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Oceanic internal solitary waves are typically generated by barotropic tidal flow over
localised topography. Wave generation can be characterised by the Froude number F' =
U/cy, where U is the tidal flow amplitude and ¢ is the intrinsic linear long wave phase
speed, that is the speed in the absence of the tidal current. For steady tidal flow in the
resonant regime, A, < F'—1 < Ajy, a theory based on the forced Korteweg-de Vries
equation shows that upstream and downstream propagating undular bores are produced.
The bandwidth limits A, as depend on the height (or depth) of the topographic forcing
term, which can be either positive or negative depending on whether the topography is
equivalent to a hole or a sill. Here the wave generation process is studied numerically
using a forced Korteweg-de Vries equation model with time-dependent Froude number,
F(t), representative of realistic tidal flow. The response depends on A,,40 = Finae — 1,
where F),, 4, is the maximum of F'(t) over half of a tidal cycle. When A4, < A, the flow
is always subcritical and internal solitary waves appear after release of the downstream
disturbance. When A,,, < A0 < Ay the flow reaches criticality at its peak, producing
upstream and downstream undular bores that are released as the tide slackens. When
Az > A the tidal flow goes through the resonant regime twice, producing undular
bores with each passage. The numerical simulations are for both symmetrical topography,
and for asymmetric topography representative of Stellwagen Bank and Knight Inlet.

t Email address for correspondence: rgrimshaw@ucl.ac.uk



2 R. Grimshaw and K. R. Helfrich

1. Introduction

Although there have been many studies of the propagation of oceanic internal soli-
tary waves (ISW), see for instance the recent reviews by ???? the generation process
has been relatively less well studied. Nevertheless the essential characteristics are known,
from theory, observations and numerical simulations. In the context of this work, we note

From these and many other studies we infer that in shallow water, there are essentially
just two mechanisms, each involving the interaction of the barotropic tide with a lo-
calised topographic feature. One is the generation of an internal tide which steepens as it
propagates away from the forcing site, and then generates ISW; this is usually associated
with low sub-critical Froude numbers, F' = U/cy < 1 where U is the tidal velocity and
co is the relevant intrinsic linear long wave speed. This scenario can be modelled with
the Korteweg-de Vries (KdV) equation, in which the initial condition are the essentially
linear waves formed by the interaction of the tide with the topography. The other is the
generation of an upstream propagating undular bore composed of ISW, often developing
from an upstream hydraulic jump; this is usually associated with transcritical (or res-
onant) flow, F' ~ 1. This scenario can be modelled with the forced Korteweg-de Vries
(fKdV) equation, in which the forcing term is provided by the interaction of the tide with
a localised topographic feature. There are of course many features specific to each par-
ticular location, but these two scenarios would seem to cover most observations when a
barotropic tide interacts with a localised topographic feature. There is a third mechanism
which operates when a barotropic tide interacts with the topography, generating strong
internal tidal beams from a critical point in the slope, which in turn interact with the
pycnocline to form ISW (?7?). This case being more associated with deep water scenarios
is not our concern here.

However, these fKdV scenarios are usually based on a constant fixed Froude number
F' whereas in practice this varies, albeit slowly, as the tide varies over a tidal period.
Although one might nevertheless expect that each of these scenarios will hold locally
in time, as the generation timescale can be expected to be significantly shorter than
the tidal period, it is useful to examine how these models behave when the tide, and
hence the Froude number F is allowed to vary slowly in time. This is the purpose of
the present paper, where we examine the fKdV model with a time-dependent Froude
number, and so with time-dependent forcing. Our aim is to demonstrate within the
framework of this model that the generation of large-amplitude ISW occurs near the
localised topography when the tide enters the transcritical regime, and that these waves
are released upstream as the tide slackens. Surprisingly, there seem to have been relatively
few such studies of a time-dependent fKdV equation, although we note the work of ?
who reported some numerical simulations in which the F' was varied in the transcritical
range, but the topographic forcing was kept constant. Pertinently 7?7 made comparisons
between the fKdV model and numerical simulations of the full nonlinear equation for
time-dependent flow over localised topography resembling Knight Inlet. Although they
found that internal wave breaking near the topographic forcing region prevented direct
quantitative comparisons with the fKdV model, they did conclude that the upstream
propagating ISW were generated when the tidal flow is in the transcritical regime.

In section 2 we present a summary of the fKdV equation and the relevant solution
scenarios when F' is a constant, and speculate how these scenarios can be used to describe
the case when F' varies. Then in section 3 we present some numerical simulations when
F is allowed to vary slowly in time using parameters derived from a two-layer fluid model
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and a localised symmetric topographic forcing. In section 4 we extend these simulations to
representations of some well-known actual observed cases of ISW generation characterised
by asymmetric topography. We conclude in section 5.

2. Forced Korteweg-de Vries equation

The asymptotic derivation of the fKdV equation for internal waves was first given by
77, and its relevant solutions can be found there, and in many other works, for a recent
review see 7. The outcome is briefly summarised here. At the leading order we get linear
long wave theory,

¢~ Az, t)p(z) +-- -, (2.1)

Here ( is the vertical particle displacement relative to the basic state, defined by the
background density field pg(z) and background current ug(z). The modal function ¢(z)
satisfies the system

{polc—uo)?¢-}. + poN?¢ =0, poN®=—gpp., for —h<z<0, (2.2)

$=0 at z=—h, (c—ug)’p.=gp at z=0, (2.3)
In general this has an infinite set of solutions for ¢(z) and the linear long wave speed
¢, but for oceanic internal waves it is customary to examine only mode one which has
the fastest internal wave speed (formally the lowest mode zero is the surface wave mode
with speed ¢ = (gh)l/ 2 in the absence of background current). As usual we normalise ¢
so that ¢(z,,) = 1 where z = z,, is the location of the extremum of ¢. Then the fKdV
equation is, written in the reference frame of the topography, given by z = —h + b(z),

—Ay — Ay + pAAL + §Aper + b (x) =0. (2.4)

0
fn=3 [ pole—uo)oldz,
h

0
—75:/_hP0(C—U0)2¢2 dz, 25)

I’Y = POUO(UO - C)(bza at z= _ha

0
I= 2/ polug — )¢ dz .
h

At resonance (that is, at criticality, see below in the next paragraph), ¢ = A =~ 0 and
this reduces to the more familiar form,

—A; — AAL + noAA, + SoApps + ’}/obz(x) =0. (26)

0
Topo = 3/ pougds dz,

0
10502/ pougd® dz
h

IO’YO = poug(bz 3 at z= 7h7

0
IO = 2/ po’u,o(ﬁi dz.
—h

Here the modal function ¢ is evaluated at ¢ = 0, but ¢ = A is retained in the leading
order terms to ensure that all terms remain in balance.
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It is now useful to consider the special case when ug = U = constant. Then the speed
¢ = U — ¢y where ¢ is the intrinsic linear long wave speed, that is the speed in the
absence of a background flow. In that case ¢ = ¢o(F — 1) where F' = U/cy is the Froude
number, and the modal equation becomes

cA{pod.}. +poN?¢p =0, for —h<z<0, (2.8)
p=0 at z=—h, c2p.=gp at 2=0, (2.9)
The coefficients become, to leading order

0
Topo = 3/ pocods dz
h

0
Iodo = / poci dz
h

(2.10)
Ioyvo = pocoU¢., at z=—h,

0
IO = 2/ poC()qZSz dz.
—h

When U varies temporally, the coeflicients pg,dg remain constant, and in the fKdV
equation (2.4), only the coefficients ¢ = U — ¢y = ¢o(F — 1) and ~p vary, where

v = Fog, Ipog= pocgqﬁz , at z=—h. (2.11)
Next, rescale by
i MmA 1 ¢ - Giip, - Cyip 7 Oopob
A=— A=— t=4{— t ={— b= 2.12
2R A= I s (e, B-TEE

so that (2.6) adopts the non-dimensional canonical form, after removing the tilde super-
script,

—A; —AA, +6AA, + Appr + Fb () =0, F=1+4+A. (2.13)
For mode one, since ¢ has a positive extremum, oy > 0 and so the forcing is positive
when pb > 0 but negative when pob < 0. In particular, flow of a two-layer fluid with a
near-surface pycnocline over a sill is equivalent to negative forcing.

The solutions fall into three categories, see 77, subcritical A < A,, < 0, transcritical
Ap < A < Ay and supercritical A > Ajps > 0. Here the regime boundaries Ay, ar
depend on the forcing. For the asymptotic limit of broad forcing, also known as the
hydraulic limit,

Anrom = £{12F|bps|}/2, (2.14)

where bjs is the maximum obstacle displacement and is positive when b > 0, or negative
when b < 0. In the usual fKdV limit, we can set F' = 1 here, but using the relation
F =1+ A a refinement is

Ansm = 6lbar| + {12]bas] + 36b3,31/2. (2.15)

Thus the supercritical boundary is increased and the subcritical boundary is decreased.

The subcritical and supercritical regimes are essentially linear and near the obstacle
in a steady state. They are given by the approximate expressions valid for large |A| and
as t — oo,

Fb Fb,,
A~ 7+H(I)|A|1/2

sin (|A]Y22), A — —oo, bm:/ b(z)dz, (2.16)

— 00

A
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ANFKb, A — 0. (2.17)
Here H(x) is the Heaviside function. The subcritical solution (2.16) is obtained by solving
the steady-state linearized form of the fKdV equation (2.13), while for the supercritcal
solution (2.17) the exponential decay away from the localised forcing is omitted as this
occurs on a very short length scale A~'/2. Note that in (2.16) A = F — 1 is bounded
from below by F' = 0. Close to the regime boundaries, the nonlinear terms provide
corrections, and in particular the sinusoidal lee waves in (2.16) are replaced with cnoidal
waves. In the transcritical regime, for positive forcing, the solution consists of a steady
hydraulic solution over the obstacle, terminating with an upstream elevation resolved
by an upstream propagating undular bore, and a downstream depression terminated
by a downstream propagating undular bore. Figure 1 shows a numerical solution of
(2.13) with bpy = 0.01 and A = 0. The constant forcing is started impulsively with
A(x,0) = 0. Details of the numerical scheme are discussed below. As A increases towards
Ay the upstream undular bore resembles more a sequence of solitary waves, and the
downstream undular bore weakens, and as A decreases towards A,,, the upstream undular
bore weakens, and the downstream undular bore intensifies. For negative forcing, the
same scenario occurs upstream and downstream, but the flow over the obstacle remains
unsteady, and there is some modulation of the upstream and downstream undular bores
as illustrated in Figure 2 for by; = —0.01 and constant A = 0.

3. Generation of internal undular bores by tidal interaction with
symmetric topography
The generation of internal undular bores by tidal flow can now be modelled by suppos-
ing that A varies slowly with time. Suppose for instance that A increases from a large
negative value ( formally A = —1 where F = 0) to a maximum value of A,,,, and then
decreases back again, modelling the onset of an increasing tidal current followed by a

decreasing tidal current, both in the same positive x-direction. Then three scenarios can
be identified.

(1) If Apaz < Ay, then the flow is always subcritical. On the increasing tide lee waves
are generated, which reach a maximum amplitude at A,,,,. These waves cannot be
maintained as A decreases on the decreasing tide, and so propagate over the obstacle
and then upstream.

(2) If Ay < Apaz < Ayps the flow reaches criticality at its peak. During the peak period,
internal undular bores propagate slowly both upstream and downstream. But as the tide
recedes, the upstream and downstream undular bores propagate back upstream. This
could be identified as the Maxworthy mechanism (7). In his laboratory experiment a
large depression formed in the lee of the obstacle when the tidal flow reached criticality.
As the tidal flow slackened the depression moved back upstream and evolved into several
internal solitary waves.

(3) If Apae > Apy the flow passes through the transcritical regime as the tide develops,
passes into the supercritical regime at the peak tide, and then again passes through the
transcritical regime as it weakens. In this case the strongest internal undular bores are
generated in the middle stage as the tide strengthens and then again at the middle stage
as the tide weakens. On the growing tide these undular bores are swept downstream as
the peak tide is approached, but propagate back upstream as the tide weakens.

We next present some numerical solutions for time-dependent forcing F'(t). We consider



6 R. Grimshaw and K. R. Helfrich
the specific case of sinusoidal barotropic tidal flow
A = Faqsin(wt) — 1, (3.1)

over half of a tidal cycle, 0 < t < 7/w, where w is the tidal frequency. This forcing may
pass through the resonant regime on both the acceleration and deceleration phase, may
reside in the resonant regime for an extended period, or may not be large enough to
enter the resonant regime, depending on A4y = Finae — 1 and Ay, from (2.15) (or
(2.14)). Figures 3 and Figure 4 show, respectively, an example of these three possibilities
for bps = 0.03 and the resonant band 1+ Ay, from (2.15).

Using (2.12) the scaled frequency & = w(8/cg)'/? (re-introducing the tildes). With the
(dimensional) topography

b(x) = bars(z),

where s(x) is a shape function with max(s) = 1 and by, is the amplitude, the forcing
term in (2.13) becomes

oopobar

F(D)bz = F(D)bysz, where by = >
et

Estimates for the non-dimensional parameters @ and bar are found by considering a
Boussinesq, two-layered stratification with layer depths h; and densities p; in each layer.
Here i = 1,2 indicates the upper and lower layers, respectively. The coefficients (2.10)
and (2.11) become

_§C hi1 — ho
M0—2 0 hahs

M
2 hy+ hy’

, hlhz )1/2

co
0o = —h1h =
) 0 6 1762, g h1+h2

and o = (g
(3.2)

with ¢’ = g(p2 — p1)/p1. Conditions representative of the coastal ocean are total depth
H = hy+hy =100—300 m, 0.1 < hy/H < 0.5, |bps|/H < 0.2, ¢' = 0.01-0.02 m s~2, and
semi-diurnal tidal frequency w = 1.41 x 10~* s~1. From (2.12), the normalizing length
scale (8o/co)!/? = 10 — 60m and time scale (6o/cj)'/? = 30 — 70s. These parameter
ranges give |by| < 0.05 and T = 27/@& = 700 — 1500. The topographic shape is taken to
be a Gaussian

s(&) = e~ @), (3.3)
with scaled width @, = wy(co/dp)*/? = 25 — 100 for w,/H =~ 5 — 10.

Numerical solutions of (2.13) were obtained with a Fourier pseudo-spectral discretiza-
tion in x. The nonlinear term was dealiased using the 2/3-rule truncation. Temporal in-
tegration employed a third-order, low-storage Runge-Kutta scheme (?). The barotropic
forcing was given by (3.1) for ¢ < T'/2 and the topographic shape by (3.3). The maximum
forcing Fiae = 0.5 — 2, T = 600 — 1400, |bps| < 0.06 and w, = 25 and 75 (after again
dropping the tildes). The scheme is periodic in z, although the domain size was always
taken large enough to avoid end effects. A typical domain had a length of 1500 and used
3072 or 4096 grid cells. A typical time step was 0.001.

Figure 5a shows the solution A(z,t) for a run with F,,,, = 1.25, T = 1000, w, = 25,
and positive forcing by, = 0.03. Here A, < Apaz < Aps from Figure 3. The passage of
the forcing through the resonance regime excites undular bores upstream and downstream
of the topography (centered at x = 0) similar to the constant A example in Figure 1.
However the upstream waves are less regularly separated, reflecting the time variation
of A, and after the forcing peaks (at ¢ = 250) the downstream bore begins to move
upstream (scenario 2 above). Figure 5b shows the evolution for Fj,,, = 2. Here A0, >



Internal solitary wave generation by tidal flow over topography 7

A (scenario 3) so the forcing involves distinct acceleration and deceleration passages
through the resonant region. This gives rise to a single upstream propagating solitary
wave generated on the accelerating phase. A trailing packet evolves on the deceleration
phase of the forcing from the release of the supercritical-like response over the topography.

The effect of changing F),,, is summarised Figure 6 where the solutions at the end
of the forcing period, A(x,t = T/2), are shown for several 0.5 < Fj,,4, < 2. The other
parameters are unchanged. For Fj,,, = 0.5 and 0.75, Ajee S A, and the upstream
response is weak since the forcing at most just enters the resonant regime for a very brief
period (scenario 1). Runs with Fj,,q, = 1,1.25 and 1.5 (A,, < Ajaz < Apy) all produce
upstream and downstream bores (scenario 2). When Fiq. > 1.75, Apar = Apr, the
upstream response in particular reflects the two passages through resonance (scenario 3).

Solutions for negative forcing by = —0.03 and F),q, = 1.25 and 2, with 7" = 1000 and
wp, = 25 unchanged from above, are plotted in Figure 7. In both examples the negative
forcing results in a downstream undular bore on the increasing phase of the barotropic
flow that is released to move upstream as the tidal flow decreases for ¢ > 250. Passage
of the waves back over the forcing region leads to a more complicated and variable wave
field upstream and over the topography than for positive forcing as anticipated from the
constant forcing example of Figure 2. The effect of further variations in F},, .., with the
other parameters unchanged, on the solutions at ¢ = T'/2 are shown in Figure 8. Again,
differences in the response reflect the magnitude of A4, in comparison to A, and Ay,.

The effect of varying the topographic amplitude, by, for Finae = 1.25 (A, < Apar <
Ap), T = 1000, and w, = 25 is shown in Figure 9. In addition to the increase of
topographic forcing magnitude, increases in |bys| also lead to increased duration of the
barotropic forcing residing within the resonant band, hence larger and more numerous
waves are generated.

The effect of forcing duration is further illustrated in Figures 10a and b that shows
A(z,T/2) for T = 600 and 1400, respectively. Here byy = 0.03, wp = 25, and Fiae =
0.5 — 2. The same results for by; = —0.03 are shown in Figure 11.

Figure 12 shows the effect of changing the topographic width scale from w, = 25
to wp, = 75 on A(z,T/2) for by = 0.03. Here T = 1000 and F,,q, = 0.5 — 2. This
figure should be compared to Figure 6 where w, = 25. The broader topography, hence
weaker forcing through reduction of s,, results in a weaker upstream and downstream
bores for all F},,,,. However, for negative topographic forcing by; = —0.03, Figure 13, the
upstream propagating bore is eliminated, while the downstream response is increased in
comparison to the narrower topography, w, = 25, shown in Figure 8.

4. Generation of internal undular bores by tidal interaction with
asymmetric topography

In order to compare this theory in more detail with the generation at actual sites, we
note that in practice the forcing topography is often highly asymmetric. This is the case,
for instance, with Stellwagen Bank (??), where the bank is much steeper on the shoreward
side than on the ocean side. In Figure 14 we show some simulations representing ebb
tide for Stellwagen Bank using a model topography of the same asymmetric shape as the
actual topography. The simulations use both the fKdV model (Figure 14a) with a reduced
topographic amplitude and a two-layer shallow water model (Figure 14b) with the full
topography, both shown in the lower panels. The figure shows the interface evolution
over the first half period of tidal forcing, and for an upper layer depth h; = 12.75m =
0.15h, where the total depth h = 85m, and reduced gravity ¢’ = 0.0196 ms~2, giving
cop = 0.46 ms~1. The plot is in dimensional units for direct comparison with observations.
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Because KdV theory is formally limited to small amplitude topography, the solution in
Figure 14a has the topographic amplitude reduced to by, = 12.75m (15% of the total
depth) from the actual value of by; = 55m, and F,,., = 1.5. This topography and
tidal amplitude place the forcing in scenario 2 since Ay; = 0.54. For comparison, Figure
14b shows the solution of the two-layer shallow water equations (non-dispersive) for
the ebb forcing with the actual topography and a maximum upstream F = 0.24. This
flow produces a maximum F over the sill of about 1.5. The magnitude and direction
of the tidal flow is indicated by the heavy lines in each case. Not surprisingly, the two
figures show quantitatively different results and note that the shallow water simulations
cannot produce the internal waves, but do show the steepening bores that leads to their
formation. However, the qualitative features, especially the general shape and timing
of the upstream-moving disturbances are in good agreement, suggesting that the fKdV
model is capturing the essential features of the generation process on this ebb phase of
the tide.

An equivalent pair of simulations for the Stellwagen Bank flood tide are shown in Fig-
ure 15. Again, there are quantitative differences between the fKdV and shallow water
runs (e.g. the strong downstream jump is absent in the KAV simulation while the up-
stream waves are not present in the shallow water simulation), but the leading upstream
disturbance front, at © =~ 3 — 3.5 km, is captured in both. The effect of the topographic
asymmetry leads to substantial changes in the response when compared to the ebb tide
examples above.

Knight Inlet is another asymmetrical, tidally-forced sill (??). In Figure 16 we show
fKdV and shallow water equation simulations for the flood tide. In these calculations
the total water depth is taken to be h = 100m. This is less than the actual depth of
approximately 350 m, but is about the depth of the downstream flow separation (?7) on
flood tide and thus is a reasonable approximation for the active total depth in a two-
layered reduction. Again, the topographic shape replicates the steeper landward side of
the sill, over which the water is 60 m deep. For these simulations we use an upper layer
depth h; = 12m and reduced gravity ¢’ = 0.076 ms~2, giving cg = 0.90ms~!. Figure 16a
shows the fKdV simulation for by, /h = 0.15 and F,q, = 1.5. The strengthening flood
tide generates a wave packet that is trapped just upstream of the sill crest until the tide
begins to slacken, after which the waves propagate upstream, in qualitative agreement
with observations (7). In the companion two-layer shallow water simulation in Figure
16b the timing of the upstream disturbance mirrors the waves in the fKdV simulation,
although the downstream hydraulic jump is both weaker and shorter lived in the fKdV
model. Both simulations highlight the role of a subcritical zone between the upstream
jump, or bore, and the hydraulic critical flow at the sill crest, in which the solitary waves
develop (?). The Knight Inlet ebb tide fKdV and shallow water simulations are shown in
Figure 17. Again the timing of the upstream propagating disturbances are qualitatively
similar in both simulations. We note that in the Knight Inlet observations and numerical
simulations, the strong flow deformation over the sill crest with local shear instability,
mixing and possible formation of a three-layer flow structure, see 7?7?77 for instance, is not
captured of course in either the fKdV model or in the two-layer simulations. Nevertheless,
the formation of the upstream wave field is at least qualitatively captured suggesting that
this is essentially determined by the passage of the Froude number through criticality as
we have described in section 3 and as has been previously suggested by ? and ?.
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5. Discussion

As discussed in the Introduction, our focus here is on the generation of ISW by
barotropic tidal flow over localised topography for those cases when the tidal flow reaches
criticality, or passes through criticality, at the peak stage of the tidal cycle. We are propos-
ing that a suitable model for this scenario is the fKdV equation (2.13), expressed there
in scaled canonical form. Unlike most previous studies of the fKdV equation, we allow
the Froude number FF = 1 + A to vary temporally over half a tidal cycle, from zero
to a maximum value F),,,. Then we have presented in section 3 several simulations
for a symmetrical obstacle, where the main parameters varied are Fy,qz, bas (the maxi-
mum obstacle height), wy the obstacle width, and the obstacle polarity. Although there
are quantitative differences between these simulations, they all point towards the same
conclusion. Nonlinear waves form near the obstacle as the tidal flow passes through criti-
cality, and these are then released upstream in the form of undular bores as the tidal flow
weakens towards zero. Because for many actual sites, the topography is not symmetric,
in section 4 we presented some simulations for topography representing Stellwagen Bank
and the Knight Inlet sill respectively, two heavily observed and modelled sites. Although
there are some substantial differences with the results presented in section 3, the same
basic conclusion can be reached, that is, large amplitude waves form near the obstacle
at criticality and are released upstream as undular bores as the tidal flow weakens.

We infer that the fKdV model is a very useful resource for modelling and interpreting
the formation of internal undular bores generated by tidal flow over localised topography.
There are obvious limitations, such as the restriction to weakly nonlinear waves and small
amplitude topography, so that intrinsically this model cannot describe the turbulence,
and mixing produced at the obstacle sometimes seen in observations and in fully nonlinear
numerical models. Also the fKdV model is restricted to a single vertical mode (assumed
here to be mode one) and so cannot describe the possible generation of higher modes as
occasionally observed. Further, like the KdV model, the fKdV model is unidirectional,
and captures only the resonant wave. In practice flow interaction with topography will
also generate waves propagating rapidly away from the topography, but these being
non-resonant, can be expected to be usually quite small, and have been ignored here.
Nonetheless, in spite of these limitations, the fKdV model is able to describe quite well
the internal undular bores propagating upstream as the tidal flow slackens. Indeed, the
trapping of large internal waves near the topography at criticality, and their release as the
tidal flow slackens, would seem to be a very robust process, and essentially independent
of the detailed flow structure over the topography itself.
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FIGURE 1. Numerical solution of the fKdV equation (2.13) for a localized obstacle, with
by = 0.01 and A = 0. The location and shape of the topography (arbitrary amplitude) is
shown at the bottom of the plot.
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FIGURE 3. F(t) from (3.1) for Frnae = 0.5, 1.25, and 2. Here T' = 27 /w. The dashed lines
indicate the resonant regime from (2.15) for |bas| = 0.03.
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FIGURE 5. a) Solution of (2.13) for (ba,T,ws) = (0.03,1000,25) with Frrae = 1.25. b) Same
except Finaz = 2. The location and shape of the topography (arbitrary amplitude) is shown at
the bottom of the plot. The light gray shading indicates the time when the forcing is in the
critical region, A,, < F(t) —1 < Ay, from (2.15) and (3.1).
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FIGURE 6. A(z,T/2) for (b, T, ws) = (0.03,1000, 25) and Fyuae as indicated. The location
and shape of the topography (arbitrary amplitude) is shown at the bottom of the plot.
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FIGURE 12. A(x,T/2) for wy = 75, T = 1000 and by = 0.03 with Fina as indicated.



22

R. Grimshaw and K. R. Helfrich

T=1000 b, =-0.03

F =1.25
max
F_ =1
max
F =0.75
max
0.25
|A
0
F =0.5
max
y N |
-500 0 500 1000

FIGURE 13. A(x,T/2) for wy = 75, T = 1000 and bys = —0.03 with Fina as indicated.



Internal solitary wave generation by tidal flow over topography 23

(a) (b)

05 - 05} .
e U
= —
—_ ~

0.4 E O+ 1
—_
h

g 03— Y go3p—

S =1 — ]

= =
~ ~~ k
—— -M —

e

02p———" \— - 0.2f 1
—— @ 0]
|— 00000 |

0.1 0.1} ]

10 20
A [m] ‘A[m]
0 ‘ ‘ ‘ ‘ 0 0 ‘ ‘ ‘ ‘ 0
-2 0 2 4 6 -2 0 2 4 6
el ] Eesof =

N N

ol— : ‘ ‘ ob— : ‘ ‘

-2 0 2 4 6 -2 0 2 4 6
x [km] x [km]

FIGURE 14. a) Numerical solution of the fKdV equation (2.13) for a representation of Stellwagen
Bank for an ebb tide with bys/h = 0.15, h = 85m and Fpe. = 1.5. b) Numerical solution of
the two-layer shallow water equations for an ebb tide with the actual topography, bas/h = 0.65,
and an maximum upstream F' = 0.24. The lower panels show the topography and the resting
interface position. The upper panels show the interface displacement through the tidal forcing.
The magnitude and direction of the barotropic flow are indicated by the heavy lines.
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FI1GURE 15. The same as Figure 14, but now for the flood tide.
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FIGURE 16. a) Numerical solution of the fKdV equation (2.13) for a representation of Knight
Inlet sill for a flood tide with by /h = 0.15, h = 100m and Fpee = 1.5. b) Numerical solution
of the two-layer shallow water equations for an ebb tide with the full topography, by /h = 0.4,
and an maximum upstream F' = 0.66. The lower panels show the topography and the resting
interface position. The upper panels show the interface displacement through the tidal forcing.
The magnitude and direction of the barotropic flow are indicated by the heavy lines.
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