Radium Isotopes Across the Arctic Ocean Show Time Scales of Water Mass Ventilation and Increasing Shelf Inputs

Michiel Rutgers van der Loeff1, Lauren Kipp2, Matthew A. Charette2, Willard S. Moore3, Erin Black2, Ingrid Stimac1, Alexander Charkin4, Dorothea Bauch5, Ole Valk1, Michael Karcher1, Thomas Krumpen1, Nuria Casacuberta6,7, William Smethie2, and Robert Rember8

Abstract The first full transarctic section of 228Ra in surface waters measured during GEOTRACES cruises PS94 and HLY1502 (2015) shows a consistent distribution with maximum activities in the transpolar drift. Activities in the central Arctic have increased from 2007 through 2011 to 2015. The increased 228Ra input is attributed to stronger wave action on shelves resulting from a longer ice-free season. A concomitant decrease in the 228Th/228Ra ratio likely results from more rapid transit of surface waters depleted in 228Th by scavenging over the shelf. The 228Ra activities observed in intermediate waters (<1,500 m) in the Amundsen Basin are explained by ventilation with shelf water on a time scale of about 15–18 years, in good agreement with estimates based on 14C and 234Th. The 228Th excess below the mixed layer up to 1,500 m depth can complement 234Th and 210Po as tracers of export production, after correction for the inherent excess resulting from the similarity of 228Ra and 228Th decay times. We show with a Th/Ra profile model that the 228Th/228Ra ratio below 1,500 m is inappropriate for this purpose because it is a delicate balance between horizontal supply of 228Ra and vertical flux of particulate 228Th. The accumulation of 228Ra in the deep Makarov Basin is not associated with an accumulation of Ba and can therefore be attributed to supply from decay of 230Th in the bottom sediment. We estimate a ventilation time of 480 years for the deep Makarov–Canada Basin, in good agreement with previous estimates using other tracers.

1. Introduction

The Arctic Ocean is characterized by strong interactions with the surrounding continents. Over 10% of the world’s river discharge finds its way into the Arctic Ocean, which has only 1% of the World’s Ocean volume (McClelland et al., 2012). On the Siberian side, the shelves are especially wide and shallow. Surface waters in the central Arctic are relatively fresh, with the transpolar drift (TPD) serving as a transport route for terrestrial inputs through the central Arctic Ocean toward Fram Strait.

The Arctic Ocean is in transition. Minimum summer sea ice cover declined from 7 to 4 106 km2 during the past 30 years (Grosfeld et al., 2016; Serreze et al., 2007). The longer ice-free period on the shelf and increased temperatures cause permafrost thaw (Luo et al., 2016) and increased erosion (Günther et al., 2013), which will affect the transport and fate of the terrestrial inputs. While these processes may enhance the input of sediments and dissolved material, the extensive sea ice melt may cause ice rafted matter to be released and deposited at an earlier stage on its transit over the Arctic Basins. The loss of sea ice will result in light conditions that are more favorable for plankton growth (Arrigo et al., 2008; Arrigo et al., 2012), but it is questionable whether there are sufficient nutrients for an increase in export production. It is therefore important to investigate whether the transport of terrestrial material, primary production, and sedimentation are affected in response to the environmental changes taking place.

Radium isotopes are particularly suited to study the transport and fate of terrestrial inputs in the Arctic. All four naturally occurring isotopes are produced by decay of an isotope of thorium, a highly particle reactive...
element. Radium is relatively soluble in seawater such that once a thorium isotope in suspended or bottom sediments decays, a fraction of the produced radium isotope may be released to solution. ^{224}Ra (3.7-day half-life) and ^{223}Ra (11.4-day half-life) are used extensively as tracers for interaction on the shelf and for submarine groundwater discharge (SGD). ^{228}Ra is strongly enriched in shelf waters and in the TPD and its half-life (5.8 years) is well suited to study the fate of this shelf-derived water in the central Arctic (Rutgers van der Loeff et al., 1995). Finally, ^{226}Ra (1620 y half-life) has been used to trace SGD (Moore, 1996) and inputs from deep-sea sediments (Cochran, 1980).

Primary production and the export flux of particles are very low in the ice-covered Arctic Ocean. Cai et al. (2010) reported an export production of $0.2 \pm 1.0 \text{ mmol carbon m}^{-2} \text{ d}^{-1}$ in the central Arctic Ocean based on $^{234}\text{Th}/^{238}\text{U}$ disequilibrium measured in August to September 2007, but observations at the seafloor in 2012 suggested a more substantial export, for example, of ice algae (Boetius et al., 2013). One reason for this discrepancy may be that the time scale of the ^{234}Th tracer (related to the mean life of $1/\lambda = 35 \text{ days}$) is too short to record export events that took place earlier in the season. The time scale of the $^{210}\text{Po}/^{210}\text{Pb}$ tracer system (mean life of ^{210}Po is 200 days) is more appropriate to cover the full productive season. Roca-Martí et al. (2016) compared export fluxes using both tracer pairs. They confirmed low export fluxes in the central Arctic ($2 \pm 2 \text{ mmol C m}^{-2} \text{ d}^{-1}$ using $^{234}\text{Th}/^{238}\text{U}$ and $3 \pm 2 \text{ mmol C m}^{-2} \text{ d}^{-1}$ using $^{210}\text{Po}/^{210}\text{Pb}$) and observed a depletion of ^{210}Po at all stations, while a significant depletion of ^{234}Th was found in only three out of nine stations. Still, the calculated fluxes are low and have large uncertainties, and moreover, the use of $^{210}\text{Po}/^{210}\text{Pb}$ as tracer for export production is complicated by the particle reactive behavior of ^{210}Pb, which is itself scavenged. An alternative tracer pair with much promise for understanding Ocean export production is $^{228}\text{Th}/^{228}\text{Ra}$ (Luo et al., 1995; Rutgers van der Loeff et al., 2012). In the Arctic Ocean, activities of ^{228}Ra in surface waters are very high, the time scale of ^{228}Th can cover more than a productive season (^{228}Th half-life 1.9 years corresponding to a mean life of 2.7 years), and even the low export fluxes create a depletion that can be measured with good precision. A complicating factor of the relatively long time scale is that the $^{228}\text{Th}/^{228}\text{Ra}$ ratio in surface waters depends not only on the export flux but also on the scavenging history of the water mass (Rutgers van der Loeff et al., 2012). Here we wish to investigate to what extent the $^{228}\text{Th}/^{228}\text{Ra}$ ratio in the subsurface water column can be used to trace particle fluxes.

In this paper we present the distribution of ^{224}Ra, ^{228}Th, and ^{228}Ra in the surface water on a section from the Barents shelf to the Bering Strait, the first full transarctic section of these parameters measured as part of the coordinated GEOTRACES Arctic study in 2015. We compare the data with earlier observations and discuss the observed changes. The observed distributions of ^{228}Th and ^{228}Ra in the water column are compared with a Th/Ra profile model, and we discuss what these profiles can tell us about particle fluxes. Finally, we discuss to what extent the accumulation of ^{226}Ra that we observed in deep waters can be used as a measure of basin ventilation times.

2. Materials and Methods

In the framework of the GEOTRACES program, two expeditions were organized to the central Arctic in 2015: GEOTRACES section GN04 on RV Polarstern (expedition PS94, ARK XXIX/3, TRANSARC II; Schauer, 2016) and GEOTRACES section GN01 on USCGC Healy (expedition HLY1502; Kadko & Landing, 2015; Figure 1). We also report on Ra and Th analyses in surface waters collected on RV Polarstern expedition PS78/ARK XXVI/3 in 2011 (TRANSARC I) (Schauer, 2012). All data are presented in Tables S1–S4 in the supporting information.

During Polarstern expedition PS78 (5 August to 6 October 2011) large volume surface water samples were collected at 41 stations into 300-L tanks using a tap close to the ships seawater intake (first stations only) or (from North Pole Sta 218 onward) a well pump lowered over the side of the ship to a depth of 10 m. Each sample was filtered through a 0.8-μm Supor® (polyether sulfone) filter and then passed at a flow rate of <1 L/min using a peristaltic pump through MnO$_2$-impregnated acrylic fiber to scavenge radium isotopes. Fibers were partially dried using compressed air, and ^{224}Ra was measured at sea using RaDeCC delayed coincidence alpha detectors (Moore & Arnold, 1996). ^{224}Ra supported by ^{228}Th was derived from a second RaDeCC count after at least 20 days (5 half-lives).
During Polarstern expedition PS94 (17 August to 15 October 2015) surface water samples (collected at a tap close to the ships seawater intake after abundant rinsing of the tubing systems) were passed over an uncoated 7.5-cm cartridge and subsequently over a series of two tubes with loose MnO2-coated fibers (up to Sta 96) or two MnO2-coated cartridges (from Sta 99 onward; Henderson et al., 2013). Flow rate was limited to 1 L/min, and volumes were measured with Kent flow meters. During 10 in situ pump (ISP) casts, MnO2-coated cartridges were mounted after 0.8-μm Supor filters; average flow rates varied between 0.8 and 6.1 L/min. On 37 ISPs two cartridges were used in series, allowing the calculation of Ra absorption efficiency. There was no relationship between Ra collection efficiency and flow rate ($R^2 = 0.0013$). On other ISPs only one cartridge could be mounted, in which cases we had to use the average collection efficiency of all other cartridges (90 ± 7%). Cartridges and fibers were partially dried using compressed air, and 224Ra was measured at sea using RaDeCC delayed coincidence alpha detectors. Supported 224Ra was derived from a second RaDeCC count after at least 16 days (4 half-lives).

Samples from PS78 and PS94 were analyzed for 226Ra and 228Ra at AWI, Bremerhaven. The fibers were leached following Elsinger et al. (1982), and the MnO2-coated cartridges were leached by Soxhlet extraction with 6 N HCl refluxing over 10 hr. Radium in the extracts was coprecipitated with BaSO4 (Cutter et al., 2010) and analyzed with gamma spectroscopy (Moore, 1984).

On the HLY1502 expedition, near-surface water samples were collected from a depth of 2 m using a submersible surface pump. Approximately 280 L of water was collected at each station and filtered through a MnO2-coated fiber at a flow rate of <1 L/min. Over the shelf, the samples were first filtered through 1-μm Hytrex cartridge to remove particles; at all other stations, the samples were not prefiltered. The fibers were rinsed with Ra-free freshwater and analyzed on RaDeCC detectors within 3 days of collection to measure 224Ra. After 4 weeks a second RaDeCC count was performed to determine the amount of 224Ra supported by

![Figure 1](https://example.com/figure1.png)

Figure 1. Cruise tracks of RV Polarstern expeditions PS78 (black), PS94 (GEOTRACES GN04, red, black station numbers), and USCGC Healy expedition HLY1502 (GEOTRACES GN01, blue, white station numbers) crossover station (yellow) and CESAR ice station (white dot).
228Th. Fibers were then ashed in a muffle furnace at 820 °C, and the ash was packed in to polystyrene vials, sealed with epoxy (to prevent 222Rn loss), aged for 3 weeks, and analyzed on high purity, well-type gamma detectors in the Moore lab at the University of South Carolina. Radium-228 was measured using the lines of 228Ac (338 and 911 KeV), and 226Ra was measured using the line for 214Pb (352 KeV). Detector efficiencies were determined using ashed fiber standards spiked with 226Ra and 232Th with daughters in equilibrium.

Water column samples for the HLY1502 expedition were collected using ISPs that were programmed to pump for 4 hr, typically filtering 1,200–1,600 L of seawater at an average flow rate of ~6 L/min. Seawater was first passed through 51 and 1-μm filters to collect particulate isotopes, and then through MnO$_2$-coated cellulose cartridges (Henderson et al., 2013). After collection, cartridges were rinsed with Ra-free freshwater, partially dried with compressed air, and counted on RaDeCC detectors within 2 days of collection to measure 224Ra. Second counts were performed after 4 weeks to determine the amount of supported 224Ra. Cartridges were then ashed, and 226Ra and 228Ra were measured by gamma spectrometry in the Charette lab at the Woods Hole Oceanographic Institution using the same method as the surface samples. To determine cartridge collection efficiencies, small volume samples of 226Ra (15–25 L) were collected using a Niskin bottle mounted either on the CTD rosette (shallow casts) or above the ISPs (deep casts) and were filtered through a MnO$_2$-coated fiber. The activities of Ra measured on the fibers, which quantitatively scavenge radium (Charette et al., 2012), were compared to those determined on the cartridges. For HLY1502, the collection efficiency of individual cartridges ranged from 19% to 99%, with an average of 70 ± 19% (1σ).

For the intercalibration of RaDeCC counting (224Ra), cartridges spiked with 232Th series in equilibrium were prepared in the USC lab of Willard Moore in South Carolina and in the AWI lab in Bremerhaven. These standards were circulated among the Charette, Moore, and Rutgers van der Loeff labs and results agreed to within 9–13%, comparable to interlab differences for high 224Ra activities in a previous intercalibration (Charette et al., 2012). For the intercalibration of gamma counting (226Ra and 228Ra) a fiber spiked at the WHOI lab with the WHOI 226Ra/228Ra standard was analyzed at AWI. AWI values were 4.1 ± 1.7% lower for 226Ra and 6.4 ± 2.2% higher for 228Ra compared to the WHOI calibration. A further check was obtained from the sampling at the crossover station: Healy HLY1502 station 30 (1 September 2015) and Polarstern PS94 station 101 (14 September 2015; Figure S1 in the supporting information). The offset in 226Ra likely results from the fact that the HLY1502 analyses were performed on discrete samples, whereas the PS94 analyses depended on the estimate of the cartridge collection efficiency. In this paper we only discuss 226Ra data of the PS94 expedition.

3. Results

3.1. Surface Distribution 228Ra

The surface distribution of 228Ra (Tables S2 and S3 and Figure 2a) shows the prominent enrichment of this isotope in the TPD. Earlier studies had shown this enrichment (Rutgers van der Loeff et al., 1995; Rutgers van der Loeff et al., 2012; Smith et al., 2003), but this is the first full transarctic section showing in a synoptic study the extension of the 228Ra plume with its limits in the Eurasian and the Canadian side of the TPD.

3.2. Surface Water 228Th–224Ra Systematics

From the two RaDeCC counts of uncoated and coated cartridges that had been collected in surface waters on the Polarstern expedition PS94, we calculated particulate and dissolved 224Ra and 228Th, decay/ingrowth corrected to sampling time (Table S2 and Figure 3). As expected, the particulate 224Ra activity was negligible, but particulate 228Th contributed up to 50% of total 228Th.

Excess 224Ra (224Ra$_{ex}$) is defined as 224Ra not supported by 228Th. In order to take into account the particulate 228Th activity, we distinguish between dissolved and total 224Ra$_{ex}$:

\[
\text{diss}^{224}\text{Ra}_{\text{ex}} = \frac{^{224}\text{Ra}_{\text{diss}}}{^{228}\text{Th}_{\text{diss}}} - ^{228}\text{Th}_{\text{diss}}
\]

\[
\text{Total}^{224}\text{Ra}_{\text{ex}} = \frac{^{224}\text{Ra}_{\text{diss}} + ^{224}\text{Ra}_{\text{part}}}{^{228}\text{Th}_{\text{diss}}} - ^{228}\text{Th}_{\text{part}}
\]

Usually, 224Ra$_{\text{part}}$ is negligible (cf. Table S2) giving
Most of the dissolved ^{224}Ra that was not supported by dissolved ^{228}Th (i.e., dissolved $^{224}\text{Ra}_{\text{exs}}$) was actually supported by particulate ^{228}Th (Figure 3). As expected from the shelf sources of ^{224}Ra, total $^{224}\text{Ra}_{\text{exs}}$ was a significant fraction of the total ^{224}Ra on the Barents shelf (stations PS94–147 to 161). Although in an exceptional case Kadko and Muench (2005) once observed some excess ^{224}Ra up to 200 km from the shelf source, we do not expect excess ^{224}Ra in the central Arctic Ocean. Indeed, in the central Arctic, total $^{224}\text{Ra}_{\text{exs}}$ is generally a small fraction of total ^{224}Ra (Figure 3). Nevertheless, at many stations from the TPD, we find significant fractions of total $^{224}\text{Ra}_{\text{exs}}$ reaching 40% of ^{224}Ra at station PS94–96 (Figure 3). We cannot completely exclude some ^{224}Ra release from ^{228}Th adsorbed to the tubing of the ship, although we have tried to minimize this problem (see methods). Such a contamination would be expected to aggravate during passage in high-^{228}Th waters. The observation that after passing the high-^{228}Th waters of the TPD the absolute levels of total $^{224}\text{Ra}_{\text{exs}}$ actually decreased (Figure 3: Stations 137, 138, and even the Barents Shelf stations 147–173) makes it unlikely that this contamination can explain the observed total $^{224}\text{Ra}_{\text{exs}}$. Such a contamination

$$\text{Total}^{224}\text{Ra}_{\text{exs}} = \frac{\text{Total}^{224}\text{Ra}_{\text{diss}}}{\text{Total}^{228}\text{Th}_{\text{diss}}} \frac{\text{Total}^{228}\text{Th}_{\text{part}}}{\text{Total}^{228}\text{Th}_{\text{diss}}}$$

(3)
cannot occur in the ISPs casts deployed on the Healy from 20 m downward. Two of the 20-m samples, station HLY1502–38 (87°N) and station HLY1502–46 (82°N), had significant total \(^{224}\text{Ra}\). The total \(^{224}\text{Ra}\) observed in surface water at these latitudes may be due to \(^{224}\text{Ra}\) released from \(^{228}\text{Th}\) carried in ice-rafted particles.

3.3. Surface Distribution \(^{228}\text{Th}\) and \(^{228}\text{Th}/^{228}\text{Ra}\)

Because our study is concentrated on the shelf signals observed in the central Arctic far offshore, we disregard total \(^{224}\text{Ra}\), and estimate total \(^{228}\text{Th}\) from dissolved \(^{224}\text{Ra}\) (equation (3)) which is available for all cruises reported here (Tables S1–S4). For PS94 we have independent data for dissolved and particulate \(^{228}\text{Th}\), but for a consistent comparison with the other expeditions, we choose to present the distribution of dissolved \(^{224}\text{Ra}\) as an analogue for total \(^{228}\text{Th}\) (Figure 2b), an approach that may have caused a 17% overestimation of \(^{228}\text{Th}\) (Figure S2b). The \(^{228}\text{Th}/^{228}\text{Ra}\) activity ratio, which is low (order of 0.1–0.2) on the shelf as a result of scavenging (Rutgers van der Loeff et al., 2012), remains fairly low (<0.4) in the core of the TPD (Figure 2c). Only in the central Eurasian and Canada Basins are higher activity ratios reached.

3.4. Changes With Time in Surface Water

3.4.1. \(^{228}\text{Ra}\)

Kipp et al. (2018) observed that \(^{228}\text{Ra}\) in the TPD had increased from 2007 to 2015. They plotted \(^{228}\text{Ra}\) as a function of the fraction of meteoric water in order to show that the increase was not a result of a changed river water concentration that might have resulted from a change in freshwater accumulation in the Arctic (Rabe et al., 2014). Here we extend their plot with their data from the Polarstern PS78 (2011) and PS94 (2015) expeditions (Figure 4a). The PS94 data from 2015 are in line with the parallel data collected on the Healy (Kipp et al., 2018), confirming the increase relative to 2007. The data from 2011 show two distinct trends: All samples collected on the detailed section over the Lomonosov Ridge closest to the Siberian shelf follow perfectly the mixing line we had observed in 2007. But the four samples with the highest \(^{228}\text{Ra}\) concentrations on the Canadian side of the cruise track are close to the mixing line we observed throughout in 2015, suggesting the existence of two different freshwater end-members in 2011.

3.4.2. \(^{228}\text{Th}/^{228}\text{Ra}\)

In surface waters, \(^{228}\text{Th}\) was more depleted with respect to its parent \(^{228}\text{Ra}\) in 2015 than it was in the previous expeditions in 2007 and 2011 (Figure 5). The decrease of \(^{228}\text{Th}/^{228}\text{Ra}\) is especially pronounced in the TPD: The \(^{228}\text{Th}/^{228}\text{Ra}\) in the shelf-influenced waters north of 85°N with river water percentage > 13% are consistently low at about 0.3 in both the Polarstern PS94 and the Healy data set, compared to 0.5–0.65 in 2007.
3.5. Distribution of ^{228}Ra and ^{228}Th in the Water Column

The distribution of ^{228}Ra in the water column of the Eurasian and Makarov Basins (Figure 6a) is in agreement with earlier observations (Cochran et al., 1995; Rutgers van der Loeff et al., 1995; Trimble et al., 2004). The high ^{228}Ra activities in the surface waters and especially in the TPD cause very strong gradients through the halocline. ^{228}Ra activities in deep water (2,000–3,000 m) are low but still measurable and slightly increase toward the bottom.

We estimate the depth profiles of ^{228}Th from measurements of $^{224}\text{Ra}_{\text{diss}}$ that we made at all stations. This implies that (1) we disregard excess ^{224}Ra as we did in the discussion of the surface concentrations (Figure 2b) and (2) we assume that total (dissolved + particulate) ^{228}Th is in secular equilibrium with dissolved ^{224}Ra. A comparison of dissolved ^{224}Ra with total (dissolved + small particulate + large particulate) ^{228}Th for the HLY1502 expedition confirms that ^{224}Ra is a reasonably good analogue for total ^{228}Th, although ^{224}Ra may underestimate total ^{228}Th by about 10% (Figure S2a).

Figure 5. $^{224}\text{Ra}/^{228}\text{Ra}$ ratio as analogue for $^{228}\text{Th}/^{228}\text{Ra}$ ratio in surface waters in 2007, 2011, and 2015.

Figure 6. (a) Depth profiles of ^{228}Ra distinguishing PS94 stations from the Nansen (blue), Amundsen (red), and Makarov Basin (black) and (b) $^{224}\text{Ra}/^{228}\text{Ra}$ as analogue for $^{228}\text{Th}/^{228}\text{Ra}$ ratio observed in the Makarov (black) and Canada (red) basin compared with $^{228}\text{Th}/^{228}\text{Ra}$ data from ice station CESAR (Bacon et al., 1989).
Two depth profiles of 228Th have been reported for the Nansen Basin by Cochran et al. (1995): one from the Barents Slope (their Sta. 287) and one from the central Nansen Basin (their Sta. 358). 228Th/228Ra ratios reported by these authors approached unity at mid depth in the central Nansen Basin but remained below 0.6 at the slope station with an average of 0.42. The only two 228Th/228Ra profiles we are aware of from the deep Canada Basin are the CESAR Ice station (Bacon et al., 1989) and station AWS2000-3 (Trimble et al., 2004). While at AWS2000-3 (75°13′N, 3,850 m) 228Th/228Ra increased gradually to a value of 1.1 ± 0.4 at 2,000 m, the CESAR profile at the Alpha Ridge showed depletion around 0.75 in the upper 200 m, then a maximum of 1.48 ± 0.21 at 400 m and a decrease to values below unity at 1,200 and 1,500 m. Such a subsurface maximum was also observed in the Atlantic Ocean by Li et al. (1980). Our new data (Figure 6b, 224Ra/old/228Ra in Tables S1 and S3c) are in general agreement with the CESAR profile: They confirm the depleted 228Th/228Ra ratios in surface waters. Below the surface of the TPD both 228Th and 228Ra decline abruptly, but the 228Th/228Ra ratio increases to values usually in excess of unity in the 250–1,500 m depth range. In waters of 2,000 m and below, the ratio is usually below unity (0.75 ± 0.05 standard error of mean, n = 28).

3.6. 226Ra

Previous studies of Ra in the deep Arctic Ocean have mostly reported 224Ra/226Ra ratios where 224Ra was estimated from relationships with Si (Cochran et al., 1995; Rutgers van der Loeff et al., 1995). Moore and Smith (1986) reported a profile at station CESAR over the Alpha Ridge and observed that the deepest sample (1,750 m) was enriched in 226Ra by 40 dpm m$^{-3}$ relative to the samples at 500–1,000 m, much more than the about 3 dpm m$^{-3}$ expected from the increase in silicate of only 3 μmol/kg. The depth distribution of 226Ra on cruise PS94 confirms an enrichment of 226Ra in deep waters (Figure 7). In the Nansen and Amundsen Basins the deep waters below approx. 2,000 m are enriched by about 10–15 dpm m$^{-3}$, whereas the deep waters in the Makarov Basin are enriched by up to 80 dpm m$^{-3}$ relative to the average concentrations in intermediate waters of 500–1,500 m (Figure 7 and Table S1). Integrating these excess activities with depth we find an excess inventory of 20,000 dpm m$^{-2}$ in the Nansen and Amundsen Basin and 70,000 dpm m$^{-2}$ in the Makarov Basin.

4. Discussion

4.1. Reasons for Change in 228Ra

Some 228Ra is supplied by rivers, but the major source of 228Ra in the Arctic is released from the seafloor where it is produced by decay of 232Th. The accumulation of 228Ra in shelf waters depends on the depth of the shelf sea and on the time the water resides over the shelf. The high 228Ra activities in surface waters of the TPD have traditionally been explained by the wide extent of Siberian shelf seas with depths decreasing eastward from the Barents and Kara Sea toward the very shallow East Siberian Sea. The correlation of 228Ra in offshore surface waters with salinity and with the fraction of meteoric water is due to the common nearshore source of 228Ra and meteoric water. This results in a virtual freshwater end-member that is not actually observed in river waters (Rutgers van der Loeff et al., 2003).

Our results from Polarstern 2015 (PS94) confirm the conclusion of Kipp et al. (2018) that the 228Ra concentration in the virtual freshwater end-member of the 228Ra on the Siberian shelf has roughly doubled since 2007 (Figure 4a). If this change had occurred gradually, we would have expected the results for 2011 to be intermediate between 2007 and 2015. It is very surprising that they are not, but indeed follow the mixing lines of 2007 and 2015 in two discrete geographical regions represented in Figure 4b by red and blue ovals, respectively. Ice back-trajectories (IBTs; Krumpen, 2017) show that the ice found in these regions was formed in distinct shelf sources (Figure 4b). To the extent that ice follows surface water flow, this implies that the
surface water at the stations with high meteoric water content and a lower virtual freshwater end-member ^{228}Ra activity (indicated by red symbols in Figure 4a and by red ovals and red IBTs in Figure 4b) has a more westerly origin in the Laptev Sea region, whereas the high-^{228}Ra water at the stations in the blue oval comes from a source further east, influenced by the East Siberian Shelf. This demonstrates that we cannot assume that all ^{228}Ra values observed offshore in the Arctic Ocean have a similar virtual freshwater end-member. The ice at two stations in the blue oval (PS78–224 and 227) was more than 2 years old. The ice was formed in the Laptev Sea (white lines in Figure 4b) but then spent 15 months on the shelf north of the North Siberian Islands where the water can have accumulated additional ^{226}Ra before being carried northward. The existence in 2011 of two source regions with distinct virtual ^{228}Ra end-member activities raises the question whether the apparent differences in ^{228}Ra activities between 2007 and 2015 (Figure 4a) can also be due to sources with distinct end-member concentrations resulting from changes in flow paths and/or shelf residence times.

Some insight into the possible role of circulation changes in the interannual differences between ^{228}Ra at the surface can be gained from model experiments. We have used the coupled sea ice ocean model NAOSIM to disperse a conservative tracer released in Bering Strait (e.g., Aksenov et al., 2016) and the anthropogenic radionuclide ^{129}I, released from the European reprocessing facilities in La Hague and Sellafield (Karcher et al., 2012). While the former serves as a tracer for Pacific Water on its way across the Chukchi and East Siberian Seas, the latter, due to the dominant advection of the ^{129}I, along the Siberian shelves from the Barents Sea via the Kara Sea into the Laptev Sea, can be used as an indicator for the pathway of Kara and Laptev Sea water into the central Arctic. Typically, the bulk of the waters in the Amerasian Basin stem from Pacific derived waters. The borderline between waters dominantly derived from the Pacific (via the East Siberian Sea) and the Atlantic (via the Kara and Laptev Sea), however, varies, due to changes of the surface circulation, for example, as a consequence of changing atmospheric conditions. Figure 8 shows the distribution of ^{129}I for September 2007, 2011, and 2015 in comparison with the distribution of ^{228}Ra in these years. The Pacific water tracer (not shown) gives a largely complementary picture, as expected. For 2007 the position of stations with elevated ^{228}Ra was over the Alpha Ridge and in the Makarov Basin close to the North Pole. The model simulation suggests that this is an area where the front between the water stemming from the East Siberian shelves and the Laptev/Kara Sea shelves was located in this period. Water from both source regions would be similarly likely to be found here. In 2011 the situation was different. For this year the model suggests, in agreement with the IBT analysis, that the stations closer to the New Siberian Islands (red oval in Figure 4b) are mostly derived from water stemming from the Laptev/Kara Sea. Only the stations closer to the North Pole (blue oval in Figure 4b) are likely to incorporate water stemming from the East Siberian Sea. For the year 2015 finally, the model simulation indicates a source region to be entirely from the Laptev/Kara Sea region for those stations with elevated ^{228}Ra found in the Makarov Basin.

Essential for the accumulation of ^{228}Ra is how long the water passed over shallow shelf areas. That is why we need actual flow paths that can be based on modeling (Figure 8) and on IBTs. Kipp et al. (2018) concluded from IBT analyses that the shelf origin of the high-^{228}Ra waters found in the central Arctic was not different for the stations visited in 2015 by USCGC Healy or those from the 2007 study. This is confirmed by an IBT analysis of the Polarstern 2015 (PS94) study (Figure S3a). The history of the water masses before the time span of the IBTs was nevertheless quite different, as the NAOSIM modeling (Figure 8) suggested that the 2007 samples were from both sides of the Atlantic-Pacific divide, whereas the 2015 samples had a large Atlantic component. We have seen in the 2011 data that different histories can cause different ^{228}Ra concentrations and a temporal increase in the residence time over a shelf could produce a water mass with high ^{228}Ra concentrations. It would be of great value to have data on the variability of residence times of water over the Siberian shelves. But the increase in ^{228}Ra concentrations in 2015 compared to earlier years is so widespread (Figure 8) that it is unlikely that it is caused by such a stagnation event and we conclude that indeed the input of ^{228}Ra has increased. There are several possible explanations for this increase (Kipp et al., 2018). SGD is in many ocean areas a major pathway for inputs of ^{228}Ra to the ocean (Moore et al., 2008). Due to the wide extent of permafrost it has been doubted whether SGD plays a role in the Arctic Ocean, but ^{228}Ra inputs from this source have been identified by a recent study in the Laptev Sea (Charkin et al., 2017). However, because of the ubiquitous presence of ^{238}U and ^{232}Th in soils, SGD supplies ^{226}Ra along with ^{228}Ra. If an increase in SGD had resulted from an increase in the flow of old groundwater or from the exposure of recently thawed subsea permafrost to seawater circulation, we would expect their $^{228}\text{Ra}/^{226}\text{Ra}$ ratios to be closer to the crustal ratio of ~1.
The relatively small enrichment of 226Ra in the TPD (Kipp et al., 2018) is an indication that SGD is not a major contributor to the increase in 228Ra. Coastal erosion is increasing in the Arctic, enhanced by temperature rise and permafrost thaw. This will certainly contribute 228Ra to coastal waters, but this source is insufficient to explain the increase of 228Ra in the TPD (Kipp et al., 2018). Moreover, just like SGD, coastal erosion is a source of 226Ra along with 228Ra, and a parallel increase in 226Ra is not observed.

The most likely explanation for the increase in 228Ra is therefore increased resuspension and pore water exchange due to the enhanced exposure of shelf sediments to wave action. As a result of sea ice retreat, larger areas of the continental shelf are ice-free for a longer period of the year. And such a sediment source would supply relatively higher amounts of 228Ra relative to 226Ra due to the faster regeneration time of the former.

4.2. Changes in Other Terrigenous Inputs in the TPD

In the TPD, waters with a high meteoric contribution flow from the Siberian shelves toward Fram Strait. The extent of this ~50–100 m thick shelf-influenced layer is clearly seen in the surface distribution of 228Ra (Figure 2a) but also is clearly visible in the distribution of various terrigenous components like Fe, Mn, and

![Image of NAOSIM model simulation](image-url)
DOM (Klunder et al., 2012; Middag et al., 2011; Slagter et al., 2017). Middag et al. (2011) and Klunder et al. (2012) argue that rivers are the main source of Mn and Fe to the TPD. Along with these trace metals, the TPD also transports ligands and other DOM.

Just like 228Ra (Figure 4a), other terrigenous components like dissolved Fe (Klunder et al., 2012; Slagter et al., 2017) and DOM (Stedmon et al., 2011) are correlated with the fraction of meteoric water, while Fe and iron-binding organic ligands are correlated with CDOM and humic substances (Slagter et al., 2017). This raises the question of whether the increase in 228Ra is accompanied by a similar increase in these other terrigenous constituents. In contrast to 228Ra, where shelf inputs are predominant and we defined a virtual freshwater end-member, DOM and other terrigenous components like REE (Laukert et al., 2017) have primarily freshwater sources. The correlation between 228Ra and such river borne terrigenous components (not shown) is therefore in part fortuitous because the sources of these terrigenous inputs do not coincide. Inputs of Fe, Fe ligands, Mn, and CDOM to the TPD will only increase along with 228Ra to the extent that their sources are on shelf sediments, not in the rivers.

4.3. Reasons for Change in 228Th/228Ra

The development of 228Th/228Ra in the TPD with time t since the water mass lost contact with the shelf follows (Rutgers van der Loeff et al., 2012, note typo corrected here)

$$A_T = A_R e^{-\lambda_T t} + \frac{\lambda_T}{\lambda_T + \lambda_R} A_R e^{-\lambda_R t} - \frac{\lambda_S}{\lambda_T + \lambda_R + \lambda_S} A_T e^{-\lambda_S t}$$

where A_T and A_R are the activities of 228Th and 228Ra, λ_T and λ_R the decay constants of 228Th and 228Ra, respectively, λ_S is the Th scavenging rate, and superscript 0 denotes the situation at $t = 0$ when the water leaves the shelf. In equation (4) we assume that lateral mixing is unimportant relative to advection in the TPD. In our 2007 study we found that 228Th/228Ra was about 0.15 on the shelf and increased to 0.4–0.6 in the TPD in the central Arctic. In 2011, 228Th/228Ra in samples in the TPD ($f_e > 15\%$) ranged from 0.31 to 0.49, while in 2015, the 228Th/228Ra values were significantly lower (0.2–0.35) than in 2007. In all these surface water data the use of dissolved 224Ra as analogue for total 228Th may have caused an overestimation of 228Th (Figure S2b), but the procedure was the same in all three expeditions and cannot have caused the observed trend. The decrease could be due to one or a combination of several reasons:

- Recent increase in 228Ra: equation (4) assumes a constant source concentration of 228Ra while we have found an increase over the past 8 years. The ingrowth of 228Th will lag behind. However, because the time change (8 years) is slow relative to the half-life of 228Th, we disregard this lag effect.

- Lower depletion on the shelf: In 2015 we have few data of 228Th$^{\text{part + diss}}$/ 228Ra from the eastern Arctic shelves. On the Barents shelf we found 0.18–0.19, and the lowest values on the approach of the Laptev shelf were 0.14–0.16. We assume that 228Th/228Ra has remained depleted to about 0.15 before leaving the shelf.

- A higher scavenging rate (lower λ_S) would counteract the ingrowth and explain lower 228Th/228Ra values. If sufficient nutrients are available, the reduction in ice cover could cause increased productivity (Arrigo et al., 2008) and consequently increased export flux and scavenging. Net community production and export in the central Arctic Ocean have been estimated using several approaches. We have already mentioned that export production measured with 234Th/238U and with 210Po/210Pb was very low in 2007 and 2011. New 234Th data from 2015 show essentially no increase in export productivity (Black, 2018). In 2011, Ulfso et al. (2014) found enhanced net community production values on the shelves and ice margin, but in the central Arctic their O$_2$/Ar, pCO$_2$, and nutrient drawdown estimates are very low and do not appear to have increased in 2015 (Ulfso, pers. comm.).

Alternatively, the ice melt could have caused an increase of scavenging rate through the release of ice rafted particles that previously used to be carried on to Fram Strait.

Finally, the lower 228Th/228Ra ratios could result from a more rapid transport of the TPD. The IBTs of the Healy stations crossed the shelf break (200-m isobaths) 8–18 months before sampling (Kipp et al., 2018). For the Polarstern study this was 5–11 months, clearly shorter than the corresponding time for the IBTs of the 2007 study (7–27 months, Figure S3b). The observed trend (1992–2009) toward increasing ice drift speed has...
been related to the thinning of the ice cover and to changed wind forcing (Spreen et al., 2011). The roughly
9 months shorter transport time in 2015 compared to 2007 would explain much less ingrowth of 228Th into
parent 228Ra during transit (equation (4)) and 9% higher 228Ra values as a result of less decay.

4.4. Depth Distribution of 228Ra

The major source of 228Ra in the central Arctic Ocean is the supply of shelf-derived water to the low-salinity
surface layer. As a first approximation of the depth distribution we therefore use a one-dimensional model
with a source of high 228Ra concentrations in the surface mixed layer (depth MLD). Thereafter, the depth
distribution is controlled by vertical diffusion (eddy diffusion coefficient k_z) and radioactive decay and follows an
exponential decay.

$$A_d = A_0 e^{-\sqrt{\frac{k_z}{\rho} (z - MLD)}}$$ \hspace{1cm} (5)

With this equation and using k_z of order $10^{-4} \text{ m}^2 \text{s}^{-1}$ (Munk, 1966), 228Ra falls below 1 dpm m$^{-3}$ at 1,000 m
and would be below our detection limit in deeper layers. 228Ra is also released from the deep-sea floor. Close
to the seafloor we observe activities up to 8.2 dpm m$^{-3}$ (Sta. PS94–81). Even with a 10 times higher vertical
diffusivity in the benthic boundary layer, this input would fall below 1 dpm m$^{-3}$ at 1,100 m above the sea-
floor. Nevertheless, all intermediate water values are above our detection limit. The lowest activities observed
on the PS94 expedition are down to 1.14 ± 0.31 dpm m$^{-3}$ in the Makarov Basin (Sta. PS94–101 and Sta.
PS94–96), but in the Eurasian Basin, all values are above 1.9 ± 0.4 dpm m$^{-3}$. The higher activities must be
supplied by horizontal diffusion and advection from the slopes, similar to the situation observed during
the GEOSECS program in the NW Atlantic (Sarmiento et al., 1982). In the Arctic Ocean, this process is
enhanced by slope convection resulting from brine rejection during sea ice formation (Rudels et al., 2000).
Analysis of the distribution of Al, Si (Middag et al., 2009), and Ba (Roeske et al., 2012) showed that shelf
sources were a major contribution to the enrichment of these elements in the deep basins. We expect that
slope convection contributes to Ra enrichment at all depths in a similar way.

Intermediate depth waters—particularly high subsurface 228Ra activities—are observed in the Amundsen
Basin down to approximately 1,500 m. The circulation of intermediate depth waters in the Arctic Ocean
has been reviewed by Rudels (2015). Based on hydrographic (T, S, and Si) and CFC data, Rudels et al.
(1994) showed how the Atlantic input splits into a Fram Strait Branch and a Barents Sea Branch. These
branches meet north of the Kara Sea, and the resulting intermediate depth water mass is strongly affected
by inputs from the shelves, via inputs to the Barents Sea Branch itself and through further sinking shelf
plumes. These authors found a return flow of Atlantic water at 200–1,700 m in the Amundsen Basin with a
residence time on the order of a decade ("the deeper layers being the oldest"). 228Ra data collected in
1987 (Rutgers van der Loeff et al., 1995) gave the first evidence that this return flow had enhanced 228Ra
concentrations through its contact with the shelves. Samples taken from a submarine cruising at 132 m (Kadko
& Aagaard, 2009) showed a maximum in the Amundsen Basin (their Sta. 6), thought to be derived from the
Laptev or Kara Sea after a transit of at least 2 years based on estimates of Woodgate et al. (2001) that the
water speed along the Eurasian side of the Lomonosov ridge is 2 cm/s.

Our new data collected in 2015 show clearly enhanced 228Ra activities in intermediate waters up to about
1,500 m in the Amundsen Basin compared to the Nansen and Makarov Basin (Figure 6). At 1,000 m, we find
18 and 20 dpm m$^{-3}$ at Stas PS94–81 and PS94–117, respectively, compared to only 5 dpm m$^{-3}$ at Sta. PS94–
101 in the Makarov Basin. SF$_6$ data on the PS94 transect (Figure 9, full section in Figure S4, data in Smethie,
2017; Smethie & Swift, 2018) across the Amundsen Basin show indeed that at the depth horizon of 1,000 m
this basin is locally enriched at Sta. PS94–81 to >1.75 fmol/kg, corresponding to a ventilation age of 15–
18 years, if before ventilation the surface water had reached equilibrium with the atmosphere. We assume
that the Atlantic water mass carrying 20–30 dpm m$^{-3}$ when entering the Arctic through the Barents Sea
Opening and Fram Strait (Key et al., 1992) is enriched up to concentrations of order 150 dpm m$^{-3}$ in the
Kara and Laptev Sea (Rutgers van der Loeff et al., 2003), while the SF$_6$ content equilibrates with the atmo-
sphere. In a purely advective transport of this water mass as intermediate water in the Amundsen Basin,
the SF$_6$ content would remain unchanged, while 228Ra would decay to the observed 18 dpm m$^{-3}$ in 18 years,
which means that the time scale of the two tracers matches. A further independent support for this time scale
comes from the $^{129}\text{I}/^{236}\text{U}$ signal (Figure 9). The relatively high $^{129}\text{I}/^{236}\text{U}$ ratios of 215 and 176 for Stas PS94–81 and 117 observed at 1,000 m, respectively, could only be explained by waters that were released after 1998 by the European Reprocessing Plants of Sellafield and La Hague (Casacuberta et al., 2016; Christl et al., 2015). Although transit times using the $^{129}\text{I}/^{236}\text{U}$ atom ratio cannot yet be calculated as precisely as for SF$_6$, they would still generally agree with the ones estimated based on SF$_6$ and ^{228}Ra.

4.5. A Model of the Distribution of ^{228}Th, ^{228}Ra, and the $^{228}\text{Th}^{228}\text{Ra}$ Ratio

A soluble parent with a particle reactive daughter with half-life of 1.9 years, the $^{228}\text{Th}^{228}\text{Ra}$ tracer pair appears ideally suited as a tracer for export production in the Arctic where ^{228}Ra is abundant. Compared to the $^{234}\text{Th}^{238}\text{U}$ tracer pair, the longer half-life has the advantage of averaging out short-term variations within the productive season, and it creates a much larger depletion relative to the soluble parent that can be determined with better precision. Here we model the vertical distribution of ^{228}Ra and ^{228}Th in order to investigate to what extent these tracers can be used to determine particle flux and export production.

We use a profile model (Figure 10, equations provided in the supporting information) where ^{228}Ra and ^{228}Th are introduced in the surface layer. We represent the supply in the TPD by setting the activities of ^{228}Ra and ^{228}Th in the surface mixed layer (depth MLD) at fixed values $^{228}\text{Ra}_0$ and $^{228}\text{Th}_0$. Below the surface mixed layer, vertical eddy diffusion is set at 1.3 \times 10$^{-4}$ m2 s$^{-1}$ (Munk, 1966). ^{228}Ra release from the seafloor sediment causes an input F_B of 250 dpm m$^{-2}$ yr$^{-1}$ corresponding in steady state to a deep-water inventory of 2,000 dpm m$^{-2}$. Moreover, the supply of ^{228}Ra from slope sediments is represented as an exchange at all depths with a water mass at the margin with $^{228}\text{Ra}_M = 25$ dpm m$^{-3}$ and $^{228}\text{Th}_M = 10$ dpm m$^{-3}$ with time constant τ_M. To represent the special case of the Amundsen Basin, the water mass from MLD to 1,500 m is renewed with Kara Sea shelf water with composition $^{228}\text{Ra}_K$ and $^{228}\text{Th}_K$ with time constant τ_K. This input is balanced by outflow through FRAM Strait.

In the water column below depth MLD, ^{228}Ra decays with a half-life of 5.75 years to ^{228}Th, which decays with a half-life of 1.9 years. For ^{228}Th we use the reversible scavenging model of Nozaki et al. (1981) and Bacon and Anderson (1982) in which the particulate and dissolved forms are in continuous exchange with adsorption rate k_1 and desorption rate k_{-1}. We calculate these rate constants from observations of the...
distribution of the Th isotopes 230Th and 234Th (Valk, pers. comm.). For every isotope, the ratio of particulate to dissolved Th is given by $C_{p}/C_{d} = k^{1}/(\lambda + k^{1}/C_{0})$; equation (13) in Bacon & Anderson, 1982). From the ratio of particulate to dissolved activities of 230Th and 234Th in the deep Nansen Basin of 0.5 and 0.12, respectively, we find values for k^{1} and k^{1}/C_{0} of 1.6 and 3.2 yr$^{-1}$, respectively. Applying the reversible exchange model to the distribution of the long-lived isotope 230Th, C_{p} increases linearly with depth z as $C_{p} = P_{d}/S^{*}z$, where P_{d} is the 230Th production rate and S is the particle sinking rate. From the distribution of 230Th, with dissolved 230Th increasing to 7.5 fg/kg (0.35 dpm m$^{-3}$) at 4,000 m in the Nansen/Amundsen Basin, we find a value for the average particle sinking rate S of 582 m yr$^{-1}$. For the Makarov Basin, where dissolved 230Th increases to 33 fg/kg (1.55 dpm m$^{-3}$) at 4,000 m, we find rate constants k^{1} and k^{1}/C_{0} of 0.3 and 2.1 yr$^{-1}$, respectively, and a particle settling rate S of 434 m yr$^{-1}$.

The differential equations in the model (supporting information) were solved for 228Ra and 228Th in the water column below the surface mixed layer using programming language R based on scripts presented by Soetaert and Herman (2008). All parameters are listed in Table 1.

4.5.1. 228Ra Model

The time scales of the lateral exchange processes with the slope (t_{M}) and by ventilation with the Kara Sea (t_{K}) are modified (Table 1) in order to obtain the best representation of the observed 228Ra profiles. Without input from the slope, 228Ra becomes practically zero from 2,000 to 4,000 m depth. With a margin exchange time of 50 years, 228Ra in this depth range becomes 3.5 dpm m$^{-3}$ (Figure 11a), which fits with observations. The best fit for 228Ra in the intermediate water in the Amundsen Basin is found for a renewal time of intermediate water with Kara Sea surface water of 50 years. This yields a 228Ra activity of 22 dpm m$^{-3}$ at 1,000 m (Figure S5). This renewal time is longer than the pure decay time of 18 years found above because here we do not use a complete replacement of the water in a purely advective model but rather a continuous flushing of a well-mixed water mass.

4.5.2. 228Th Model

If 228Ra followed equation (5), that is, in the absence of lateral inputs, and if thorium were unreactive, that is, in the absence of scavenging in the water column ($\lambda_{s} = 0$) the activity of 228Th (A_{T}) would be described by equation (6) in Rutgers van der Loeff et al. (2012)

$$A_{T} = \frac{\lambda^{T}A_{0}^{T}}{\lambda^{T} - k^{T}} e^{-\sqrt{\lambda^{T}/(\lambda^{T} - k)}} e^{-\sqrt{\lambda^{T}/(\lambda^{T} - k)}}$$

and at great depth the activity ratio would approach

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Sensitivity analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed layer (ML) depth</td>
<td>MLD</td>
<td>100</td>
<td>m2</td>
<td>410–4,100</td>
</tr>
<tr>
<td>Eddy diff coeff</td>
<td>k_{z}</td>
<td>4,100</td>
<td>dpm m$^{-2}$ yr$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>Benthic 228Ra flux</td>
<td>F_{B}</td>
<td>250</td>
<td>dpm m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>228Ra in ML</td>
<td>228Ra*</td>
<td>157</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>228Th in ML</td>
<td>228Th*</td>
<td>47</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>228Ra at margin</td>
<td>228Ra*</td>
<td>25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>228Th at margin</td>
<td>228Th*</td>
<td>150</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Exchange time with margin</td>
<td>t_{M}</td>
<td>50</td>
<td>yr</td>
<td>1-inf.</td>
</tr>
<tr>
<td>228Ra Kara Sea</td>
<td>228RaK</td>
<td>150</td>
<td>dpm m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>228Th Kara Sea</td>
<td>228ThK</td>
<td>0</td>
<td>dpm m$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>C_{p}/C_{d}</td>
<td>230Th, a</td>
<td>0.5</td>
<td>0.152</td>
<td></td>
</tr>
<tr>
<td>C_{p}/C_{d}</td>
<td>234Th, b</td>
<td>0.12</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>Adsorption rate constant</td>
<td>k_{1}</td>
<td>1.59</td>
<td>0.324</td>
<td></td>
</tr>
<tr>
<td>Desorption rate constant</td>
<td>k_{1}</td>
<td>3.18</td>
<td>2.132</td>
<td></td>
</tr>
<tr>
<td>Particle settling rate</td>
<td>S</td>
<td>582</td>
<td>434</td>
<td>m yr$^{-1}$</td>
</tr>
<tr>
<td>Exchange time with Kara Sea</td>
<td>t_{K}</td>
<td>50</td>
<td>inf</td>
<td>1-inf.</td>
</tr>
</tbody>
</table>

a-Assumed identical to Makarov. b-Valk, pers. comm.
Using our model for 228Ra and the reversible exchange model for Th with rate constants determined for the Makarov Basin (Table 1), we find that the release of 228Th from particles settling out of the mixed layer causes an enrichment of 228Th over 228Ra with a maximum AR of 2.14 at a depth of 780 m (Figures 11b and 12). At greater depth, the AR stabilizes at a value of 1.11. This result is in reasonable agreement with observations in the Makarov Basin (Stas PS94–96 and 101, HLY1502–43, Figures 11b and 12a).

We find that the distribution of 228Th/228Ra and of the excess 228Th (228Th$_{ex} = ^{228}$Th $- ^{228}$Ra) are very sensitive to the assumed parameters for the exchange with the margin (Figures 11b and 11c and 13). If no exchange is taken into account (exchange time scale infinity), 228Ra will tend to zero at middepth and the 228Th/228Ra ratio increases to very high values. 228Th$_{ex}$ reaches the highest values at 510 m depth and is zero in the deep water. A rapid exchange with the margin (time scale 1 year) causes higher 228Ra concentrations and lower 228Th/228Ra ratios. If we select the exchange rate of 50 years that best fits the observed 228Ra profile and vary the degree of 228Th/228Ra disequilibrium (activity ratio A_{RM}) in the water mass at the margin that is the source for the lateral supply of 228Ra, we find that especially the deepwater 228Th/228Ra ratio is strongly dependent on the 228Th in the source water (Figure 12a). If the water at the margin is depleted in 228Th by scavenging at the slope ($A_{RM} = 0$), the modeled 228Th$_{ex}$ at depth becomes negative (228Th/228Ra = 0.95). If however 228Th is in equilibrium with 228Ra in the margin water (we use $A_{RM} = 1$ and not 1.49 because of the proximity of 228Ra to its 232Th parent), the 228Th$_{ex}$ remains positive (228Th/228Ra = 1.31). The result for AR = 0.4, the value found at the Barents Slope by Cochran et al. (1995), is intermediate (228Th/228Ra = 1.15). This sensitivity analysis shows that the 228Th/228Ra ratio in the deepwater column (especially >1,500 m) is a delicate equilibrium between the lateral supply of 228Ra and 228Th and the vertical rain of particulate 228Th. In the upper 1,000 m, the modeled 228Th/228Ra ratio is strongly dependent on the proper choice of the Ra inputs (Figure 11), but if the 228Ra profile is properly resolved with good measurements of 228Ra, the measured 228Th$_{ex}$ is only slightly dependent on the assumptions of the composition of the margin water (Figure 12b). This implies that the cumulative 228Th$_{ex}$ in the upper 1,500 m does not depend on lateral supply. The excess does depend on the inherent excess resulting from a parent/daughter pair where the decay of the parent is significant (equations (6) and (7)). This contribution can be estimated by setting the settling rate S at 0 (dashed line in Figures 12b and 12c).

In our model, the 228Th$_{ex}$ integrated from the depth where it becomes positive down to 1,500 m amounts to 7,700 dpm m$^{-2}$ (varying between 6,900 and 8,400 dpm m$^{-2}$ if A_{RM} is varied between 0 and 1), while in the absence of particle flux, the excess is only 1,500 dpm m$^{-2}$. At Stas PS94–96, PS94–101, and HLY1502–43 we...
found an integrated 228Th$_{xs}$ of 2,040 ± 900, 1,160 ± 550, and 3,400 ± 440 dpm m$^{-3}$ (Figure 12b), not or not much exceeding the zero-particle-flux estimate.

In the Canada Basin, south of the core of the TPD, 228Ra in surface water is much lower, which reduces the theoretical diffusive (i.e., zero-particle-flux) contribution to the 228Th excess. At GN01 Stas HLY1502–46, 48, and 52, 228Ra and 228Th are on average 55 and 25 dpm m$^{-3}$, respectively. Using for the other parameters the same choice as in the Makarov Basin, we expect a 228Th excess of 3,650 dpm m$^{-3}$ compared to a zero-flux excess of 910 dpm m$^{-3}$ (Figure 12c). The 228Th excess actually observed agrees at Stas HLY1502–46 and 48 (3,710 ± 850 and 4,260 ± 210 dpm m$^{-3}$) with this estimate, while the excess observed at Sta HLY1502–52 (1,510 ± 330 dpm m$^{-3}$) only slightly exceeds the zero-flux estimate.

The maximum excess is observed at shallower depth than our model predicts. We may have overestimated the vertical diffusion coefficient, which is strongly reduced in the highly stratified surface layers of the Arctic Ocean. Figure 12c shows the sensitivity of the model results for the vertical diffusion coefficient k_z. A reduction of k_z by a factor of 2 or 10 does not affect the total predicted 228Th excess, but it shifts the maximum excess to shallower depths.

Figure 12. Depth distribution of (a) 228Th/228Ra ratio and (b) 228Th$_{xs}$ (dpm m$^{-3}$) using model parameters for the Makarov Basin, an exchange time with the margin of 50 years and 228Th/228Ra activity ratio at the margin (ARM) varying between 0 and 1. Dashed line in (b): modeled 228Th$_{xs}$ (ARM = 0.4) without particle flux. (c) 228Th$-^{228}$Ra (based on 224Ra$-^{228}$Ra) and (d) 228Th-1.49^{228}Ra (dpm m$^{-3}$) in the Canada Basin compared with model results with (full lines) and without (NF, dashed lines) particle flux, for the standard (1.3 \times 10^{-4} m^2 s^{-1}) and two reduced values (0.65 \times 10^{-4} and 0.13 \times 10^{-4} m^2 s^{-1}) of the vertical diffusion coefficient k_z. A surface activities of 228Ra and 228Th of 55 and 25 dpm m$^{-3}$, respectively, and for further parameters the same values as in (a) and (b). 224Ra data used as analogue for 228Th in all data points.
excess to shallower depth. At the same time, it reduces the zero-flux estimate of the cumulative excess from 910 to 780 or 604 dpm m$^{-2}$, respectively (Figure 12c).

An alternative way to take the inherent 228Th excess in the unsupported 228Ra decay chain into account is by plotting 228Th-1.49^{228}Ra (Figure 12d). The zero flux model results no longer show a subsurface maximum. The asymptotic value of $(^{228}$Th-1.49^{228}Ra) approached at depth in the model results of Figure 12d is negative as a result of the lateral supply included in the model. When we integrate $(^{228}$Th-1.49^{228}Ra) from the depth where it becomes positive down to 1,500 m, we find 2,048 ± 614, 2,094 ± 296, and 192 ± 170 dpm m$^{-2}$ for Stas HLY1502–46, 48, and 52, respectively. In the Makarov Basin we find 1,476 ± 306 dpm m$^{-2}$ at Sta HLY1502–43, while 228Th never exceeds 1.49228Ra at stations PS94–96 and 101 (Table 2). These excess inventories at depth can be compared with the depletion of 228Th in the surface water, roughly $(^{228}$Ra-228Th)\timesMLD, which amounts to 11,000 and 3,000 dpm m$^{-2}$ in the Makarov and Canada Basin, respectively (Table 1). We conclude that the 228Th depletion in the Makarov Basin is largely advected in the TPD and not related to local particle export, whereas at Sta HLY1502–46, and 48 in the Canada Basin local export accounts for a larger part of the depletion and advection is of less importance.

Assuming steady state, the excess inventories can be converted to the vertical 228Th flux (multiplying by λ_T) and then to the scavenging rate in the mixed layer (dividing by the 228Th inventory in the MLD, Table 2). These results will be used in a subsequent paper dealing with carbon export fluxes.

4.6. 226Ra and Deep Water Ventilation

It is tempting to use the accumulation of 226Ra as an independent approach to estimate residence times of deep waters in the Arctic Basins. Broecker and Peng (1982) discussed the accumulation of 226Ra in the deep waters of the World Ocean, based on data collected in the GEOSECS program. They considered that the accumulation was due to remineralization of 226Ra from settling particles and to inputs from decay of 230Th in deep-sea sediments. In principle, the two sources could be separated using Ba as analogue for a stable isotope of Ra, but they showed that in a two-layer ocean model the expected accumulation of the 226Ra/Ba ratio in the deep sea due to the bottom source of 226Ra was very small. The observed changes with very high accumulations in the deep NW Pacific were interpreted as result of inhomogeneities in the bottom source and in regeneration, making its use as deepwater ventilation tracer problematic. These problems are less restrictive in the Arctic Ocean with its relatively small and enclosed deep basins. Limited data on 230Th$_{xs}$ activities in surface sediments (Hoffmann et al., 2013; Moran et al., 2005) show a general pattern of higher activities in the low productivity, permanently ice-covered interior Arctic, with average 230Th$_{xs}$ in the upper 10 cm of the sediment of 9.9 dpm g$^{-1}$ for the Nansen Basin (AOS94 core BC 32, 3,471 m) and 13.2 dpm g$^{-1}$ for the Makarov Basin.
The influence of remineralization on the accumulation of 226Ra in the water column can be judged from a plot of 226Ra versus Ba (Figure 12, Rember, 2017). Apart from a single data point at 4,000 m in the Amundsen Basin at Sta PS94–81, data from the deep Eurasian Basin do not stand apart from the general 226Ra/Ba correlation and we conclude that in the Eurasian Basins the accumulation of 226Ra cannot be unequivocally attributed to sediment sources. In the Makarov Basin, however, the accumulation of 226Ra is not associated with a corresponding accumulation of Ba. In this case, as in the case of the 226Ra accumulation observed at the Alpha Ridge by Moore and Smith (1986), we conclude that 226Ra accumulation is due to release from bottom sediments. Following Cochran (1980) we estimate the 226Ra release rate $F_{B,226}$ from the 230Th inventory in the upper layer of the sediment. Using a 230Th concentration of 14.8 dpm g$^{-1}$, a mixed layer of 8 cm as used by Cochran (1980), and a dry bulk density of 0.5 g dry material per cm3 of sediment, we find a 226Ra flux of 176 dpm m$^{-2}$ yr$^{-1}$. This flux estimate varies between 156 and 180 dpm m$^{-2}$ yr$^{-1}$ if we allow for the range of mixed layer depths reported for AOS94 cores (2–10 cm, Smith et al., 2003). This flux must be balanced by decay and ventilation:

$$F_{B,226} = (\lambda_{226} + 1/\tau_{MD}) I_{226}$$

where λ_{226} is the decay constant of 226Ra, τ_{MD} is the residence time of water in the deep Makarov Basin, and I_{226} is the inventory of excess 226Ra in the deep water. With the inventory derived above (70,000 dpm m$^{-2}$, Figure 7) we find a deepwater residence time of ~480 years, which is consistent with the estimated isolation age for the deep Canada and Makarov Basin of 450 years based on 14C and 39Ar (Schlosser et al., 1994; Schlosser et al., 1997).

5. Conclusions

When plotted as function of fraction meteoric water, 228Ra has increased in the TPD from 2007 through 2011 to 2015. This change is most likely due to increased wave action on the shelves as a result of the longer ice free season. Whether the increase in 228Ra flux is associated with increased fluxes of other terrigenous components requires continued studies of the ratio of these components to 228Ra. The concomitant decrease of the 228Th/228Ra ratio likely results from a more rapid transit of surface waters depleted on the shelf and consequently less time for ingrowth of 228Th.

In the TPD, particulate 228Th accounts for most of the dissolved 224Ra. This implies a concept of excess 224Ra that is very different from common use, that is, in most studies of coastal mixing 224Ra is assumed to be derived only from the shelf such that (particulate) 228Th is rarely considered of importance.

From the 228Ra activity in the intermediate water in the Amundsen Basin (200–1,500 m) we derive a time scale for ventilation with shelf water derived from the Barents Sea Branch Water of about 18 years, in good agreement with estimates based on transient tracers SF$_6$ and 129I/236U.

The ratio 228Th/228Ra can be used in addition to 234Th/238U and 210Po/210Pb as a measure of export production in the Arctic Ocean. In the surface ocean, the depletion of 228Th relative to its parent 228Ra is widespread and it can be measured with higher precision than disequilibria of 234Th/238U and 210Po/210Pb, which are often very small in Arctic surface waters. The long time period has the advantage that removal over more than a full season is integrated, but it has the disadvantage that a large part of the disequilibrium is advected. The interpretation thus requires consideration of both advection and export (Rutgers van der Loeff et al., 2012).

In deep waters (>1,500 m) the 228Th/228Ra ratio is a delicate balance between the horizontal supply of 228Ra and 228Th by mixing with the slope and the vertical supply of 228Th on sinking particles. In this depth range the ratio is an inappropriate tool to determine particle fluxes.

In subsurface waters, down to approx. 1,500 m, 228Th accumulates up to a 228Th/228Ra ratio of about 2. This 228Th$_{ss}$ is in part due to the small difference between the half-lives of 228Ra and 228Th (equations (5) and (6)), leaving barely any significant export flux of 228Th in some stations (PS94–96, PS94–101, and HLY1502–52), but in others (HLY1502–43, 46, and 48), we find a significant export flux. Comparison with the depletion in the surface water shows that in the Makarov Basin this depletion is largely advected and must represent
export on the shelf where the water originated. At two stations in the Canada Basin such advection is less important and the export flux explains the larger part of the surface water depletion. However, when this intermediate water mass is influenced by ventilation with the shelf (as is the case in the Amundsen Basin), the 228Th/228Ra signal in this depth range (100–1,500 m) depends critically on the 228Th/226Ra ratio in the ventilating shelf water mass, reducing its suitability as a tracer for export production. The lack of coherence between 226Ra and Ba in the deep Makarov Basin shows that the accumulation of 226Ra here is not due to vertical particle flux but can be associated with release from bottom sediments. From a 226Ra balance we estimate a deepwater residence time of about 480 years, which is consistent with the published estimates based on other tracers.

Data

The data used in this paper are provided in the supporting information and, where indicated, in the PANGAEA database (www.pangaea.de). 226Ra and 228Ra data of the HLY1502 expedition can be found at https://www.bco-dmo.org/dataset/718440.

Acknowledgments

We thank captain Schwarz with his crew of RV Polarstern and captain and crew of USCGC Healy for making this joint GEOTRACES study in the central Arctic Ocean a success. We are indebted to the chief scientists Ursula Schauer, David Kadko, and William Landing for their great support. Kai Uwe Ludewig and Jan van Ooijen provided the nutrient analyses during Polarstern expeditions PS78 and PS94. Virginie Sanial made us aware of a typo in equation (4). Mariele Paiva helped at the AWI lab to adjust the RaDeCC method for use with cartridges. We thank Ken Bueseler for his part in the 228Ra analyses. Many figures were produced with the software Ocean Data View (Schlitzer, 2017). We acknowledge funding from U.S. National Science Foundation (NSF) for U.S. GEOTRACES and NSF grants OCE-1458424 to Willard Moore) and for Ra isotope data (US NSF awards 1719603. We acknowledge contribution of submarine groundwater discharge in the Siberian Arctic seas: A case study in the Buor-Khaya Gulf, Laptev Sea. The paper benefited from very constructive comments of Doug Hammond and an anonymous reviewer.

References

