The 

observed reaction rate for sulfurisation the C25:2 HBI alkene is the highest observed so far 

in natural systems. Sterols and other lipids known to be prone to sulfurisation were only 

minimally sulfurised under these depositional conditions. The reason for this is presently 

unclear.  
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1. Introduction 

 The mechanisms of organic matter preservation in aquatic sediments are still far 

from fully explored. Bacterial mineralization of primary produced organic matter is 

generally highly effective leading to low storage of organic matter in the geosphere (e.g. 

Calvert and Pedersen, 1992). However, in environments with high primary production or 

where bottom waters are anoxic, a substantial part of the deposited organic carbon 

(perhaps  up to 20%) will become sequestered in the sedimentary record, leading to the 

formation of organic-rich sediments that upon burial in the subsurface have the potential 

to generate petroleum. An important mechanism of organic matter preservation in such 

anoxic marine environments is natural sulfurisation: the reaction of reduced inorganic 

sulfur species, such as hydrogen sulfide and polysulfides, with organic matter (e.g. 

Schouten et al., 1994; Wakeham et al., 1995 REFS). Reaction with reduced sulfur species 

results in components being incorporated through cross-linking with sulfide and 

polysulfide bonds that are less susceptible to bacterial degradation and thus have a higher 

potential for preservation (Sinninghe Damsté et al., 1989a). Some compounds are more 

prone to sulfurisation than others. For example, laboratory sulfurisation studies (de Graaf 

et al., 1992, 1995; Schouten et al., 1993, 1994) have shown that ketones are much more 

reactive than alkenes. Of the various compound types available for sulfurisation within 

Holocene Antarctic Ace Lake sediments, only the C27−C29 steroids were found to be 

extensively sulfurised (Kok et al., 2000). Werne et al. (2000) found that highly branched 

isoprenoid alkenes and malabaricatrienes in Cariaco Basin sediments were sulfurised 

during the first few thousands of years of diagenesis. Normally, reactive iron, present as 

ferric oxide and oxohydroxide coatings on clay particles (Canfield, 1989), is thought to 
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react faster with reduced sulfur species than organic matter (Gransch and Posthuma, 

1974). Organo-sulfur-rich sediments, therefore, are usually considered to be deposited in 

iron-depleted systems such as stratified basins where anoxic conditions can develop and 

the supply of iron is less than the production of sulfide. The Holocene sediments of the 

Small Meromictic Basin (SMB) in the Antarctic Ellis Fjord are sulfidic and organic-

carbon rich. In addition, in Antarctic aquatic environments, there is little detrital iron 

available to complex with inorganic sulfur species in the water column and dust-derived 

inputs are limited by seasonal ice cover. 

 For these reasons, the SMB in Ellis Fjord represents a model system in which to 

study the early sulfurisation of organic compounds. Here, we focus on the rate of 

sulfurisation of a C25:2 HBI alkene. Extensive lipid analyses of microalgae show that 

diatoms are most likely the biological source of HBIs in sediments (Volkman et al., 1994; 

Wraige et al., 1997; Sinninghe Damsté et al., 1999) and that HBI alkenes are one of the 

organic components most prone to sulfurisation (Sinninghe Damsté et al., 1989b; Kohnen 

et al., 1990; Wakeham et al., 1995; Hartgers et al., 1997; Werne et al., 2000). C25 HBI 

alkenes are produced only by species of the pennate diatom genera Navicula, Haslea, and 

Pleurosigma as well as some species of the centric genus Rhizosolenia (Sinninghe 

Damsté et al., 2004).  
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2. Materials and Methods 
 
2.1. Sampling  

Water samples were obtained in November 2000 from various positions in the 

water column at the depocentre (13 m depth; 68.59702ºS 78.22762ºE) of the Small 

Meromictic Basin (SMB) in Ellis Fjord, Vestfold Hills, eastern Antarctica using a 50 cm 

long 5 L Niskin bottle. The general features of this area are described by Trull et al. 

(2001). Water was obtained from: (i) the oxic mixolimnion (1.7−2.2 m; 5.2−5.7 m; 

8.7−9.2 m), (ii) anoxic and sulfidic chemocline where there was a dense accumulation of 

obligate photolithotrophic green sulfur bacteria (9.7−10.2 m), and (iii) the anoxic and 

sulfidic monimolimnion (10.7−11.2 m, 12.5−13.0 m). Particulate organic matter (POM) 

was obtained by filtering the water samples (0.25 to 15 L, depending on particle 

densities), through 0.7 µm pore-size glass fiber filters (GFF; Millipore). The filtrate was 

then filtered through 0.2 µm pore-size polycarbonate (PC) filters (Millipore) to collect 

any small prokaryotic cells that were not retained during the first filtration step. The 

filters were stored at –400C prior to lipid extraction. The extracts from both the GFF and 

PC filters at each water depth were pooled. 

A sediment core (113-cm-long × 5 cm diameter) was obtained from the 

depocentre of the SMB using a gravity corer operated from a tripod constructed on the 

ice. Immediately after sampling, the sediment core was kept in the dark and stored at –

20ºC at Davis Station and at –40ºC at Royal NIOZ. The upper 20 cm of sediment was 

sliced into 1 cm horizontal sections, but deeper layers were sliced into 2 cm horizontal 

sections with 2 cm space intervals. The total organic carbon contents (TOC) and δ 13C of 

TOC were determined by elemental analysis (EA)/isotope-ratio-monitoring mass 
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spectrometry (EA/irmMS). EA/irmMS analyses were performed on decalcified (by 

reaction with 1 M HCl for 18 h) sediments using a Carlo Erba Flash elemental analyzer 

coupled to a Thermo-Finnigan DeltaPLUS irmMS system. The total organic carbon 

content (as a percentage) was determined using external standards with known carbon 

content. Stable carbon isotope ratios were determined using lab standards calibrated on 

NBS-22 oil (IAEA) and reported in Vienna Pee Dee Belemnite (VPDB) notation. 

2.2. Calibration of sediment ages 

Accelerator mass spectrometry (AMS) radiocarbon (14C) dating on the organic 

matter (after removal of inorganic carbon by acid treatment) of selected core sections 

(0−1 cm, 20−22 cm, 40−42 cm, 60−62 cm, 80−82 cm, 100−102 cm, 112−113 cm) was 

carried out at the R.J. van der Graaf laboratory, University of Utrecht, The Netherlands. 

The sediment ages in calendar years before present (BP) were calculated using standard 

techniques of calibration (Stuiver et al., 1998). The calibrated age of the top sediment 

was 500 years. Since the SMB has been a stratified, seasonally influenced, marine basin 

for some time (Gibson, 1999), we assumed that the reservoir age of the dissolved organic 

carbon from which the organic matter was biosynthesized was 500 years for all analyzed 

sediment layers and corrected the determined radiocarbon aged for this reservoir age. 

2.3. Lipid extraction and fractionation 

Sediment samples were freeze-dried and ultrasonically extracted with methanol, 

dichloromethane (DCM)/methanol (1:1, v/v) and five times with DCM. All extracts were 

combined and the solvent was removed by rotary evaporation under vacuum. The 

extracts were separated by column chromatography using Al2O3 as stationary phase into 
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apolar and polar fraction using hexane/DCM (9:1, v/v) and DCM/MeOH (1:1, v/v), 

respectively, as eluents. Elemental sulfur was removed from the apolar fractions using 

activated copper powder. After adding an internal standard (6,6-d2-2-methyl-icosane), 

samples were analyzed by gas chromatography (GC) and gas chromatography-mass 

spectrometry (GC-MS). The polar fractions were desulfurised using Raney nickel after 

adding a standard (2,3-dimethyl-5-(1,1-d2-hexadecyl) thiophene) (Sinninghe Damsté et 

al., 1988). The products were separated into apolar and polar fractions as described above 

and the apolars were subsequently hydrogenated and analyzed by GC and GC-MS. 

Compounds having HBI skeletons were quantified by integration of peaks of the HBI 

alkene, sulfide, sulfide dimers and the HBI alkane formed upon desulfurisation of the 

polar fraction and that of the internal standard in gas chromatograms. An aliquot of one 

of the polar fractions (18−19 cm) was hydrogenated and also separated into apolar and 

polar fractions; the apolars were analyzed by GC and GC-MS. Gas chromatographic 

analyses were performed on a Fisons MFC 800 equipped with a fused silica column (25 

m x 0.32 mm i.d.) coated with CP Sil-5 (0.12 µm film thickness). He was used as the 

carrier gas. The samples were injected at 70ºC and the oven was programmed to 130ºC at 

20ºC/min and then to 320ºC at 4ºC/min and held for 10 min at 320ºC. GC-MS analyses 

were performed on a Hewlett-Packard 5890 gas chromatograph interfaced with a VG 

Autospec Ultima mass spectrometer. The GC column and conditions were as described 

above. 

 
 

3.  Results and Discussion 
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3.1. Highly Branched Isoprenoid (HBI) alkene composition in SMB 

Gas chromatograms showing the distribution of non-sulfurised and sulfurised 

hydrocarbons in sediments from Ellis Fjord are shown in Fig. 1. In the surface sediment 

the major constituent was a diunsaturated C25 HBI alkene (Fig. 1; upper panel). Other 

constituents include a C17:1 n-alkene, squalene and a variety of sterenes and triterpenoids 

(e.g. fernene) present in varying amounts.  

The structure of the C25:2 HBI alkene was identified from its mass spectrum (Fig. 

2) and retention index as 2,10,14-trimethyl-6-methylene-7-(3'-methylpent-1-

enyl)pentadecane (I in Fig. 1) (Johns et al., 1999). The identification was confirmed by 

coinjection with alkenes found in a culture of Navicula salinarum: the alkene from Ellis 

Fjord coeluted with the first eluting of the two C25:2 isomers found (RI 2080). This C25:2 

alkene is also found in sea-ice diatoms (Nichols et al., 1988) and in various Antarctic 

sediments (Venkatesan, 1988). Analysis of fossil ribosomal DNA in sediments from the 

same core showed that a diatom belonging in the Navicula genus is the likely source of 

HBI alkenes in this sediment (Coolen, Volkman and Sinninghe Damsté, unpublished 

results). Note that the predominance of the C25:2 HBI alkene over more-unsaturated HBI 

alkenes seems to be a characteristic of many samples from Antarctica (Rowland and 

Robson, 1990).  

Within a few cm depth, the distribution of hydrocarbons becomes very different 

such that by 8 cm depth, the HBI alkene (Table 1) and C17:1 n-alkene were relatively 

minor constituents (Fig. 1). Acyclic isoprenoids including phytane, phytenes and 

squalene were major constituents together with sterenes and hopenes and the unusual 

triterpenoid fernene. This distribution of hydrocarbons is very similar to those found in 
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anoxic sediments from Ace Lake (Volkman et al., 1986), with the exception that HBI 

alkenes were not found there (Volkman et al., 1986). In Ace Lake, phytadienes were 

attributed to photoautotrophs whereas phytane was attributed to an archaeal source 

(Schouten et al., 2001). 

At deeper depths, all of the C25:2 alkene had disappeared, to be replaced by S-

containing HBIs including a cyclic HBI sulfide, a mixture of three sulfur-containing HBI-

dimers (Fig. 1; Table 1) and more polar forms not amenable to GC analysis. The total 

abundance of these various sulfurised forms varied considerably with depth (Table 1), but 

the polar forms were always more abundant than the HBI sulfide or dimers. Even though 

no HBI alkene could be detected below 11 cm, the high abundance of S-forms in deeper 

sediments confirmed that HBI-containing diatoms were an important source of organic 

matter throughout this period of deposition, although the varying concentrations of S-

HBIs suggests that their input varied over time.  

 

3.2. Sulfur-containing HBIs  

 The mass spectrum of the sulfur-containing HBI monomer is shown in Fig. 2b 

and is identical to that of a HBI sulfide tentatively identified in the surface sediments of 

Lake Cisó, a monomictic lake in Spain (Hartgers et al., 1997) and Holocene sediments of 

Mud Lake, a shallow (<1 m) lake in Florida, USA (Filley et al., 2002). Hartgers et al. 

(1997) identified this S-containing HBI on the basis of the mass spectral fragmentation 

pattern as an HBI possessing a. thiolane ring with the sulfur atom attached at the tertiary 

carbon atoms C-7 and C-22 of the C25 HBI skeleton. An alternative, and perhaps more 

likely, structure is an HBI possessing a thiane ring with the sulfur atom attached at the 
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carbon atoms C-7 and C-23 of the C25 HBI skeleton (see II in Fig. 1). The absence of an 

M+-29 (loss of an ethyl substituent) renders this identification more likely. We postulate 

that this thiane can be formed by intramolecular sulfur incorporation into a C25:2 HBI 

alkene that can be formed by isomerisation of the methylenic double bond from the C25:2 

HBI alkene detected in the surface sediments (Fig. 3). It has been established that the 

methylenic double bond of HBI alkenes isomerizes relatively easily (Belt et al., XXX??)  

 In the apolar fractions of the deeper sediments, three late-eluting components 

were present, each of which had a similar mass spectrum (e.g. Fig. 2c). The molecular ion 

at m/z 730 suggested that they represented a dimer composed of two C25:1 HBI skeletons 

bound to each other by a sulfide linkage. The presence of one sulfur atom in these 

components was demonstrated previously by high resolution accurate mass MS analysis 

of sediments from the Deep Basin of Ellis Fjord (Robertson et al., 1995). The mass 

spectrum showed a dominant fragment at m/z 348, representing a C25:2 HBI alkene, 

probably formed by an elimination reaction, and a mass-deficient (i.e. likely indicating 

the presence of a sulfur atom) fragment ion at m/z 381, representing a C25:1 HBI alkene 

ion containing one sulfur atom. The remaining characteristic fragment ions (m/z 207, 

235, 263, 266, M+-265) also occurred in the mass spectrum of the HBI alkadiene I (cf. 

Fig. 2a). Finally, the fragment at m/z 409 (M+-321) might provide a clue as to the 

position of the sulfide moiety, namely at C-23, which would explain the loss of a C23H43 

moiety. Small amounts of HBI dimers containing two sulfur atoms were also tentatively 

identified (Fig. 1). They possessed a molecular ion at m/z 762 in their mass spectra and a 

more abundant m/z 381 fragment ion and thus probably represent dimers in which two 

HBI skeletons are linked by a disulfide moiety (cf. Kohnen et al., 1991; Kok et al., 2000). 
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It can be envisaged that the HBI dimers were formed by intermolecular sulfur 

incorporation linking two HBI alkadienes (Fig. 3). In this reaction, one of the two double 

bonds of each HBI skeleton would remain intact, whilst the other would be involved in 

the cross-linking reaction. It is not clear if the three detected HBI dimers (Fig. 1) 

represent structural isomers, reflecting the three possible isomers that can be generated 

from two identical C25:2 HBIs, or stereoisomers. The almost identical mass spectra 

perhaps suggest the latter possibility to be the most likely one. 

 Desulfurisation with Raney Ni of the polar fractions followed by hydrogenation 

generated the C25 HBI alkane. Direct hydrogenation of the polar fraction of the solvent 

extracts did not generate the HBI alkane, providing strong support for an S-bound form 

of the HBI skeleton. The polar fraction of extracts of immature sediments often contain 

non GC-amenable macromolecular aggregates which are composed of carbon skeletons 

bound to each other by sulfur linkages (cf. Sinninghe Damsté et al., 1988; Kohnen et al., 

1991; Adam et al., 2000; Kok et al., 2000; REFS). Additional sulfur incorporation in the 

HBI dimers (Fig. 3), which still possess two double bonds, can be envisaged to result in 

their inclusion in larger S-rich macromolecular aggregates.  

 

3.3. HBI speciation and timing of sulfurisation 

 To follow the extent of sulfur incorporation, the different compound types 

containing the HBI skeleton (i.e. alkadiene, thiane, dimers, and polar-bound) were 

quantified (Table 1). These data indicate that with increasing depth the speciation of the 

HBI skeleton varies substantially (Fig. 4). Below 11 cm depth the alkadiene was not 

detected and HBIs only occur in a sulfurised form. The polar S-bound form is most 
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abundant in this interval, representing between 50 and 95% of total S-containing forms 

(Fig. 4; Table 1), but with no clear trend with depth. The surface sediment (0−1 cm) 

already contains a relatively high amount of sulfurised HBIs compared to the horizons 

just below the surface (Fig. 4). This is mainly due to the higher amounts of polar S-bound 

HBI in the surface sediment (Table 1). This suggests that sulfurisation occurs soon after 

the surface sediments are deposited (or perhaps even as they are deposited). 

 A series of seven AMS radiocarbon dates (Table 2) corrected for the apparent 

reservoir effect allowed us to construct an age model for the obtained core. The ocean has 

a different radiocarbon reservoir than that of the majority of the radiocarbon in the 

biosphere. The average difference between a radiocarbon date of terrestrial and marine 

carbon is ca. 400 radiocarbon years (Stuiver et al., 1998). The apparent radiocarbon age 

of oceanic water is caused both by (i) the delay in exchange rates between atmospheric 

CO2 and ocean bicarbonate, and (ii) the dilution effect caused by the mixing of surface 

waters with deep waters which are older. In our age model we assumed a constant 

reservoir effect of 500 years based upon the radiocarbon age of the 0−1 cm sediment 

layer (Table 2). In Fig. 5 the obtained calendar years (i.e. radiocarbon age in Table 2 

corrected for the reservoir effect) are plotted versus depth. From this an average linear 

sedimentation rate of ca. 0.4 mm yr-1 was calculated. In Fig. 5 we have also plotted the 

degree of sulfurisation of the HBIs (defined as the ratio of the HBIs in a sulfurised form 

vs. all HBIs) versus depth and age, from which it is apparent that the HBI alkadiene had 

become completely sulfurised within ca. 500 yr. If we exclude the first data point and 

model the HBI sulfurisation reaction in the upper 11 cm with first order reaction kinetics 
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(cf. Werne et al., 2000), a reaction rate constant of 1.3x10-2 yr-1 with an r2 of 0.95 is 

obtained.  

 

3.4. General features of sulfur incorporation 

The early incorporation of sulfur into HBI alkenes in the Ellis Fjord environment 

was previously shown by Robertson et al. (1995) who examined a surface sediment floc 

from Deep Basin. A saturated C25 HBI-derived sulfide, an unresolved S-containing 

complex mixture of steroidal thiols and a suite of HBI-dimers were recognized, but only 

limited structural identifications were achieved at that time. Early sulfur incorporation 

had also been observed in the lipids of Ace Lake in the Vestfold Hills (Volkman et al., 

1986; Robertson et al., 1995; Kok et al., 2000; Schouten et al., 2001), but the products are 

dominated by steroids. Squier et al. (2004) recently reported an S-containing chlorophyll 

derivative in Holocene sediments from Pup Lagoon, a freshwater lake in eastern 

Antarctica. Obviously, despite the low temperatures of the lake and fjord waters in 

Antarctica, the absence of a significant input of detrital iron renders sulfurisation of 

organic matter at the very early stages of diagenesis possible. However, the observed 

high rate of sulfurisation of the HBI alkadiene in Ellis Fjord reported here is 

unprecedented. 

 It is well known from literature data that HBI alkenes are prone to natural 

sulfurisation. In ancient immature sediments HBIs occur predominantly in a sulfurised 

form (e.g. Sinninghe Damsté et al., 2004) and they have also been encountered in 

Holocene sediments of the Black Sea (Kohnen et al., 1990; Wakeham et al., 1995), the 

Arabian Sea (Schouten et al., 2000), the Cariaco Basin (Werne et al., 2000), Walvis Bay 
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(Adam et al., 2000), and various lakes (Hartgers et al., 1997; Filley et al., 2002). In Black 

Sea sediments HBI alkenes disappear rapidly with depth (Wakeham et al., 1995); in the 

upper 2 cm their concentration decreases by a factor of 100 (Sun and Wakeham, 1994). 

However, no low- or high-molecular-weight S-containing HBIs could be detected which 

could explain this apparent loss (Wakeham et al., 1995). Only in Unit II (age > 3 ka) 

sediments were S-containing HBIs detected having two double bonds less than their 

precursors (Kohnen et al., 1990; Wakeham et al., 1995). In contrast, in surface sediments 

of Lake Cisó (age < 100 yr) only C25 HBI sulfides were detected and no precursor HBI 

alkenes were observed (Hartgers et al., 1997), suggesting rapid sulfurisation. Our data 

now confirm this rapid sulfurisation process of HBI alkenes and allow us to quantify the 

rate of this process.  

At present there are only two other studies which have determined the rate of the 

organic matter sulfurisation process. Werne et al. (2000) determined a first order rate 

constant of 2x10-4 yr-1 for the sulfurisation of malabaricatriene and Kok et al. (2000) 

concluded that the rate of sulfurisation of steroidal ketones in Ace Lake was comparable 

to that observed for malabaricatriene in the Cariaco Basin (Werne et al., 2000). The rate 

constant of 1.3x10-2 yr-1 determined here for the sulfurisation of HBI alkenes is 

significantly higher than those determined previously. This agrees with the observation 

that HBI sulfurisation in Cariaco Basin sediments proceeds faster than malabaricatriene 

sulfurisation (Werne et al., 2000) and further underpins the idea that sedimentary organic 

matter is highly heterogeneous and contains compounds with widely varying reactivity.  

 The question arises why HBI alkenes are so reactive towards natural sulfurisation. 

Laboratory sulfurisation studies have indicated that non-conjugated double bonds are not 
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particularly prone to sulfurisation and that internal double bonds react slower with 

reduced inorganic sulfur than terminal double bonds (de Graaf et al., 1992; 1995; 

Schouten et al., 1993; 1994). These studies also revealed that ketones react much faster 

than alkenes. The HBI alkadiene I possesses two double bonds and sulfurisation of this 

double bond can explain the rapid formation of the sulfurised HBI dimers (Fig. 3) and, 

perhaps, that of the polar S-bound HBIs but not of the HBI thiane (which requires a shift 

of the terminal double bond; Fig. 3). Steroid sulfurisation in Ace Lake, a comparable 

environmental setting to the SMB of Ellis Fjord, proceeds more slowly than HBI 

sulfurisation in SMB, which is remarkable since it is assumed to occur through 

sulfurisation of steroid ketones formed in the water column and surface sediments (Kok 

et al., 2000). Clearly, the chemical structure is not the only parameter determining the 

rate of sulfurisation of organic matter. Other factors such as the availability of the 

components (e.g. adsorbed on a particle vs. present in an almost intact cell) will probably 

exert an even stronger control on the overall reaction rate. Recently, HBI epoxides have 

been identified as natural products in diatoms (Belt et al., 2006) and these could perhaps 

react much faster than HBI alkenes. However, these epoxides were not identified in the 

present study and this factor would also not explain the rapid decrease in concentration of 

the HBI alkadiene I. 

 

3.5. Contributions from sea-ice microalgal populations 

HBIs were below the detection limit in the water column samples that had been 

taken in Austral winter. This is consistent with the proposition that the source organisms 

of the HBI alkenes are present in the sea-ice. After the ice cover starts to melt, benthic 
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sea-ice diatoms are liberated into the water column and open-water blooms of diatoms 

(mainly non-HBI-producing) Chaetoceros spp. dominate in the fjords from the Vestfold 

Hills (McMinn and Hodgson, 1993; McMinn et al., 2000). Moreover, our parallel studies 

of fossil ribosomal DNA (Coolen, Volkman and Sinninghe Damsté, unpublished results) 

confirmed that a Navicula species is the likely source and such species are common in 

sea-ice. Nichols et al. (1988) have shown that the HBI alkadiene I as found in the surface 

sediments occurs in sea-ice diatom communities. Revill et al. (1994) and Gibson et al. 

(1999) showed that sea-ice diatoms have isotopically heavy organic matter presumably 

reflecting constraints on the availability of CO2 in sea-ice. Revill et al. (1994) used this 

observation to explain why lipids in sediments from the Permian tasmanite oil shale, 

which were known to be deposited under ice, are isotopically heavy.  

 The stable carbon isotopic compositions of the HBIs were measured in several 

sediment layers and compared with those of sterenes (i.e. a C28 steratriene and C29 stera-

3,5-diene) (Table 3). Compared to the C28 steratriene, the HBIs are strongly enriched in 

13C with δ13C values around -10‰. This is indeed consistent with an origin from a 

Navicula species growing in the sea ice where CO2 availability is limited, resulting in 

strongly enriched organic matter and lipids (Revill et al., 1994; Gibson et al., 1999). The 

similar δ13C values for the HBI skeletons in the different chemical forms strongly support 

the proposed close diagenetic link between these compound classes (Fig. 3). Remarkably, 

the δ13C values of the C29 stera-3,5-diene are also quite enriched in some samples (Table 

3), suggesting that it too is derived, to varying extents, from the sea-ice diatoms. 

However, detailed studies of the sterols in these sediments (unpublished data, 2004) 
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showed that most sterols have isotopic compositions between -22 and -28‰, indicating 

additional significant contributions from phytoplanktonic sterols from the water column. 

 

4. Conclusions 

The hydrocarbon biomarker data revealed a diversity of organic matter sources in 

Ellis Fjord sediments dominated in the surface layers by diatoms. At greater depth, these 

algal markers disappeared and the biomarker distribution became dominated by 

hydrocarbons from prokaryotic sources and from diagenesis of functionalized lipids. 

Sulfurisation clearly was a major preservation mechanism for specific unsaturated or 

functionalised lipids in these anoxic low-iron sediments. The rates of sulfurisation 

recorded are the highest yet recorded even though the depositional environment is cold 

and microbial activity rates are low. The primary products of sulfurisation of the diatom-

derived C25:2 HBI alkene are a sulfur-containing thiane and a suite of three S-containing 

dimeric HBI compounds. In contrast to Ace Lake, where sulfurisation is also a rapid 

process, we did not detect S-containing steroids in the surface sediments. It is at present 

not clear why the HBI alkadiene is so prone to sulfurisation. The presence of 13C-

enriched lipids, including the HBI alkene and its sulfurised forms, points to the 

importance of sea-ice biota, mainly diatoms, as sources of organic matter in sediments 

deposited under ice and demonstrates the need to sample this part of the environment and 

not just the water column to gain a better understanding of organic matter sources and 

cycling in these environments.  
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Figure captions 
 

Fig. 1. Capillary gas chromatograms of hydrocarbon fractions from sediment depths 2−3 

cm, 8−9 cm and 36−38 cm from a core recovered from the Small Meromictic Basin 

(SMB) of Ellis Fjord. The structure of the C25:2 HBI alkene I is shown in the insert. 

 

Fig. 2. Mass spectra of (a) the C25:2  HBI alkene identified as 2,10,14-trimethyl-6-

methylene-7-(3'-methylpent-1-enyl)pentadecane, (b) the C25 HBI thiane II, and (c) one of 

the sulfurised dimers of the C25 HBI alkene.  

 

Fig. 3. Hypothetical reaction scheme showing how the sulfurised HBIs can be formed 

from the HBI alkadiene I biosynthesized by the sea-ice diatoms. Intramolecular sulfur 

incorporations results, after appropriate isomerization of one of the double bonds, into the 

formation of HBI thiane II. Intermolecular sulfur incorporation leads to formation of an 

HBI dimer which can subsequently be incorporated into larger macromolecular 

aggregates (represented by X). 

 

Fig. 4. Speciation of the HBI skeleton amongst different compound types at various 

horizons of a core from the MSB of Ellis Fjord. 

 

Fig. 5. Depth profile of age (in calendar years BP) and the degree of the sulfurisation of 

the C25 HBI skeleton (defined as the percentage of the C25:2 HBI alkene relative to all C25 

HBIs quantified; see Table 1). Note the complete disappearance of the C25:2 HBI alkene 

 25



(the only non-sulfurised form of HBIs) at a depth of 12 cm corresponding to an age of 

about 500 calendar years. 
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Table 1. TOC and HBI concentration (alkene and sulfurised forms) in the Ellis Fjord 

sediment core 

 
Depth 
(cm) 

TOC 
(%) 

δ13CTOC 
(‰) 

Concentration (μg g-1 TOC) 

  
  

 alkene thiane  dimers 
polar S-
bound  

Total HBI 
+ S-HBI 

    0−1   1.4 -18.2    480  30   18 320 850 
    2−3   3.2 -17.7  1100    9   17   94 1220 
    4−5   3.9 -18.4  2300    5   16 160 2480 
    6−7   4.9 -18.5     77   23   33 150 280 
    8−9   4.8 -18.4     35   71   93 250 450 
  10−11   8.7 -17.8       8 110 110 200 430 
  12−13   6.2 -18.3    nd   76   65 330 470 
  14−15   5.2 -17.5    nd 120 110 430 660 
  16−17   9.6 -17.5    nd   63   58 300 420 
  18−19   7.7 -18.4    nd 110 150 330 590 
  36−38   6.6 -17.1    nd 310 430 980 1720 
  56−58   7.3 -17.4    nd 180 250 570 1000 
  76−78 15.3 -17.5    nd   46   24 130 200 
  92−94 12.0 -18.3    nd   56   22 210 290 
  96−98 11.5 -17.7    nd 110   77 280 470 
100−102 11.2 -18.2    nd   66   53 200 320 
104−106   8.8 -18.0    nd   15  nd 160 175 
108−110 
 

  6.4 
 

-17.7    nd 
 

  12 
 

 nd 
 

240 
 

250 
 

 
nd: not detected 
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Table 2: Radiocarbon ages (uncorrected for reservoir effect) for the Ellis Fjord core  
 
 
 

 
Depth (cm) 14C age (yr BP) 

       0-1     520 
     20-22 1500 
     40-42 1740 
     60-62 2200 
     80-82 2440 
   110-112 3300 
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Table 3: Stable carbon isotopic compositions (‰ vs. VPDB) of HBIs (alkene and sulfurised forms) and two of the major sterenes. 
 

depth (cm) TOC  alkene thiane  dimer 1 dimer 2  dimer 3 C29:2 Δ3,5 C28:3 

    2−3 -17.7   -9.1 na na na na   na na 
    6−7 -18.5   -9.4 -15.3 -11.0 -10.9 na -15.1 -23.6 
  10−11 -17.8 nd -12.4 -10.7 -10.4 -10.8 -14.1 -25.8 
  36−38 -17.1 nd -10.4   -8.4 -8.6   -8.9   -8.9 -23.6 
  96−98 -17.7 nd -11.1   -8.9 -8.9   -9.6   -8.3 -17.3 

 
na: not analysed; nd: not detected 
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	2.3. Lipid extraction and fractionation
	Sediment samples were freeze-dried and ultrasonically extracted with methanol, dichloromethane (DCM)/methanol (1:1, v/v) and five times with DCM. All extracts were combined and the solvent was removed by rotary evaporation under vacuum. The extracts were separated by column chromatography using Al2O3 as stationary phase into apolar and polar fraction using hexane/DCM (9:1, v/v) and DCM/MeOH (1:1, v/v), respectively, as eluents. Elemental sulfur was removed from the apolar fractions using activated copper powder. After adding an internal standard (6,6-d2-2-methyl-icosane), samples were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The polar fractions were desulfurised using Raney nickel after adding a standard (2,3-dimethyl-5-(1,1-d2-hexadecyl) thiophene) (Sinninghe Damsté et al., 1988). The products were separated into apolar and polar fractions as described above and the apolars were subsequently hydrogenated and analyzed by GC and GC-MS. Compounds having HBI skeletons were quantified by integration of peaks of the HBI alkene, sulfide, sulfide dimers and the HBI alkane formed upon desulfurisation of the polar fraction and that of the internal standard in gas chromatograms. An aliquot of one of the polar fractions (1819 cm) was hydrogenated and also separated into apolar and polar fractions; the apolars were analyzed by GC and GC-MS. Gas chromatographic analyses were performed on a Fisons MFC 800 equipped with a fused silica column (25 m x 0.32 mm i.d.) coated with CP Sil-5 (0.12 µm film thickness). He was used as the carrier gas. The samples were injected at 70ºC and the oven was programmed to 130ºC at 20ºC/min and then to 320ºC at 4ºC/min and held for 10 min at 320ºC. GC-MS analyses were performed on a Hewlett-Packard 5890 gas chromatograph interfaced with a VG Autospec Ultima mass spectrometer. The GC column and conditions were as described above.


