STATISTICAL MECHANICS OF GEOMAGNETIC ORIENTATION IN SEDIMENT BACTERIA

by

Michael K. Gilson
and
Ad. J. Kalmijn

April 1981

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-79-C-0071.

Approved for public release; distribution unlimited.
STATISTICAL MECHANICS OF GEOMAGNETIC ORIENTATION IN SEDIMENT BACTERIA

by

Michael K. Gilson
and
Ad. J. Kalmijn

WOODS HOLE OCEANOGRAPHIC INSTITUTION
Woods Hole, Massachusetts 02543

April 1981

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-79-C-0071.

Reproduction in whole or in part is permitted for any purpose of the United States Government. In citing this report in a bibliography, the reference given should be to:

Approved for public release; distribution unlimited.

Approved for Distribution: George D. Grice, Chairman
Department of Biology

Last year we reported on time-of-transit experiments in which magnetically orienting bacteria crossed a 1-mm stretch in the direction of a uniform magnetic field. The bacteria were found to behave as tiny self-propelled compass needles subject both to magnetic field alignment and to the randomizing effect of thermal agitation. In strong fields, magnetic bacteria are held in tight alignment; in weaker fields, their swimming paths meander more and transit times are greater. Paul Langevin derived an expression for the distribution of orientation in an ensemble of free-moving dipole particles as a function of ambient field strength. His theory becomes applicable to our experiments when bacterial migration is analyzed as a sequence of short steps during each of which the cell swims in a direction randomly selected from the Langevin distribution. The duration of each step, \(\Delta t \), is actually a time constant of the cell's loss of directionality due to thermal agitation. By thus treating the migration as a process of random walk with drift, we are able to predict the mean and variance of the time of transit across a 1-mm stretch. The behavior of the model depends on three parameters: the randomization time \(\Delta t \), the cell's intrinsic dipole moment \(m \), and the speed of propulsion \(V_o \).

We use nonlinear regression analysis to estimate these parameters and to fit the behavior of the model to that of the bacteria. We also determine the goodness of fit of the model in its entirety, and the approximate confidence limits of the parameter estimates. The estimated randomization times are in accord with preliminary calculations of rotational diffusion rates. The dipole strengths agree well with those expected on the basis of the number and size range of the bacteria's intracellular magnetite crystals. Our values are slightly lower due to the inevitable impurities and imperfections in alignment of the crystals, and to additional agitation resulting from swimming movements. In short, the dipole moments direct the bacteria magnetically despite thermal agitation and swimming noise. As statistical mechanics suffice to explain the orientation of magnetic bacteria, there is no need to invoke an active orientation mechanism.

(Kalmijn's project on electric and magnetic detection operates under the auspices of the Office of Naval Research, Oceanic Biology Program, N00014-79-C-0071.)
MANDATORY DISTRIBUTION LIST
FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS
OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION
OF THE OFFICE OF NAVAL RESEARCH
(REVISED NOVEMBER 1978)

1 Deputy Under Secretary of Defense
 (Research and Advanced Technology)
 Military Assistant for Environmental Science
 Room 3D129
 Washington, D.C. 20301

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
3 ATTN: Code 483
1 ATTN: Code 460
2 ATTN: 102B

1 CDR J. C. Harlett, (USN)
 ONR Representative
 Woods Hole Oceanographic Inst.
 Woods Hole, MA 02543

 Commanding Officer
 Naval Research Laboratory
 Washington, D.C. 20375
6 ATTN: Library, Code 2627

12 Defense Documentation Center
 Cameron Station
 Alexandria, VA 22314
 ATTN: DCA

 Commander
 Naval Oceanographic Office
 NSTL Station
 Bay St. Louis, MS 39522
1 ATTN: Code 8100
1 ATTN: Code 6000
1 ATTN: Code 3300

1 NODC/NOAA
 Code D781
 Wisconsin Avenue, N.W.
 Washington, D.C. 20235
Last year we reported on time-of-transit experiments in which magnetically orienting bacteria crossed a 1-mm stretch in the direction of a uniform magnetic field. The bacteria were found to behave as tiny self-propelled compass needles subject both to magnetic field alignment and to the randomizing effect of thermal agitation. In strong fields, magnetic bacteria are held in tight alignment; in weaker fields, their swimming paths meander more and transit times are greater.
Paul Langevin derived an expression for the distribution of orientation in an ensemble of free-moving dipole particles as a function of ambient field strength. His theory becomes applicable to our experiments when bacterial migration is analyzed as a sequence of short steps during each of which the cell swims in a direction randomly selected from the Langevin distribution. The duration of each step, Δt, is actually a time constant of the cell's loss of directionality due to thermal agitation. By thus treating the migration as a process of random walk with drift, we are able to predict the mean and variance of the time of transit across a 1-mm stretch.
Last year we reported on time-of-transit experiments in which magnetically orienting bacteria crossed a 1-mm stretch in the direction of a uniform magnetic field. The bacteria were found to behave as tiny self-propelled compass needles subject both to magnetic field alignment and to the randomizing effect on thermal agitation. In strong fields, magnetic bacteria are held in tight alignment; in weaker fields, their swimming paths meander more and transit times are greater. Paul Langevin derived an expression for the distribution of orientation in an ensemble of free-moving dipole particles as a function of ambient field strength. His theory becomes applicable to our experiments when bacterial migration is analyzed as a sequence of short steps during which the cell swims in a direction randomly selected from the Langevin distribution. The duration of each step, at, is actually a time constant of the cell’s loss of directionality due to thermal agitation. By thus treating the migration as a process of random walk with drift, we are able to predict the mean and variance of the time of transit across a 1-mm stretch.

Last year we reported on time-of-transit experiments in which magnetically orienting bacteria crossed a 1-mm stretch in the direction of a uniform magnetic field. The bacteria were found to behave as tiny self-propelled compass needles subject both to magnetic field alignment and to the randomizing effect on thermal agitation. In strong fields, magnetic bacteria are held in tight alignment; in weaker fields, their swimming paths meander more and transit times are greater. Paul Langevin derived an expression for the distribution of orientation in an ensemble of free-moving dipole particles as a function of ambient field strength. His theory becomes applicable to our experiments when bacterial migration is analyzed as a sequence of short steps during which the cell swims in a direction randomly selected from the Langevin distribution. The duration of each step, at, is actually a time constant of the cell’s loss of directionality due to thermal agitation. By thus treating the migration as a process of random walk with drift, we are able to predict the mean and variance of the time of transit across a 1-mm stretch.

Last year we reported on time-of-transit experiments in which magnetically orienting bacteria crossed a 1-mm stretch in the direction of a uniform magnetic field. The bacteria were found to behave as tiny self-propelled compass needles subject both to magnetic field alignment and to the randomizing effect on thermal agitation. In strong fields, magnetic bacteria are held in tight alignment; in weaker fields, their swimming paths meander more and transit times are greater. Paul Langevin derived an expression for the distribution of orientation in an ensemble of free-moving dipole particles as a function of ambient field strength. His theory becomes applicable to our experiments when bacterial migration is analyzed as a sequence of short steps during which the cell swims in a direction randomly selected from the Langevin distribution. The duration of each step, at, is actually a time constant of the cell’s loss of directionality due to thermal agitation. By thus treating the migration as a process of random walk with drift, we are able to predict the mean and variance of the time of transit across a 1-mm stretch.