Diversity and toxicity of *Pseudo-nitzschia* species in Monterey Bay: perspectives from targeted and adaptive sampling

Holly A. Bowers*¹², John P. Ryan*¹, Kendra Hayashi³, April L. Woods², Roman Marin III¹, G. Jason Smith², Katherine A. Hubbard⁴⁵, Gregory J. Doucette⁶, Christina M. Mikulski⁶, Alyssa G. Gellene⁷, Yanwu Zhang¹, Raphael M. Kudela³, David A. Caron⁷, James M. Birch¹, Christopher A. Scholin¹

¹Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA

²Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, California 95039, USA

³Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA

⁴Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, 100 8th Ave SE, Saint Petersburg, Florida 33701, USA

⁵Woods Hole Oceanographic Institute, Woods Hole, MA, 02543, USA

⁶National Centers for Coastal Ocean Science, NOAA/National Ocean Service, 219 Fort Johnson Road, Charleston, South Carolina 29412, USA

⁷Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway Los Angeles, California 90089, USA

*Authors contributed equally to the preparation of this manuscript.
Keywords: *Pseudo-nitzschia*, Monterey Bay, species diversity, harmful algal bloom, domoic acid, Environmental Sample Processor, ARISA

Abstract

Monterey Bay, California experiences near-annual blooms of *Pseudo-nitzschia* that can affect marine animal health and the economy, including impacts to tourism and commercial/recreational fisheries. One species in particular, *P. australis*, has been implicated in the most toxic of events, however other species within the genus can contribute to widespread variability in community structure and associated toxicity across years. Current monitoring methods are limited in their spatial coverage as well as their ability to capture the full suite of species present, thereby hindering understanding of HAB events and limiting predictive accuracy. An integrated deployment of multiple in-situ platforms, some with autonomous adaptive sampling capabilities, occurred during two divergent bloom years in the bay, and uncovered detailed aspects of population and toxicity dynamics. A bloom in 2013 was characterized by spatial differences in *Pseudo-nitzschia* populations, with the low-toxin producer *P. fraudulenta* dominating the inshore community and toxic *P. australis* dominating the offshore community. An exceptionally toxic bloom in 2015 developed as a diverse *Pseudo-nitzschia* community abruptly transitioned into a bloom of highly toxic *P. australis* within the time frame of a week. Increases in cell density and proliferation coincided with strong upwelling of nutrients. High toxicity was driven by silicate limitation of the dense bloom. This temporal shift in species composition mirrored the shift observed further north in the California Current System off Oregon and Washington. The broad scope of sampling and unique platform
capabilities employed during these studies revealed important patterns in bloom formation and persistence for \textit{Pseudo-nitzschia}. Results underscore the benefit of expanded biological observing capabilities and targeted sampling methods to capture more comprehensive spatial and temporal scales for studying and predicting future events.

\textbf{Introduction}

Members of the diatom genus \textit{Pseudo-nitzschia} (Peragallo), comprising several species with known capacity to produce the excitatory neurotoxin domoic acid (DA; reviewed in Trainer et al., 2012; Lelong et al., 2012), are generally considered to have a cosmopolitan distribution (Hasle, 2002). Bloom initiation, persistence and decline are associated with a variety of anthropogenic influences (e.g. eutrophication, global changes in water temperatures, shifts in pH) and natural forcings (e.g. advection, upwelling, stratification, grazing, parasitism; for reviews see Lelong et al., 2012; Trainer et al., 2012). Given the transferability of DA throughout marine food webs (e.g. Lefebvre et al., 2002; Kvitek et al., 2008; Trainer et al., 2012), toxic blooms can threaten human (amnesic shellfish poisoning [ASP]; Perl et al., 1990; Todd et al., 1993; Bates et al., 1989, 1998) and marine mammal and bird (domoic acid poisoning [DAP]; Work et al., 1993; Scholin et al., 2000) health, and severely impact local economies through closures of recreational and commercial shellfish harvesting (e.g. Gallacher et al., 2001; Bill et al., 2006; Smith et al., 2006; Trainer et al., 2007; Brown, 2016). Routine monitoring and management efforts are hampered by challenges associated with sampling patchy
phytoplankton populations and limitations in morphological species identification based
on light microscopy. The study described herein combined high-resolution detection
methodologies with a network of platforms for targeted and adaptive sampling to assess
Pseudo-nitzschia community diversity and toxin dynamics throughout two different
bloom scenarios in Monterey Bay (California, USA).

Nearly every year, Monterey Bay experiences periods of *Pseudo-nitzschia* bloom
activity, although with varying degrees of toxin-associated impacts. For example, during
2013, very high cell abundances did not coincide with high DA concentrations, while in
2015 elevated cell abundances were associated with high DA levels as well as a period of
marine animal strandings and mortalities. The 2015 event was part of an unprecedented
bloom of *P. australis* that stretched from Santa Barbara, California to the Aleutian
Islands, Alaska and coincided with a regional physical anomaly, the northeast Pacific
“warm blob” (McCabe et al., 2016). Localized anomalous chemical conditions leading to
silicate depletion contributed to exceptionally high DA production in Monterey Bay *P.
australis* populations (Ryan et al., 2017), while blooms north of California were
associated with persistent anomalously warm temperatures that expanded the geographic
range of toxic *P. australis* (McCabe et al., 2016). The California Dungeness crab fishery
was closed for months, and estimated losses were more than $48 million (Brown, 2016).

The great inter-annual variability in *Pseudo-nitzschia* ecology in Monterey Bay
has been revealed by long-term weekly monitoring from wharf sampling in the northern
and southern parts of the bay. This effort has traditionally consisted of whole cell and
sandwich hybridization probes for *P. australis* and *P. multiseries/P. pseudodelicatissima*
(Miller and Scholin, 1998, 2000), coupled with DA measurements, on samples from the
northern part of the bay (SCW) and light microscopy counts of two *Pseudo-nitzschia* size classes (‘seriata’ sized cells; valve width ≥ 3 μm and ‘delicatissima’ sized cells; valve width < 3 μm [Hasle, 1965; Hasle and Syvertsen, 1997]) from the south part of the bay (MW). This sampling framework has uncovered long-term seasonal patterns in *Pseudo-nitzschia* bloom activity related to environmental factors (e.g. Lane et al., 2009); however, this approach lacks sufficient taxonomic resolution to differentiate the full diversity of toxic species occurring in the bay. Furthermore, the methodologies used exclude species once considered non-toxic that have been shown to produce DA and form blooms (e.g. Adams et al., 2000, Orsini et al., 2002, Trainer et al., 2009, Trick et al., 2010), and other species described more recently (e.g. Lundholm et al., 2012, Lim et al., 2013; Li et al., 2017).

The primary focus for studying and monitoring *Pseudo-nitzschia* in Monterey Bay has traditionally been on *P. australis* and *P. multiseries*, stemming from the early identification of *P. australis* from toxic events and the presence of *P. multiseries* in bloom assemblages (e.g. Work et al., 1993, Horner et al., 1997, Scholin et al., 2000), and the implication of the latter species in the first documented case of ASP, which occurred in Prince Edward Island, Canada (Bates et al., 1989; Perl et al., 1990; Rao et al., 1998).

Early records indicate that *Pseudo-nitzschia* species, and specifically *P. australis*, have been a part of the phytoplankton assemblage within the bay for at least several decades. Bolin and Abbott (1963) reported that the genus ‘*Nitzschia*’ (originally included *Pseudo-nitzschia*) was the fourth largest group counted over a six-year study period. Scanning electron microscopy of siliceous frustule cell walls and culture-based toxicity studies have been used to confirm the presence of *P. australis* in numerous historical events in
Monterey Bay (e.g. Hasle et al., 1972, Buck et al., 1992, Garrison et al., 1992, Villac et al., 1993). While *P. australis* has been implicated as the main DA producer in the region, other toxic and non-toxic *Pseudo-nitzschia* species have been identified over the past several decades (e.g. Bigelow and Leslie, 1930; Cupp, 1943; Villac et al., 1993; Walz et al., 1994; Horner et al., 1997; Bates et al., 1998; Lundholm et al., 2006; Lelong et al., 2012 [review]). It has remained unclear how these other species fit into *Pseudo-nitzschia* assemblages within Monterey Bay. The ability to fully understand community structure and succession through bloom initiation, persistence and decline is thereby severely restricted, which then affects downstream modeling and management efforts. It is highly plausible that forecasting models (Anderson et al., 2009, 2011; Lane et al., 2009) have been impacted by the current approach, leading to discrepancies such as overestimation of DA levels in 2013 (C. Anderson, R. Kudela; pers. comm.).

Advancing predictive skills for this important HAB-forming genus requires a more complete description of community composition and DA production, and better sampling of populations. Toward this goal, this study applied mobile and stationary platforms coupled with high-resolution methods for cell and toxin detection. Further, the mobile platforms employed autonomously targeted sampling of bloom patches. These capabilities allowed us to uncover *Pseudo-nitzschia* population structures on a sizeable spatial and concentrated short-term (~1 month) temporal scale during contrasting bloom years in Monterey Bay. This approach yielded new insights into regional bloom dynamics, which can be used to help further understanding of inter-annual variation in *Pseudo-nitzschia* ecology and to advance prediction.
Materials and Methods

Sample Collection

Wharf sampling. As part of an ongoing long-term monitoring program, samples were collected weekly on the same day from the Santa Cruz (SCW; 36°57.48’ N, 122°01.02’ W) and Monterey Municipal Wharves (MW; 36°36.22’ N, 121°53.36’ W) prior to and throughout the study period (Figure 1). Whole water samples from SCW were collected by integration of water samples collected from 3 discrete depths (0, 1.5, and 3 m) with a FieldMaster 1.75 l basic water bottle (Wildco, Yulee, Florida, USA). Integrated whole water samples (5, 4, 3, 2, and 1 m) from MW were collected using a 2.2 l Van Dorn water sampler (Wildco, Yulee, Florida, USA). Net tows from both locations were obtained using a 20 cm diameter, 20 µm mesh net to concentrate surface waters to a depth of 5 m. Leading up to the start of the 2015 study, surface samples were collected with increased frequency at both wharves. All samples were maintained at ambient temperature and processed within two hours of arriving at the laboratory.

Ship sampling. Monterey Bay was sampled during two different time periods (September 10th to October 7th, 2013 and May 11th to June 5th, 2015) on multiple days via the R/V Rachel Carson and the R/V John Martin as part of a five-year Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) study. Chlorophyll fluorescence was measured with CTD profilers (SeaBird Electronics, Bellevue, Washington, USA) to identify and sample from within and outside chlorophyll maximums using Niskin bottles (10 l – R/V
Rachel Carson, 5 l – R/V John Martin) mounted on a rosette. Samples were processed onboard as outlined below, with the exception of water used for SHA and ARISA, which was stored protected from direct light and processed at the end of the day back in the laboratory.

Dorado AUV sampling. A Dorado-class AUV (Bellingham et al., 2000) was deployed from the R/V Rachel Carson to perform targeted sampling within chlorophyll maximums based on measurements obtained by an onboard fluorometer and autonomous peak-capture algorithm (Zhang et al., 2010; 2012). A sawtooth profiling trajectory mapped vertical water column structure and a water sampling system collected ten 1.8 l ‘gulper’ samples per mission (described in Ryan et al., 2010). During the 2013 deployment, there were only nine samples obtained due to malfunction in one sampler. Samples were processed onboard the ship as outlined below, with the exception of water used for ARISA, which was processed in the laboratory at the end of the day.

ESP sampling. Details of the Environmental Sample Processor (ESP) can be found in Roman et al. (2007) and Scholin et al. (2009). The moored instruments were equipped with DNA and protein arrays for near real-time detection of target organisms and associated toxins. For this study, one ESP was deployed in the north part of the bay (36.905°N, 121.936°W) at 7 m depth, and one was deployed in the south part of the bay (36.639°N, 121.879°W) at 5 m depth, from September 10th through October 21st, 2013 and May 10th through June 5th, 2015 (Figure 1). Both instruments were programmed to collect daily samples, unless a decrease in water temperature (a proxy for upwelling...
conditions) was detected. Detection of upwelling conditions triggered an unscheduled sampling event, either autonomously by the ESP or through operator intervention. All analyses were performed in situ, as described below.

Sample Processing

FISH. Fluorescence In Situ Hybridization (FISH) was performed on depth-integrated water samples from SCW. The detailed procedure for *P. australis* (auD1), *P. multiseries* (muD1), and *P. multiseries/P. pseudodelicatissima* (muD2) probes is outlined in Miller and Scholin (1996, 1998). Cells were viewed using a Zeiss AxioImager A1 microscope fitted with a fluorescein bandpass filter set (excitation 460-500 nm; emission 510-560 nm) and a 120 W light source (EXFO X-Cite 120). Images were acquired with a Zeiss AxioCam HRc camera.

Phytoplankton counts. Cell counts for *Pseudo-nitzschia* were performed on net tow samples collected from MW. After transport to the laboratory, 0.1 ml of 50% w/v gluteraldehyde was added to 10 ml of net tow material. A Nannoplankton Counting Chamber (PhycoTech, St. Joseph, Michigan, USA) was used to count cells from a 66 µl sample aliquot on an Alexis Scientific microscope through a 10X objective. *Pseudo-nitzschia* cells were classified into two size categories (Hasle, 1965, Hasle & Syvertsen, 1997): the larger ‘seriata’ sized cells (valve width > 3 µm) and the smaller ‘delicatissima’ sized cells (valve width < 3 µm). Total phytoplankton community counting, including the two *Pseudo-nitzschia* size classes, was carried out on gulper samples obtained by the
Dorado AUV. Samples were preserved in 1% acidic Lugol’s upon retrieval of the Dorado after a transect mission (approximately 2-4 hours). Samples were stored in amber polypropylene bottles (Thermo Scientific, Wilmington, DE, USA) at 4 °C until analysis. A volume of 25 ml was concentrated down to 2.5 ml via gentle centrifugation (1700 g, 15 min), and a volume of 1 ml of material was counted on a Sedgewick Rafter cell as described above.

Particulate Domoic Acid. Particulate matter from 50-250 mL of whole water was concentrated onto a GF/F filter (Whatman, GE Healthcare BioSciences, Pittsburgh, PA, USA). Filters were placed into cryovials and stored at -80 °C until analysis, while shipboard samples were first placed in liquid nitrogen, then subsequently stored at -80 °C. Filters were extracted in 3 ml of 10% methanol (prepared in ultrapure water) for particulate DA analysis. All extracts were sonicated for 30 s at a level of approximately 10 W (RMS), 0.2 µm filtered (Millex, Millipore, Billerica, MA, USA), and cleaned following a solid phase extraction procedure (Wang et al., 2007). Cleaned extracts were stored at 4 °C until analysis. Domoic acid analysis was conducted on an Agilent 6130 LC-MS system (Agilent Technologies, Santa Clara, CA, USA) with an Agilent Zorbax Rapid Resolution column. The toxin was identified by the presence of a 312 amu peak in positive Scanning Ion Mode (SIM) with concentration determined by signal integration of the peak area and an 8-point standard curve using a certified DA standard (NRC CRM DA-f).
ARISA. Automated Ribosomal Intergenic Spacer Analysis, a method to determine relative
abundances based on a ribosomal target, was performed on samples collected from
Dorado gulpers and ship casts. 200-500 ml were low-vacuum (5 mmHg) filtered onto 25
mm diameter, 0.65 μm pore size Durapore® membrane filters (Millipore, Cork, Ireland).
Filters were transferred to 2 ml polypropylene cryovials (Nalgene Nunc International,
Rochester, NY, USA) with sample side facing inward, snap frozen, and archived in liquid
nitrogen or at -80 °C. Environmental DNA samples were prepared for ARISA as outlined
in Hubbard et al. (2014). Briefly, genomic DNA was extracted using the DNeasy Plant
Mini Kit (Qiagen Inc., Valencia, CA, USA) and amplified and prepared for ARISA using
the Pseudo-nitzschia-specific ITS1 primer set PnallF (5’-TCT TCA TTG TGA ATC
TGA-3’) and Pnall R (5’-CTT TAG GTC ATT TGG TT-3’) (Hubbard et al., 2008).
Purification of PCR products for ARISA was conducted using MultiScreen- PCR96 filter
plates (EDM Millipore, Darmstadt, Germany), and 1 ng of product was analyzed on an
ABI 3730 XL using a LIZ600 size standard. Electropherogram analysis with DAx
software (Van Mierlo Software Consultancy, Eindhoven, Netherlands) used published
peak calling criteria and US West Coast species assignments for peaks based on amplicon
length (Hubbard et al., 2008, 2014; Smith et al., 2017).

ESP DNA and DA arrays. The preparation of DNA and DA arrays, and protocols
conducted onboard the ESP, are outlined in detail elsewhere (Doucette et al., 2009;
Greenfield 2006, 2008). For the 2013 deployment, probes for P. australis (auD1), P.
multiseries (muD1), and P. multiseries/P. pseudodelicatissima (muD2) were included on
DNA arrays (Scholin et al., 1999). For the 2015 deployment, additional probes were
added to the arrays (Bowers et al., 2017): *P. arenysensis* (ary1), *P. fraudulenta* (frD2), *P. pungens* (pung1) and an alternative probe for *P. multiseries* (muD3). Details for preparation of standard curves for determining cell abundances are outlined in Greenfield et al. (2008) and Bowers et al. (2017).

Cultures. Multiple ‘seriata’ and ‘delicatissima’ size *Pseudo-nitzschia* chains were isolated from ship casts, gulper samples, and net tows using separate, sterile disposable pipet tips under a dissecting microscope (SZH10, Olympus, Japan) at 10x magnification. Chains were washed two to three times with medium (0.2 µm-filtered f/2 medium [Guillard and Ryther 1962; Guillard 1975] made with Monterey Bay water amended with 106 µM NaSiO₃) and transferred into individual wells of a 12-well plate (Costar) containing approximately 0.5 ml of sterilized medium. The plates were incubated at 15 °C under a 13:11 h light:dark photoperiod. Successfully isolated cultures were transferred to 25 ml borosilicate glass culture tubes containing fresh medium. When cells reached a dense mid-exponential phase, DNA was extracted from a cell pellet and the large ribosomal subunit was sequenced as described by Bowers et al. (2016). In order to determine cellular particulate DA (pDA), representative species in mid-exponential phase were inoculated into fresh medium in triplicate in a step-wise manner to achieve a final volume of 1 l. Before harvest, cultures were inspected for clumping and health of cells. Two 50 ml aliquots of each culture replicate were low-vacuum (5 mm Hg) filtered onto 25 mm diameter, 0.65 µm pore size Durapore® membrane filters (Millipore). Filters were transferred to 2 ml polypropylene cryovials (Nalgene Nunc International, Rochester, NY, USA), snap frozen in liquid nitrogen and archived at -80 °C. An aliquot from each flask
was preserved with 1% acidic Lugol’s in scintillation vials and stored protected from
light until cell counts were performed. For DA analysis, manufacturer’s protocol supplied
with the Domoic Acid Test Kit (Mercury Science, Raleigh, NC, USA) was followed.
Samples were prepared by adding 1 ml of DI water to cryovials containing filters and
sonicating 3 x 10 sec at 30% power on ice (Heat Systems, Farmingdale, NY, USA). Cell
counts on replicates were performed using a 1 ml Sedgwick Rafter counting chamber
(Pyser SGI Ltd., Kent, UK), with a minimum of three rows and 250 total cells counted.

Benchtop Sandwich Hybridization Assays. Sandwich hybridization was performed on
samples collected from boat casts and the wharf sites. From whole water, multiple 500 ml
volumes were low-vacuum (5 mm Hg) filtered onto 25 mm diameter, 0.65 µm pore size
Durapore® membrane filters (Millipore). Filters were transferred to a 2 ml polypropylene
cryovial (Nalgene Nunc International, Rochester, NY, USA) with sample side facing
inward, snap frozen and archived in liquid nitrogen for downstream sandwich
hybridization assays. Details for preparing and running SHA plates are outlined in
Harvey (2014) and elsewhere (Scholin et al., 1999; Goffredi et al., 2006; Haywood et al.,
2007; Marin and Scholin, 2010). Preparation of standard curves for estimating cell
abundances is also described elsewhere (Greenfield et al., 2008, Bowers et al., 2017).
Sandwich hybridization plates for 2013 samples were prepared with a combination of the
following probes: *P. australis* (auD1), *P. fraudulenta* (frD2), *P. multiseries*/*P.
pseudodelicatissima* (muD2) and *P. pungens* (pung1) [Scholin et al., 1999, Bowers et al.,
2017]. Sandwich hybridization plates for 2015 samples were prepared with a combination
of the following probes: *P. arenysensis* (ary1), *P. australis* (auD1), *P. fraudulenta* (frD2),
Results

Shore Station Monitoring

Weekly same-day samples from the wharves revealed differences in *Pseudo-nitzschia* abundances and species composition between 2013 and 2015. A key abundance metric is the *Pseudo-nitzschia* bloom threshold used in monitoring programs, 5×10^4 cells l$^{-1}$ (Andersen, 1996). Enumeration of *Pseudo-nitzschia* via microscopy for MW samples (southern bay, Figure 1) divided populations into the ‘seriata’ and the ‘delicatissima’ size classes, ‘seriata’ being the larger size class containing species with the highest cellular toxin quotas, including *P. australis* and *P. multiseries*. ‘Seriata’ size class counts in 2013 were above the bloom threshold for 23 weeks and ‘delicatissima’ size class counts were above this threshold for 11 weeks (Figure 2a). In contrast, 2015 ‘seriata’ size class counts exceeded the bloom threshold for 12 weeks, while ‘delicatissima’ size class counts remained one to two orders of magnitude below the threshold throughout the year (Figure 2b). Overall, combined counts were 4.6 times higher in 2013 than 2015.

Although *Pseudo-nitzschia* abundances were greater overall in 2013, indicating greater potential for a HAB, a toxic bloom in Monterey Bay instead occurred in 2015.

Species composition was different between the two years, with whole cell hybridization...
results from SCW (northern bay, Figure 1) exhibiting a combined average abundance of 3.30 x 10^4 cells l\(^{-1}\) for *P. australis*, *P. multiseries* and *P. pseudodelicatissima* in 2015, which was more than two orders of magnitude higher than the average of 1.90 x 10^2 cells l\(^{-1}\) in 2013 (Figure 2c,d). Note, although combined whole cell hybridization data for all species are shown in Figure 2c and 2d, values from the muD2 probe (*P. multiseries*, *P. pseudodelicatissima*) were negligible and contributed to 2015 data only on the following dates: April 8 [2.55 x 10^4 cells l\(^{-1}\)], April 15 [2.73 x 10^4 cells l\(^{-1}\)], April 22 [1.03 x 10^5 cells l\(^{-1}\)], April 29 [4.85 x 10^3 cells l\(^{-1}\)] and May 6 [1.65 x 10^3 cells l\(^{-1}\)].

Consistent with greater abundance of toxigenic species in 2015, pDA was detected more frequently (23 weeks in 2015; 2 weeks in 2013) and showed higher concentrations (10 to 6630 ng l\(^{-1}\) in 2015; < 20 ng l\(^{-1}\) in 2013). The two highest pDA measurements in 2015 coincided with the two highest cell abundances (Figure 2d).

While the probe results represented combined signal from different species, *P. multiseries* was only detected in negligible concentrations as outlined above. This indicated dominance of *P. australis* in this bloom, as supported by observations from moored ESPs and AUV targeted sampling described below.

Targeted and Adaptive Sampling – pDA and Pseudo-nitzschia species throughout the bay

Broader spatial resolution of sampling during the approximate one-month deployment windows reflected the low (2013) and high (2015) pDA values at SCW. In 2013, shipboard bottle casts (surface and DCM [deep chlorophyll maximum]; n=104), Dorado AUV gulper samples (12 transects; n=85) and in situ measurements onboard two
ESP (n=29) revealed zero to trace amounts of pDA within the bay, but identified a toxic
(up to 10^3 ng l$^{-1}$) population concentrated offshore (Figure 3a). Culturing efforts (n=500 isolates) and SHA performed on a subset of bottle cast samples (n=11; temporal [seven dates] and spatial [four sites]) confirmed that *P. fraudulenta* was the dominant species within the bay, as it was detected in ten of eleven samples (2.06×10^4 to 9.15×10^5 cells l$^{-1}$), while the remaining probes (*P. australis, P. multiseries/P. pseudodelicatissima* and *P. pungens*) were negative or less than 5000 cells l$^{-1}$ (Table 1). Probe results for *P. australis, P. multiseries* and *P. multiseries/P. pseudodelicatissima* on both ESPs were all negative. Cell abundances of the *Pseudo-nitzschia* ‘seriata’ size class (which includes *P. fraudulenta*) based on microscopy counts at MW during this same time frame ranged from 1.51×10^4 to 4.50×10^5 cells l$^{-1}$ (Figure 2c).

In stark contrast, samples acquired in 2015 via shipboard bottle casts (surface and DCM; n=151), Dorado AUV gulper samples (2 transects; n=29), and in situ measurements onboard two ESPs (n=42) demonstrated that pDA within the bay ranged from 10^2 to 10^4 ng l$^{-1}$ and was consistently higher in the southern sampling locations (Figures 3 and 4a). The time series provided by the two ESPs documented an average pDA concentration three times higher at ESP south, while the average chlorophyll concentration was fifty percent higher at ESP north (Table 2). Culturing efforts (n=300 isolates) confirmed that *P. australis* was the dominant species present. Probe results from both ESPs supported this finding and also revealed a background population of *P. fraudulenta* (Figure 4a). The average *P. australis* cell abundance was higher at ESP south compared to ESP north (Table 2; 6.30×10^5 cells l$^{-1}$ versus 3.90×10^5 cells l$^{-1}$), while the average *P. fraudulenta* cell concentration was approximately the same at both ESP.
locations (Table 2; Figure 4a). All other species (*P. arenysensis*, *P. multiseries*, *P. multiseris*/P. *pseudodelicatissima* and *P. pungens*) were at or below the limit of detection of the arrays (Greenfield et al., 2008, Bowers et al., 2017). Light transmission, temperature, and salinity were comparable at the two ESP locations (Table 2). Moored WireWalker profilers deployed at the two locations revealed that deployment of the ESPs occurred during a strong upwelling event, when HAB populations were most abundant in the mixed layer (Figure 4b). With subsequent relaxation of upwelling, populations descended into a concentrated subsurface layer in the thermocline / nutricline (Figure 4b,c). A primary distinction between the two sites was that the mixed layer remained warmer and deeper at ESP south, and sampling was generally occurring above the pronounced DCM (Figure 4c).

AUV mapping and sampling of pDA and Pseudo-nitzschia

On September 16, 2013, the Dorado AUV was deployed to map environmental conditions and phytoplankton distributions, and to autonomously target sampling within chlorophyll maximums along a section extending from outside Monterey Bay onto the northern shelf in the bay, ending at the northern ESP (Figure 5). This survey transected a cold water filament resulting from upwelling (Figure 5a). Onboard measurements of water column structure coupled with downstream analyses revealed two distinct populations. The offshore phytoplankton community was dominated by *Pseudo-nitzschia*, which consisted primarily of ‘seriata’ size class cells (Figure 5b) and was marked by higher chlorophyll fluorescence and pDA (Figure 5c). Higher optical backscatter (Figure
5d) and lower *Pseudo-nitzschia* abundances were observed in the inshore population (Figure 5b). ARISA results indicated a shift in dominance from *P. australis/P. seriata* (150 base pair [bp] peak) offshore to *P. fraudulenta* (203 bp) inshore (Figure 5e), the latter result supporting observations from SHA and culturing as outlined above. Other species detected (in both populations) were *P. cuspidata* (233 bp), *P. heimii* (195 bp), *P. sabit* (138 bp) and an unknown *Pseudo-nitzschia* sp. (152 bp).

On May 28, 2015, the Dorado AUV was deployed along a zigzag transect across the southern shelf in Monterey Bay (Figure 6a) in response to the higher pDA and *P. australis* concentrations that were being reported in real-time by the southern ESP. The phytoplankton community was comprised predominately of *Pseudo-nitzschia*, which in turn was dominated across all samples by ‘seriata’ size class cells (Figure 6b). High pDA persisted in a deep subsurface chlorophyll layer (Figure 6c) and ranged over an order of magnitude independent of *Pseudo-nitzschia* abundance ($2.63 \times 10^2 – 2.10 \times 10^3$ pDA cell$^{-1}$). Backscatter was uniform throughout this layer (Figure 6d), consistent with homogeneity of the populations in the layer. ARISA results demonstrated that the *Pseudo-nitzschia* community was dominated by *P. australis/P. seriata*, with *P. multiseries* and an unknown putative *Pseudo-nitzschia* sp. (147-148 bp) comprising a very small part of the assemblage (Figure 6e).

Shifts in species and toxicity during the 2015 bloom

Ninety-seven *Pseudo-nitzschia* strains were isolated from January through April 2015 prior to initiation of the bloom period (defined as April 29th when *P. australis*...
abundances at SCW first exceeded 5×10^4 cells l$^{-1}$) and were assigned to the following species based on sequencing of the LSU locus: *P. australis* (n=19), *P. delicatissima ‘c’* (n=1), *P. fraudulenta* (n=13), *P. multiseries* (n=34), *P. pungens* (n=29), and *P. seriata* (n=1). From April 29$^{\text{th}}$ to July 7$^{\text{th}}$, two hundred twenty-seven strains were established and assigned to the following species based on sequencing of the LSU locus: *P. australis* (n=207), *P. delicatissima ‘a’* (n=3), *P. fraudulenta* (n=2), *P. multiseries* (n=3), and *P. seriata* (n=12). Subsets of isolates from both time periods were used to determine pDA cell$^{-1}$ (Table 3). Isolates of *P. australis* consistently exhibited the highest cellular toxin content during both pre-bloom and bloom periods, followed by *P. seriata* and *P. pungens*, which were present only during the pre-bloom period.

A shift in species abundance spanning the beginning of the bloom period was captured in two data sets. First, benchtop sandwich hybridization assays on shipboard bottle cast samples (surface and DCM) from ten sites demonstrated the shift in abundance for three species: *P. multiseries/P. pseudodelicatissima, P. australis*, and *P. fraudulenta* (Figure 7a, b). Second, whole cell hybridization probes on weekly samples collected at the SCW site revealed an abrupt shift from *P. multiseries / P. pseudodelicatissima* to *P. australis* between April 22, 2015 and April 29, 2015, with pDA values trending with *P. australis* concentrations (Figure 7c). Although the muD2 probe detects *P. pseudodelicatissima* (Miller and Scholin, 1996; in particular *P. hasleana* within this species complex [Bowers et al., 2017]), the labeled cells in this study belonged to the larger ‘seriata’ size class and were therefore assigned as *P. multiseries*.

Discussion
Efforts to understand the ecological dynamics of *Pseudo-nitzschia* blooms have been hampered by a lack of species resolution within existing observational records. While more than thirteen species (of forty-nine described globally to date) have been documented within Monterey Bay (Bates et al., 1998; Bigelow and Leslie, 1930; Cupp 1943; Horner et al., 1997; Lelong et al., 2012 [review]; Lundholm et al., 2006; Villac et al., 1993; Walz et al., 1994; Trainer et al., 2000; this study), detection methodologies and monitoring efforts have focused primarily on *P. australis* and *P. multiseries*, given historical events (e.g. Bates et al., 1989; Scholin et al., 2000; McCabe et al., 2016). Intra-species variability in per cell toxin quotas for these and other documented domoic acid producers (Trainer et al., 2012; Lelong et al., 2012), ongoing descriptions of new toxic and non-toxic species (e.g. Lim et al., 2012; 2013; Lundholm et al., 2012; Harðardóttir et al., 2015; Percopo et al., 2016; Teng et al., 2014; 2016), and documented shifts in global distributions (e.g. Jester et al., 2009; Lundholm et al., 2010; Lelong et al., 2012) and bloom events (e.g. Schnetzer et al., 2007; Trainer et al., 2009; Du et al., 2016; McCabe et al., 2016) all support the need to address species diversity within the complexities of bloom initiation, persistence, and decline (Thorel et al., 2017).

A multidisciplinary approach combining traditional and emergent detection methodologies, with an array of mobile and stationary platforms capable of in situ adaptive sampling, can enhance understanding of bloom dynamics with respect to intensity, spatial scale, duration, toxicity, and species composition. To that end, this study utilized strategic deployment of platforms and high-resolution detection capabilities to uncover several interesting patterns in potential species relationships across small-scale
spatial and temporal scales within Monterey Bay during two very different *Pseudo-nitzschia* bloom events. While both the 2013 and 2015 bloom periods were dominated by the larger ‘seriata’ size class of *Pseudo-nitzschia* cells, analyses documented blooms dominated by low DA-producing *P. fraudulenta* and highly toxic *P. australis*, respectively. With respect to variability in overall species composition and toxin distribution between the two years, the study design revealed unique spatial (2013) and temporal (2015) patterns.

During the 2013 study period, the bay was persistently dominated by low toxin producing *P. fraudulenta*, while an offshore patch was dominated by more toxic *P. australis*. These two unique populations, revealed by AUV-targeted sampling and high-resolution genetic methods, were located within just a few kilometers of each other and were defined by differences in species diversity, cell abundance, and toxicity. A cold upwelling filament that existed as part of an offshore eddy separated the two populations. It is plausible that such offshore bloom populations are a source for delivery of cells into Monterey Bay, as described for the Pacific Northwest coast (Trainer et al., 2009). Blooms of *P. fraudulenta* have not been documented in Monterey Bay, although this species has been identified routinely in samples (e.g. Buck et al., 1992, Cangelosi et al., 1997, Miller and Scholin, 1998; Scholin et al., 1999) and was potentially part of historically described *Nitzschia* assemblages (e.g. Bolin and Abbott, 1963). Low toxicity has been reported for isolates of *P. fraudulenta* in select locations (this study, Rhodes et al., 1998, Wells et al., 2005, Thessen et al., 2009), and thus far documented blooms have not been toxic (e.g. Rines et al., 2002, Gárate-Lizárraga et al., 2007). Isolates obtained during this study were at the low end of cellular DA quotas (< 1/1000 of *P. australis*).
During the 2015 study period, samples from early spring exhibited diversity in *Pseudo-nitzschia* species; however, in late spring there was an abrupt shift to a bloom dominated by *P. australis*. This bloom was part of an unprecedented west coast-wide toxic event (McCabe et al., 2016) coincident with the persistent northeast Pacific warm anomaly (Bond et al., 2015; Di Lorenzo and Mantua, 2016). McCabe et al. (2016) identified the warm anomaly as a key factor in the 2015 HAB in the northern California Current System, where unusually warm water was linked to northward range expansion of *P. australis*. This species is a common inhabitant of Monterey Bay, therefore range expansion was not a local factor. Rather, high biomass was driven by a strong spring upwelling transition, followed by intermittent upwelling that periodically rejuvenated HAB populations that were retained within Monterey Bay (Ryan et al., 2017). High toxicity was driven by anomalous background nutrient ratios, specifically exceptionally low ratios of silicate to nitrate. Interestingly, Thorel et al. (2017) documented a recent non-toxic bloom of *P. delicatissima* associated with a low ratio of silicate to nitrate in the Bay of Seine (France), despite the occurrence of *P. australis* in that region. During the 2015 Monterey Bay toxic event, silicate exhaustion, coincident with available nitrate, was observed in association with subsurface HAB layers. Accumulations of high DA concentrations linked to silicate limitation are in agreement with previous laboratory and field studies (Bates et al., 1991; Pan et al., 1996a; 1996b; Anderson et al., 2006; Schnetzer et al., 2007). It is interesting to note that the anomalous environment in Monterey Bay selected for *P. australis* and not one of the other four DA-producing species present prior to the bloom, in particular *P. multiseries*, which had exceeded bloom threshold concentrations at SCW. In recent years *P. multiseries* has been a rare
component of the phytoplankton assemblage in Monterey Bay (K. Hayashi and G.J. Smith, unpubl. data), mirroring the overall global decline in this species (Lelong et al., 2012).

Shifts in *Pseudo-nitzschia* species composition and abundance leading into the 2015 HAB event in Monterey Bay were consistent with observations made further north off Oregon and Washington coasts. In Monterey Bay, *P. australis* transitioned from a minor to a prominent component of the assemblage during the latter part of April (10^5 cells l$^{-1}$ range), consistent with an increase in the number of *P. australis* isolates established prior to (20%) and during the bloom event (91%). Samples from Newport, OR showed that *P. australis* did not dominate the *Pseudo-nitzschia* community (35%) in early to mid-April (McCabe et al., 2016). Twice monthly phytoplankton counts along the Newport Hydrographic transect captured a transition in mid-May from ‘medium’ sized *Pseudo-nitzschia* cells to the ‘wide’ cell size group (which includes *P. australis*; Du et al., 2016). The first detection of DA in razor clams near Newport was on April 21st (Du et al., 2016). Coincidently, on April 29th, DA concentrations in mussels off of Santa Cruz (CA) first exceeded the regulatory limit (McCabe et al., 2016). *P. australis* was also a relatively minor constituent of the *Pseudo-nitzschia* community (22%) in samples from Kalaloch, WA collected early to mid-April (McCabe et al., 2016). Beginning in May this species comprised over 90% of the total *Pseudo-nitzschia* assemblage (10^5 cells l$^{-1}$ range) off Long and Kalaloch beaches (McCabe et al., 2016). Taken together, these findings suggest that regional phytoplankton dynamics were connected through larger scale processes along the entire coast. The shift to *P. australis* happened nearly simultaneously over the entire region, coinciding with the spring upwelling transition that supplied
nutrients to the bloom and temporarily eliminated warm anomalies throughout coastal
waters of the entire California Current System by May 2015 (Gentemann et al., 2017).

The two ESPs deployed in 2015 provided a time-series of *Pseudo-nitzschia* cell
abundances and DA levels within areas of Monterey Bay that routinely exhibit enhanced
chlorophyll concentrations (as determined by long-term remote sensing data, Ryan et al.,
2014) relative to the rest of the bay. Both areas serve as retention zones, with periodic
nutrient supplies that rejuvenate bloom populations (Ryan et al., 2008; 2009; 2011;
2014). The southern ESP recorded consistently greater concentrations of *P. australis*
(2X) and pDA (3X) compared to the northern ESP, emphasizing that this secondary and
smaller region of high average chlorophyll concentrations is an important location for
monitoring *Pseudo-nitzschia* bloom events. The water column profiling next to each ESP
demonstrated that sampling was frequently not within the chlorophyll maximum, which
motivated targeted sampling of this feature by the AUV. The high-resolution mapping
and targeted samples from the Dorado AUV revealed that the chlorophyll maximum
extended across the entire southern shelf, and that it was almost completely dominated by
P. australis. Further, AUV sampling targeted the most dense bloom patches and revealed
maximum cell concentrations an order of magnitude greater than maximum cell
concentrations from nearby MW sampling. These densest bloom patches are more
representative of potential HAB impact. Particulate DA concentrations varied an order of
magnitude across a distance of several kilometers and were not simply related to *Pseudo-
nitzschia* abundance. This latter observation supports the need for high-resolution
mapping and sampling to understand potential drivers of toxicity.
Results from consistent weekly sampling raised additional questions related to *Pseudo-nitzschia* bloom ecology. Cell counts at the MW site revealed a higher average correlation coefficient between the two size classes in 2013 (0.87) versus 2015 (0.51).

Were the species comprising the ‘delicatissima’ size class significantly different in the two blooms? Do interspecies interactions influence the trajectory of a bloom? Future work using ARISA and SEM on archived samples from both years will aim to uncover how *P. fraudulenta* (2013) and *P. australis* (2015) levels fluctuated and the similarities/differences between the associated ‘delicatissima’ populations throughout the year. Such details of species associations will help advance understanding of HAB causality and contribute to improving the accuracy of predictive models.

Conclusions

The ability to study HAB events (initiation, persistence, and termination) across broad temporal and spatial scales provides both understanding and motivation to advance predictive skill. The sampling strategy and tools used in this study informed understanding of *Pseudo-nitzschia* population dynamics in Monterey Bay during two very different bloom years. Fine-scale shifts in diversity and toxicity were revealed, both spatial and temporal, and these observations will allow us to build on current monitoring and modeling strategies in the region. For example, newly designed molecular probes (Bowers et al., 2017) have expanded taxon-specific detection capabilities, and findings from this study will help guide their future application. A key to future work will be the mobility and adaptive sampling capabilities of platforms such as the Dorado AUV and
next generation ESP (3G; Pargett et al., 2015; Zhang et al., 2015). As major shifts in oceanic, land-sea, and atmospheric processes that have the potential to impact frequency and intensity of HABs are documented (e.g. Moore et al., 2008), high-resolution real-time data will aid marine resource management decisions and public health protection.

Acknowledgments

The authors wish to thank the crews of the R/V’s Rachel Carson and John Martin, and the MBARI AUV Operations group, for deployment logistics and sampling. This work was supported by the National Oceanic and Atmospheric Administration (NA11NOS4780055, NA11NOS4780056, NA11NOS4780030) and a fellowship to H. Bowers from the Packard Foundation. This is ECOHAB publication number ECO902.

Disclosure

This publication does not constitute an endorsement of any commercial product or intend to be an opinion beyond scientific or other results obtained by the National Oceanic and Atmospheric Administration (NOAA). No reference shall be made to NOAA, or this publication furnished by NOAA, to any advertising or sales promotion which would indicate or imply that NOAA recommends or endorses any proprietary product mentioned herein, or which has as its purpose an interest to cause the advertised product to be used or purchased because of this publication.

References

Cifuentes, L., Chavez, F.P., 1992. Autecology of the diatom *Pseudonitzschia australis*, a
domoic acid producer, from Monterey Bay, California. MEPS 84, 293-302.

4865.

of Scripps Institution of Oceanography of the University of California 5, 1-238.

Doucette, G.J., Mikulski, C.M., Jones, K.L., King, K.L., Greenfield, D.I., Marin III, R.,
toxin domoic acid onboard the environmental sample processor: Assay development and
field trials. Harmful Algae 8, 880–888.

between toxin producing *Pseudo-nitzschia* diatoms and *Calanus* copepodites. Marine Drugs 13, 3809-3835; doi: 10.3390/mdl3063809.

Kvitk, R. G., Goldberg, J. D., Smith, G. J., Doucette, G. J., Silver, M. W., 2008. Domoic acid contamination within eight representative species from the benthic food web of Monterey Bay, California, USA. Marine Ecology Progress Series 367, 35–47.

of *Pseudo-nitzschia* (Bacillariophyceae) from Malaysian Borneo, including the new species *Pseudo-nitzschia circumpora* sp. nov. *J. Phycol.* 48, 1232-1247.

Lim, H.C., Teng, S.T., Leaw, C.P., Lim, P.T., 2013. Three novel species in the *Pseudo-nitzschia delicatissima* complex: *P. batesiana* sp. nov. *P. lundholmiae* sp. nov., and *P. fukuyoi* sp. nov. (Bacillariophyceae) from the strait of Malacca, Malaysia. *J. Phycol.* 50, 902-916.

cold-water cryptic *Pseudo-nitzschia* species within the *P. pseudodelicatissima* complex.

J. Phycol. 52, 184-199.

Scholin, C., Doucette, G., Jensen, S., Roman, B., Pargett, D., Marin III, R., Preston, C.,
Jones, W., Feldman, J., Everlove, C., Harris, A., Alvarado, N., Massion, E., Birch, J.,
Greenfield, D., Vrijenhoek, R., Mikulski, C., Jones, K., 2009. Remote detection of
marine microbes, small invertebrates, harmful algae and biotoxins using the
Environmental Sample Processor (ESP). Oceanography 22, 158–167.

A.M., 2006. Effect of storage on amnesic shellfish poisoning (ASP) toxins in king
scallops (Pecten maximus). Harmful Algae 5, 9–19.

Smith, J., Gellene, A.G., Hubbard, K.A., Bowers, H.A., Kudela, R.M., Hayashi, K.,
Caron, D.A., 2017. Pseudo-nitzschia species composition varies concurrently with
domoic acid concentrations during two different bloom events in the Southern California

nitzschia kodamae sp. nov. (Bacillariophyceae) a toxigenic species from the Strait of

diversity of Pseudo-nitzschia along the northern coast of Sarawak (Malaysian Borneo),
with descriptions of *P. bipertita* sp. nov. and *P. limii* sp. nov. (Bacillariophyceae). J. Phycol. 52, 973-989.

Table 1. Benchtop SHA was performed on several ship cast samples (chlorophyll maximum) spanning the deployment period to confirm that *P. fraudulenta* was the dominant species throughout the bay. Cell abundances were determined based on species-specific standard curves.
<table>
<thead>
<tr>
<th></th>
<th>Cell Abundance (10^5 cells l⁻¹)</th>
<th>pDA (ug l⁻¹)</th>
<th>chl a (ug l⁻¹)</th>
<th>Water Clarity (% Trans.)</th>
<th>Temp. (°C)</th>
<th>Salinity (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. australis¹</td>
<td>P. fraudulenta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESP North</td>
<td>3.90</td>
<td>0.48</td>
<td>7.0</td>
<td>11.5</td>
<td>74</td>
<td>13.0</td>
</tr>
<tr>
<td>ESP South</td>
<td>6.30</td>
<td>0.49</td>
<td>21.2</td>
<td>5.8</td>
<td>84</td>
<td>13.8</td>
</tr>
</tbody>
</table>

Table 2. Comparison of average measurements by the two ESPs deployed in 2015.

¹Averages include unknown error due to saturation of some assay results (as outlined in Figure 4a).
<table>
<thead>
<tr>
<th>Species</th>
<th>no. isolates</th>
<th>no. tested</th>
<th>mean +/- std dev</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. australis</td>
<td>19</td>
<td>3</td>
<td>2.176 +/- 1.871</td>
<td>0.227</td>
<td>3.958</td>
</tr>
<tr>
<td>P. delicatissima‘c’</td>
<td>1</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>P. fraudulenta</td>
<td>13</td>
<td>1</td>
<td>0.001</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>P. multiseries</td>
<td>34</td>
<td>7</td>
<td>0.002 +/- 0.001</td>
<td>0.001</td>
<td>0.003</td>
</tr>
<tr>
<td>P. pungens</td>
<td>29</td>
<td>8</td>
<td>0.021 +/- 0.017</td>
<td>0.004</td>
<td>0.049</td>
</tr>
<tr>
<td>P. seriata</td>
<td>1</td>
<td>1</td>
<td>0.131</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>no. isolates</th>
<th>no. tested</th>
<th>mean +/- std dev</th>
<th>minimum</th>
<th>maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. australis</td>
<td>207</td>
<td>16</td>
<td>0.324 +/- 0.327</td>
<td>0.0301</td>
<td>1.007</td>
</tr>
<tr>
<td>P. delicatissima‘a’</td>
<td>3</td>
<td>1</td>
<td>0.005</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>P. fraudulenta</td>
<td>2</td>
<td>1</td>
<td>0.003</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>P. multiseries</td>
<td>3</td>
<td>1</td>
<td>0.002</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>P. seriata</td>
<td>12</td>
<td>4</td>
<td>0.983 +/- 0.744</td>
<td>0.029</td>
<td>1.783</td>
</tr>
</tbody>
</table>

Table 3. *Pseudo-nitzschia* species isolated in 2015, with a subset used to measure pDA per cell. Strains isolated before the bloom period started (defined as April 29, 2015 when *P. australis* abundances at Santa Cruz Wharf first exceeded 5 x 10^4 cells L^-1) are in the grey shaded boxes.