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Creative approaches at the interface of ecology, statistics, mathematics, informatics, and computational science are essential for improving our
understanding of complex ecological systems. For example, new information technologies, including powerful computers, spatially embedded sensor
networks, and Semantic Web tools, are emerging as potentially revolutionary tools for studying ecological phenomena. These technologies can play
an important role in developing and testing detailed models that describe real-world systems at multiple scales. Key challenges include choosing the
appropriate level of model complexity necessary for understanding biological patterns across space and time, and applying this understanding to solve
problems in conservation biology and resource management. Meeting these challenges requires novel statistical and mathematical techniques
for distinguishing among alternative ecological theories and hypotheses. Examples from a wide array of research areas in population biology and
community ecology highlight the importance of fostering synergistic ties across disciplines for current and future research and application.
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E cological communities comprise complex networks
of individuals interacting with each other and with their
environment. Two major challenges for scientists, managers,
and policymakers are (1) understanding the forces that or-
ganize these heterogeneous systems across space and time
(Levin 1992, Levin et al. 1997, Brown et al. 2002) and (2) us-
ing this understanding to address environmental problems at
local to global scales. These challenges require novel ap-
proaches at the interface of ecology, mathematics, statistics,
and computer science. Recent developments have prompted
dramatic advances in these disciplines. Exponential gains in
computing power, data storage capacity, and network con-

nectivity, together with algorithm development, enable re-
searchers to construct increasingly complex models. I silico
experiments that model biological systems on the computer
are often as important as the traditional in vivo and in vitro
experiments to which biology was previously restricted (Gen-
tleman 2002, Chow et al. 2004). Advanced networking capa-
bilities allow researchers to share ideas and data rapidly across
disciplines and physical locations. Large arrays of spatially em-
bedded sensor networks are revolutionary tools for observ-
ing real-world systems at multiple scales. These and other
advances can help researchers make fundamental discover-
ies in basic ecology and can facilitate effective conservation.
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In December 2003, the National Science Foundation spon-
sored the last of three workshops on quantitative environ-
mental and integrative biology (Hastings et al. 2005). The
workshop sought to identify areas of cutting-edge research
in ecology and environmental biology that require integra-
tion with novel computational, statistical, and informatics
tools. This article reports the workshop’s overall findings. It
is organized into three sections that reflect major topics dis-
cussed at the workshop. First, we describe areas of research
in which statistical and computational advances provide
new ways of incorporating biological complexity into eco-
logical theory. Second, we illustrate how computational ad-
vances improve researchers’ ability to solve problems in
conservation biology and resource management. Finally, we
discuss emerging cyberscience and ecoinformatic tools that
facilitate advances in ecological theory and enable researchers
to apply this knowledge for informed conservation man-
agement decisions.

These topics reflect the participants’ expertise, and are il-
lustrative rather than comprehensive. This article is not a re-
view. Nevertheless, our examples illustrate that the interface
between ecology, mathematics, statistics, and computer sci-
ence is rich; that the need to foster integration and collabo-
rations among these disciplines is great; and that the potential
impact of this interdisciplinary research is unlimited.

Modeling ecological complexity

The greatest challenge today, not just in cell biology and
ecology but in all of science, is the accurate and com-
plete description of complex systems. Scientists have
broken down many kinds of systems. They think they
know most of the elements and forces. The next task is
to reassemble them, at least in mathematical models
that capture the key properties of the entire ensembles.
(Wilson 1998, p. 85)

As ecology has matured, our conceptual and theoretical mod-
els for how the world works have evolved from the very sim-
ple to the very complex (Levin et al. 1997). Simple models that
ignore individual and environmental variation, species in-
teractions, and transient dynamics try to capture generalities
about systems and offer analytical tractability. However, these
models are often insufficient for predicting realistic tempo-
ral and spatial patterns. Advances in mathematics, statistics,
and computation help us to assess more fully the conse-
quences of such simplifications and to incorporate more re-
alism. In many situations, this translates into more complex
models.

A challenge in modeling any system is the choice of level
of detail. The challenge resides in identifying which details at
one level of organization are driving phenomena at other lev-
els, and which details can be ignored. In many cases, devel-
oping a suite of complementary models operating at different
scales and levels of complexity will help elucidate the mech-
anisms underlying observed macroscopic patterns. However,
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building more detailed and complex models is not always bet-
ter. Complexity typically demands additional data and com-
putation time, and makes model results difficult to analyze.
Researchers need tools for identifying the situations in which
building detailed models will increase our ability to under-
stand and predict the structure and dynamics of ecological
systems. For example, recent statistical advances based on
model selection (box 1) show substantial promise for dis-
tinguishing among alternative ecological hypotheses and the-
ories. In general, situations that call for more detailed models
will either require mathematical approximations of added
complexity or advances in computer science that allow more
efficient computation. In the following sections, we describe
three areas in which advances in computational science may
improve ecological theory by providing ways to incorporate
increased biological complexity.

Transient dynamics. Ecological theory has traditionally focused
on long-term or asymptotic behavior as a way to understand
natural systems, with stability analysis as the primary tool
(May 1974). Even models that incorporate nonequilibrium
dynamics, such as limit cycles or chaos, primarily look at
long-term behavior. However, it is widely recognized that
theoretical studies of short-term dynamics are also needed
(Levin 1992) in order to understand and interpret ecological
experiments, most of which occur on time scales of less than
1 year (Kareiva and Andersen 1988). Adaptive management
and restoration practices require understanding both short-
and long-term effects of field manipulations. Transient
dynamics, which characterize the behavior of a dynamical
system before its terminal behavior, are garnering more
attention in the ecological literature (Hastings 2004).
Recent investigations of transient dynamics have changed
researchers’ view of ecological systems. It is now understood
that traditional analyses of ecosystem stability and resilience
may give a misleading picture of how ecological systems re-
spond to environmental perturbation. Resilience, which mea-
sures how rapidly a stable system returns to its original state
after a perturbation, is an asymptotic property giving the
rate of decay of perturbations after a very long time. Novel
measures of transient response, including reactivity (the
maximal instantaneous rate at which perturbations can be am-
plified) (Neubert and Caswell 1997), have shown that per-
turbations can grow for a time before decaying, causing
dramatic and long-lasting changes that are entirely over-
looked by studies of asymptotic behavior. Spatially struc-
tured models also suggest that after a major perturbation,
population dynamics may become unpredictable for a long
time without ever attaining simple asymptotic behavior
(Hastings and Higgins 1994). Such complex transient be-
havior may explain sudden outbreaks in populations (e.g., in-
sects) for which no recent change in environmental conditions
has been detected. Recently, the recognition that transient dy-
namics can be an important aspect of species coexistence
has received much attention. This transient coexistence may



Box 1. Model selection.

Basic and applied ecology require high standards of
model testing and evaluation. The traditional approach
of evaluating models in ecology is to generate a null
hypothesis and ask whether the hypothesis can be
rejected at some specified level of statistical significance.
Yet a model’s validity, reliability, and accuracy can be
most meaningfully judged by explicit comparison
against alternative models (Kirchner et al. 1996). The
task of using data to evaluate different competing
hypotheses has increasingly occupied the attention of
statisticians and ecologists. The underlying ideas of
maximizing the likelihood of the data given the param-
eters of a model (by varying the parameters), and of
comparing across models by choosing the one that has
the highest information per parameter, provide a pow-
erful approach for connecting theory to data (Burnham
and Anderson 2002). The implementation of these ideas
of model selection has been facilitated by advances in
computational power and statistical developments.

The model-selection approach has begun to be adopted
for a diverse range of applications in conservation biol-
ogy, such as estimating survival rates, modeling the
effects of habitat fragmentation on populations, and
modeling the effect of fire on community organization
(Johnson and Omland 2004). Applications of this
approach are still few, and there is substantial opportu-
nity and need for novel uses and concomitant advances
in the underlying statistical theory. In particular, these
approaches provide some of the best opportunities for
making ecological predictions, with uncertainties explic-
itly included in a rigorous way, which is essential for
decisionmaking in the public policy arena.

elucidate mechanistic explanations for patterns in the distri-
bution and abundance of species (Hastings 2004).

Ecologists are just beginning to explore the importance of
transient dynamics. Advances in mathematics, statistics, and
computing enable more sophisticated analyses of complex dy-
namical systems and, hence, provide a deeper understanding
of how transient dynamics can affect the persistence and
structure of ecological communities.

Environmental variability. Many modelers of population,
community, and ecosystem dynamics seek to incorporate
the effects of temporal environmental variation. Environ-
mental stochasticity is important when attempting to de-
velop predictions for the management of endangered species,
invasive populations, harvested populations, or whole re-
serve areas. Harsh environmental conditions in a single year,
or repeatedly bad conditions over a series of years, may dec-
imate a population.

Variable environmental conditions are frequently simulated
using a “white-noise” model. Underlying this model is the
assumption that environmental fluctuations are temporally
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uncorrelated. However, many environmental signals (e.g.,
temperature, rainfall, river height) are positively autocorre-
lated, or have a “reddened” noise signal, with continually in-
creasing variance in time (Steele 1985, Vasseur and Yodzis
2004). A run of bad conditions is more likely than swiftly al-
ternating conditions. There is, however, little work demon-
strating the impact of positively autocorrelated environmental
signals on commonly used management methods, such as
population viability analysis (PVA). Studies that do incorporate
realistic reddened noise signals usually rely on simulations to
achieve generalization (Johst and Wissel 1997, Cuddington and
Yodzis 2002).

Because researchers continue to use white-noise models,
even in the face of contradictory environmental data, re-
search that focuses on providing a solid theoretical framework
for the analysis of reddened environmental variation is sorely
needed. Marion and colleagues (2000) suggest some simple
models of colored environmental noise, and they have made
progress in analyzing the population effects of such variation
by applying analytical approximations such as local lin-
earization of stochastic differential formulations and moment-
closure techniques. Further research that focuses on the de-
velopment of analytically tractable methods for incorporat-
ing environmental stochasticity will be of great import,
especially where such methods yield techniques that can be
applied to the protection of endangered species (extinction
risk analysis, below) or the management of harvested popu-
lations (box 2).

Complex ecological networks. A challenge in the study of com-
plex systems is integrating recent research on network struc-
tures with advances in modeling the dynamics of large
nonlinear systems (Strogatz 2001). Networks of many inter-
acting species are widely observed in nature, but few models
have successfully simulated persistent dynamics of complex
ecosystems. Since the 1970s, mathematical approaches have
been used to describe general aspects of the network struc-
ture, dynamics, and stability of food webs, but much of the
early work inspired by May (1974) was based on simple, an-
alytically tractable models. More detailed ecological data and
new approaches to network analysis have supported advances
in the description of general properties of complex food web
structure (figure 1; Dunne et al. 2002, Garlaschelli et al. 2003).
Researchers have used biologically realistic, nonlinear math-
ematical models to explore trophic dynamics (reviewed in
McCann 2000), but they have focused on relatively small
systems with fewer than 10 species. A few studies have explored
ways to integrate complex structure and dynamics in more
diverse empirical (Yodzis 2000) and model ecosystems (Kon-
doh 2003), but such studies often include questionable as-
sumptions about structure and dynamics (Brose et al. 2003a).

Research on complex ecological networks is computa-
tionally intensive and was effectively impossible a decade
ago. The increase in personal computer power, as well as the
availability of local, low-cost supercomputing power, has
made such research widely feasible. The study of complex eco-
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Figure 1. Three-dimensional snapshot of a 20-species, chaotically persisting food
web whose structure is generated by the empirically successful niche model and
whose dynamics are simulated by extending a nonlinear bioenergetic approach
(Yodzis and Innes 1992) to n species (Brose et al. 2003a). Spheres represent species
(plant species at bottom); the volume of each sphere is proportional to the species’
biomass. Cones represent feeding links between species (cannibalism represented
by circular cones); the cross-sectional area of each cone is proportional to the
species’ feeding rates. Graphic courtesy of the Webs on the Web project (Wwww.

foodwebs.org).

logical networks encompasses three major challenges that
will drive, and take advantage of, emerging quantitative and
computational methods. First, recent insights into the com-
plex structure of food web networks need to be integrated with
modeling the transient, long-term, and evolutionary dy-
namics of diverse nonequilibrium, nonlinear ecosystems.
Second, ecological network research needs to more effec-
tively encompass other interactions such as parasitism, pol-
lination, competition, mutualism, and trait-mediated indirect
effects (Bascompte et al. 2003). Third, approaches for ex-
ploring and constraining the large parameter spaces gener-
ated by high-dimensional models need to be developed. In
general, the synthetic nature of ecological network analysis and
model development will be facilitated by advances in ecoin-
formatics, such as the Semantic Web (see below), that will in-
crease the ability of researchers to access and integrate diverse
types of data.

Applications in conservation biology
and resource management

The rates, scales, kinds, and combinations of [global]
changes occuring now are fundamentally different from
those at any other time in history; we are changing
Earth more rapidly than we are understanding it.
(Vitousek et al. 1997, p. 498)
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Biological diversity is being lost at a record
pace as a result of habitat loss and frag-
mentation, climate change, pollution, in-
troduction of exotic species, and
overharvesting (Vitousek et al. 1997). Ef-
fective policies for preserving global bio-
diversity depend on accurate predictions
of species’ temporal and spatial distribu-
tions. As anthropogenic stresses escalate,
the need for reliable quantitative ap-
proaches in environmental problem solv-
ing is hard to overstate.

In the previous section, we discussed
the need to develop new mathematical
and computational techniques for un-
derstanding complex biological systems.
We now highlight some of the challenges
of applying these techniques to specific
issues in conservation and resource man-
agement. Conservation biology currently
relies on quantitative methods, but there
are many hurdles to solving complex
problems, including estimating past and
predicting future population dynamics,
and optimizing the spatial design of
reserves in a changing environment.
We discuss some of these challenges in the
areas of extinction risk analysis, land-
scape connectivity analysis, and bio-
diversity estimation.

Extinction risk analysis. In the United States and other coun-
tries, the development of a PVA is a legal requirement of any
survival plan for threatened and endangered species. Typical
objectives of PVA include assessing the risk of reaching some
threshold, such as extinction, and projecting population
growth, either under current conditions or those predicted by
proposed management plans (Morris and Doak 2002). There
is growing concern over the use of PVA models for making
conservation decisions, in part because census data for threat-
ened species are often sparse and error prone, causing sub-
stantial difficulties in estimating population trends (Gerber
etal. 1999). A primary challenge in PVA is characterizing and
accounting for uncertainties that result from process noise
(e.g., random variations among individuals or in environ-
mental conditions) and observation error (e.g., the difficulty
of accurate measurements under field conditions).
Including two types of error in time-series models for
fluctuating populations is particularly challenging. First, there
are rarely good estimates for both kinds of error, requiring er-
rors to be estimated along with parameters. Second, analyt-
ical approaches incorporating both kinds of error in fits
of nonlinear time-series models to observed data are scarce
(De Valpine and Hastings 2002). Newer methods using
maximume-likelihood approaches offer a promising avenue
for making PVA predictions with process and observation



uncertainties clearly specified and described. This approach
still needs to be extended to more complex models, particu-
larly those that include spatial structure (Reed et al. 2002), in-
dividual variation (Kendall and Fox 2002), and autocorrelated
environmental variation (as discussed in “Environmental
variability;” above). Finally, current computational approaches
to implement these methods can be prohibitively complex.
Further work is needed to develop algorithms that are as ef-
ficient as possible (Miller 1998).

Spatiotemporal landscape connectivity analysis. Protecting
wildlife populations requires quantifying how changes in
landscape spatial composition, and the arrangement of habi-
tats of differing quality, affect animal movement in frag-
mented landscapes (figure 2; Bélisle et al. 2001). Species are
affected differently by landscape fragmentation because of
their specific range size, dispersal ability, habitat and food re-
quirements, and behavior. Moreover, species’ abilities to move
across a landscape vary depending on the spatial configura-
tion of habitats, the distance separating habitats, and the in-
tervening cover types (D’Eon et al. 2002). To implement

Box 2. Fisheries management

and reserve design.

The closure of much of the groundfish fishery
off the West Coast of the United States in 2004
(www.nwr.noaa.gov/1sustfsh/gdfsh01.htm) is an
indication that new and revolutionary methods
are needed to manage fisheries. Traditional man-
agement is based on extensions (incorporating
much more sophisticated ideas) of the basic
Schaefer model (Schaefer 1957),

dn/dt =rn (1 — n/K) — hn,

of logistically growing stock () harvested at the
rate h. This model is used to determine the max-
imum sustainable yield (Y = K#/4), which is
achieved when the harvest is set at half the
intrinsic rate of growth of the stock (r), which in
turn reduces the stock to half its size at equilib-
rium in the absence of harvesting (K). As the
groundfish example shows, a combination of sci-
entific and political issues makes management
along these lines problematic.

One potential solution is to use marine reserves
that allow similar yields for fisheries (Hastings
and Botsford 1999) but may have the advantages
of sustainability. This has begun to be imple-
mented in areas such as the Channel Islands, off
the coast of southern California (www.cinms.nos.
noaa.gov/marineres/main.html). The design of
successful marine reserves requires substantial
theoretical developments, including models that
incorporate better descriptions of physical influ-
ences, biological interactions, monitoring, and
the economics of fishing.

Imnnnnnnnnnme Articles

conservation goals and maintain populations in fragmented
landscapes, structural connectivity among habitats needs to
be preserved through time. Researchers need to develop
quantitative measures of spatiotemporal landscape connec-
tivity that characterize the degree to which the landscape
impedes or facilitates the movement of organisms.

There are several statistical and modeling challenges to
overcome before this can be achieved, especially within a spa-
tially explicit modeling environment. For instance, connec-
tivity of habitats is dynamic, and fluctuates as a result of
succession and disturbances that modify habitat quality and
resource availability. Graph theory offers considerable promise
in the analysis of landscape connectivity at multiple spatial
and temporal scales (Urban and Keitt 2001). Approaches de-
veloped in other disciplines, such as circuitry and network
optimization in computer science, can provide a quantita-
tive framework for modeling the flux of populations be-
tween habitat patches in different landscape mosaics.
Although existing applications of graph theory to landscape
ecology account for patch size in quantifying landscape
connectivity, an important avenue for future research is to
consider the shapes of patches and their dynamic properties.
Environmental perturbations such overharvesting (box 2),
wildfire (box 3), urban sprawl, and global climate change
operate across a variety of temporal scales, and thus effective

Figure 2. Infrared aerial photograph from a habitat frag-
mentation and corridor experiment at the Savannah
River Site, South Carolina. Experimental patches are
clearings, and are surrounded by pine plantation forest
(shown in red). The length of the corridor is 150 meters.
The experiment has been used to test for corridor and
fragmentation effects on plant and animal movement,
population demography, and diversity (Tewksbury et al.
2002). Photograph courtesy of the USDA Forest Service.
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conservation practices rely on dynamical models that in-
corporate the rate of habitat loss into landscape connectiv-
ity analyses.

Biodiversity extrapolation techniques. Patterns in the spatial
distribution of species are a central concern in ecology, pro-
viding information about the forces that regulate biodiversity,
the design of nature reserves, and the likelihood of species ex-
tinction following climate change or habitat loss. For most
habitats and taxonomic groups, detailed species distribution
maps are unavailable, and researchers have invested consid-
erable effort in developing methods for estimating the total
number of species in particular localities, regions, and biomes
using sparse sample data. Current extrapolation approaches
have many shortcomings, and new computational and sta-
tistical techniques for estimating biodiversity are critically
needed.

Parametric methods, species accumulation curves, and
nonparametric estimators are three tools commonly used to
estimate species richness from samples (Magurran 2004).
Parametric methods estimate the number of species in a
community by fitting sample data to distributional models of
relative abundance. It is difficult to know a priori which dis-
tribution is appropriate for the region and taxonomic group
of interest. Parametric approaches implicitly assume that in-
dividuals are randomly sampled in space or, equivalently,
that the spatial distribution of individuals across a landscape
is random. However, most organisms are spatially aggre-
gated, and parametric extrapolation methods should ac-
count for this heterogeneity. The performance of species
accumulation curves and nonparametric methods, on the
other hand, is not substantially affected by species’ spatial dis-
tributions (Brose et al. 2003b). Species accumulation curves
use an assumed model (e.g., the Michaelis-Menten equa-
tion) to extrapolate an asymptote of total species richness from
data on richness and sample size. Nonparametric estima-
tors, adapted from mark-release—recapture statistics for
estimating the size of animal populations, assume models for
how singletons and doubletons are distributed in the sample
community. Both methods significantly underestimate bio-
diversity for low levels of sampling intensity (Condit et al. 1998,
Brose et al. 2003b) and thus provide only a lower bound on
diversity for highly abundant and diverse taxa, such as in-
vertebrates and microorganisms, that are difficult or impos-
sible to sample extensively.

Answering questions such as “How many species are on
Earth?” and “What is the rate of global biodiversity loss?” will
require the development of creative, robust statistical tech-
niques. Approaches that utilize patterns of beta diversity
(how community composition changes across a landscape)
have already been developed and applied to extrapolate mi-
crobial diversity from the scale of a soil sample, where rich-
ness is quantifiable, to regional scales (Green et al. 2004,
Horner-Devine et al. 2004). Future efforts should account
for uncertainties in community dominance, in species’ spa-
tial distributions, and in sampling intensity. Novel techniques
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Box 3. Landscape ecology and

wildfire management.

The 2003 wildfires in southern California are a sharp
reminder of the importance and complexity of manag-
ing wildfire in fire-prone ecosystems. The fires burned
more than 290,000 hectares of intermixed wildlands
and residential areas and consumed more than 2000
homes. Managing wildfire for human safety, while at
the same time managing for the persistence of fire-
dependent native species and ecosystems, forest
resources, and watershed processes, makes heavy
demands on the theory, quantitative methods, and
informatics tools of landscape ecology and geography
(Brooks et al. 2004). The behavior of individual fire
events and the evolution of fire regimes over time
involve strong interactions among (a) regional climate,
biota, weather, terrain, and fuel conditions; (b) patterns
of roads and human settlement; and (c) emergency
response capabilities.

Wildfire information systems are being implemented at
national (e.g., the USDA Forest Service Wildland Fire
Assessment System; www.fs.fed.us/land/wfas/) and
regional (e.g., the Southern California Wildfire Hazard
Center; www.icess.ucsb.edu/resac/) levels. Integrating
physical, biological, and social models and linking them
to geospatial data is a challenging exercise, both scientif-
ically and in terms of informatics theory and practice.
Improved capabilities need to be developed for real-
time assimilation of remotely sensed data and data
gathered on the ground. Such capabilities are being
developed at the San Diego Supercomputer Center’s
National Partnership for Advanced Computational
Infrastructure, or NPACI, in the Earth System Science
thrust area.

for estimating biodiversity, combined with emerging cyber-
science technologies that enhance access to species distribu-
tion data, will facilitate our understanding of local and global
biodiversity.

Cyberinfrastructure and ecoinformatics

Exciting things are happening in the life sciences. The
big challenges such as cancer, AIDS, and drug discovery
for new viruses require the interplay of vast amounts
of data from many fields that overlap: genomics, pro-
teomics, epidemiology, and so on. Some of this data is
public, some very proprietary to drug companies, and
some very private to a patient. The Semantic Web chal-
lenge of getting interoperability across these fields is
great but has huge potential benefits. (Sir Tim Berners-
Lee, quoted in Frauenfelder 2004)



Ecological research and its application to conservation man-
agement require that researchers acquire existing data from
geographically, technologically, and intellectually disparate re-
sources; integrate that information; model and analyze the in-
formation; and recommend policies such as establishing
ecological reserves (box 2), incorporating wildfire dynamics
into urban planning (figure 3, box 3), and managing invasive
species. For example, understanding the potential impacts of
an invasive species on an ecosystem requires access to diverse
information, including the basic taxonomy and population
dynamics of invasive and extant organisms, the structure
and dynamics of food webs, environmental conditions, and
the outcomes of experimental and observational studies from
related systems and organisms. Developing ecoinformatics and
supporting cyberinfrastructure could greatly enhance re-
searchers’ ability to intelligently retrieve information from di-
verse sources on the Internet, to integrate that information
into models that predict the spread of the species under var-
ious management options, to store these results in databases
for other researchers and managers, and to monitor the im-
pact of the decisions made.

We now present trends in technology that are likely to
transform the scenarios we have just described into reality,
and discuss issues that the ecological community needs to
address to bring this vision to fruition. Pieces of these tech-
nologies are in place already. The emerging tools, technol-
ogies, and infrastructure can advance current approaches to
research and management, and can alter how ecologists look
at our science, opening new windows of opportunity for
research and application.

Cyberinfrastructure. Technological trends in global infor-
mation and computing infrastructure are transforming the
shape of computing and the conduct of science. The ability
to place sensors in the environment allows researchers to
conduct remote sampling at new frequencies and larger spa-
tial and temporal scales. Partly as a result of these sensors, sci-
entists are witnessing an avalanche of physical, chemical,
and biological data similar to the avalanche of DNA, RNA, and
protein sequences faced by molecular biologists. Interpreta-
tion of the large data sets being generated by sensor nets and
associated technologies requires drastically more powerful and
efficient computational capabilities. Fortunately, exponential
gains in networking, storage, and computing capabilities en-
able scientists to compile, manipulate, and analyze data at un-
precedented rates. For example, fast, cheap, local cluster
computing is now possible through off-the-shelf computa-
tional nodes and software, allowing easy construction and
maintenance of supercomputers (box 4). These clusters
facilitate intensive computational activities such as data min-
ing and nonlinear dynamical modeling and simulation.
Advances in data generation and computing technologies
have increased scientists’ understanding of issues including
lake metabolism, the movement of elusive species, landscape-
scale patterns and processes, and the impact of natural dis-
asters such as hurricanes (Estrin et al. 2003). Building on
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Figure 3. Satellite image of fires that spread across south-
ern California, 26 October 2003. This image was cap-
tured by the Moderate Resolution Imaging
Spectroradiometer (MODIS) on the Terra satellite. The
fires, which are marked in bright red, send streamers of
gray-blue smoke into the air. The Terra and Aqua satel-
lites view the entire Earth’s surface every 1 to 2 days, ac-
quiring data in 36 spectral bands. Imagery and data
from MODIS can be rapidly provided to a number of
users, including the USDA Forest Service, to facilitate
wildfire management. In general, these types of informat-
ics tools will improve understanding of global dynamics
and processes occurring on the land, in the oceans, and in
the lower atmosphere. Image courtesy of MODIS Rapid
Response Project at the National Aeronautics and Space
Administration, Goddard Space Flight Center.

those insights and developing a better understanding of
how to sustain ecosystems at multiple scales requires an
integrated, global-scale research cyberinfrastructure con-
sisting of distributed computer, information, observation,
and communication technologies (Atkins et al. 2003).
Examples of cyberinfrastructure span many disciplines
and countries (box 4; Wooley 2004). Within environmen-
tal biology, the National Ecological Observatory Network
(NEON), a continental-scale network of observatories with
state-of-the-art instrumentation for studying the environ-
ment, has been developed in reports by the American
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Institute of Biological Sciences (http://ibrcs.aibs.org/reports)
and the National Academies (NRC 2003). Projects such as
NEON will enable integrative research on the nature and
pace of biological change at local, regional, continental,
and global scales.

Metadata standards. Managing large volumes of complex data
is becoming one of science’s key challenges (Maurer et al.
2000). Metadata, or “data about data,” describe the content,
quality, structure, and other characteristics of a data set. Fed-
eral programs and university researchers are laboring to pro-
duce metadata standards, tools, and online resources to
promote multidisciplinary data sharing (box 4). Scientific
communities in fields such as geography and genomics
adopted metadata standards relatively early on, and automated
metadata tools for these communities quickly followed. For
example, commercial GIS (geographic information system)
packages now include software to simplify preparation of
metadata in accordance with national standards (ArcCatalogue
software is included in the ESRI ArcGIS software package).

Box 4. Examples of cyberinfrastructure, metadata standards, and Semantic

Web development that span many countries and disciplines.

Cyberinfrastructure

Asia Pacific Grid: www.apgrid.org

Beowulf Cluster Computing: www.beowulf.org

Biomedical Informatics Research Network: www.nbirn.net
Geosciences Network: www.geongrid.org

Grid Physics Network: www.griphyn.org

NASA Information Power Grid: www.ipg.nasa.gov

National Ecological Observatory Network: www.neoninc.org
National Virtual Observatory: www.us-vo.org

Network for Earthquake Engineering Simulation: www.nees.org

Pacific Rim Applications and Grid Middleware Assembly: www.pragma-grid.net
Research Councils UK, e-Science Programme: www.research-councils.ac.uk/escience/

Rocks Cluster Distribution: www.rocksclusters.org/Rocks/
TeraGrid: www.teragrid.org

Metadata standards

Ecological Metadata Language: http://knb.ecoinformatics.org/software/eml/

Marine Environmental Data Inventory: http://ioc.unesco.org/medi/

National Biological Information Infrastructure: www.nbii.gov/datainfo/metadata/
National Center for Supercomputing Applications: http://metadata.ncsa.uiuc.edu/
National Oceanographic and Atmospheric Administration: www.csc.noaa.gov/metadata/

US Geological Survey: http://geology.usgs.gov/tools/metadata/

The Semantic Web
DARPA Agent Markup Language: www.daml.org

Most ecologists remain uninformed about and uninterested
in metadata standards. Historically, ecological data have been
collected by individuals or small research groups at small
temporal and spatial scales. Because ecologists do not typi-
cally publish or share research data, good metadata practices
are not the cultural norm (Gross et al. 1995, Michener et al.
1997). Recently, metadata standards have been developed
for ecological data (Ecological Metadata Language, or EML).
Organizations such as the National Center for Ecological
Analysis and Synthesis are developing a network-enabled
database framework that allows individual scientists to cus-
tomize metadata to meet their needs, while also promoting
the use of standards such as the US Ecological Metadata
Standard and the National Biological Information Infra-
structure’s Biological Data Profile (Jones et al. 2001). A broad
and concerted community effort will ensure long-term ac-
ceptance of metadata standards by research ecologists, thereby
facilitating the sharing, archiving, and integration of data
from different disciplines to help scientists understand broad
environmental processes.

The Semantic Web. An increasing
amount of information is available on the
World Wide Web (WWW) in dispersed
databases, Web pages, publications,
images, and other formats. Scientists
already rely on the WWW to support
their research endeavors in ways that in-
clude searching for and distributing pub-
lications, accessing databases, and
ordering supplies (Hendler 2003). Even
though an incredible array of potentially
scientifically useful information resides
in countless WWW pages, the conven-
tions of HTML (hypertext markup lan-
guage) and current search engines are
limited in their ability to take advantage
of such information. Because of the huge
variety of formats and the inability of
current search tools to do more than
look for text with no semantic content in-
dicating the contextual meaning of the
word, efforts are under way to develop
languages and tools for a Semantic Web
that will allow for more sophisticated,
content-based access to data and infor-

Gene Ontology Next Generation Consortium: http://gong.man.ac.uk/

Knowledge Network for Biocomplexity: http://knb.ecoinformatics.org

NASA Semantic Web for Earth and Environmental Terminology: http://sweet.jpl.nasa.gov
National Biological Information Infrastructure: www.nbii.org

Science Environment for Ecological Knowledge: http://seek.ecoinformatics.org

Semantic Prototype in Research Ecoinformatics: http://spire.umbc.edu

US National Cancer Institute Metathesaurus Project: http://ncimeta.nci.nih.gov

Web Ontology Language: www.w3.0rg/TR/owl-features/

Webs on the Web: http://foodwebs.org

World Wide Web Consortium: www.w3.0rg
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mation on the WWW (Berners-Lee et
al. 2001, Hendler 2003, Frauenfelder
2004). Semantic annotation of WWW
content and other Semantic Web tech-
nologies will facilitate the development
and deployment of new WWW-based
databases, ontologies, and intelligent
search agents with greatly enhanced pow-
ers to strategically gather and retrieve
information that is diverse in terms of



both content and format, yet appropriate and useful for ba-
sic and applied tasks. Based on ontologies that generally
specify the types of information within certain domains,
the Semantic Web can assist scientific research goals by pro-
viding a platform for swift, integrated, global access to sci-
entific information, facilitating previously time-consuming
or currently intractable disciplinary and interdisciplinary
syntheses and analyses.

Numerous ontologies and information-technology tools
are being developed for Semantic Web use within a scientific
research context (box 4). Within environmental and inte-
grative biology, there are two major consortia in which nat-
ural and computer scientists are collaborating to develop and
test the Semantic Web and related technologies. The Science
Environment for Ecological Knowledge, or SEEK, project is
developing software to assist how researchers (a) gain global
access to ecological data and information, (b) rapidly locate
and utilize distributed computational services, and (c) use
powerful new methods for capturing, reproducing, and
extending the analysis itself. The Semantic Prototypes in
Research Ecoinformatics, or SPiRE, project is testing
Semantic Web capability for biodiversity and food web
research using the Web portal of the National Biological
Information Infrastructure project in conjunction with the
Webs on the Web, or WoW, project on ecological networks.
The emerging information technologies of the Semantic
Web, if properly developed and widely implemented, have the
potential to transform and augment the scope, effective-
ness, and efficiency of biological research at all levels of
organization.

Facilitating interdisciplinary biosciences research
The examples given show how imaginative approaches at
the interface of ecology, statistics, mathematics, informatics,
and computational science can improve scientists’ under-
standing of complex ecological systems and our approach to
biological conservation and resource management. We have
made significant progress, but further advances will demand
shifting the way that we approach research and education.
Many academic institutions are facilitating interdisciplinary
research and teaching programs to accelerate knowledge in
the biosciences (e.g., Stanford University’s Bio-X program).
Individuals, research institutions, and funding agencies must
invest more resources in developing and sustaining cross-
disciplinary research collaborations to generate more gener-
ally applicable research. Educational institutions need to in-
vest in programs that provide biologists with robust
quantitative and informational skills, and that provide com-
puter scientists, mathematicians, and statisticians with bio-
logical expertise. The combination of mathematical and
computational advances, sophisticated informatics tech-
nologies, and synergistic ties across disciplines may well lead
to this century’s most fundamental advances in ecology and
environmental biology.
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