
'WHOI-91-31
Ce I

Woods Hole
Oceanogrphic

hitituti.on

190 -
Benchmarking the Two-dimensional Finite Difference

Synthetic Seismogram Code

by'

J.M. Allen and R.A. Stephen

September 1991

Technical Report
Funding was provided by the Ofice of Navai Research

under Contract No. N00014-89-J-1012.

Approved for public release; distribution unlimited.

- -- -
DOCUMENT.

LIBRARY
. Woods HO;20C8JlwJraphic

Il1sÜ~:J~¡on

WHOI.91.31

Bencharking the Two-dimensional Finte Difference Synthetic Seismogram
Code

by

J.M. Allen and R.A. Stephen

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

September 1991

Tecca Report

Funding was provided by the Ofce of Naval Research

under Contract No. N00014-89-J-1012.

Reproduction in whole or in part is permitted for any purose of the United States
Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept.,

WHOI-91-31.

ir
ci~i:
ruÕ ..:i-ir~ ci:: - ci

a:
:: .-

ci
I'
ci
ci

Approved for public release; distribution unlimited.

Approed fo Dibution:

Contents

1 Introduction 1

2 Overview of benchmark results 1

3 Discussion of benchmark runs

3.1 VAX 4000, 6420, 8600, 8800,9000

3.2 DECstation 5000

3.3 IBM RS 6000 . .

3.4 SUN SPARCstation

3.5 Convex C220

3.6 Cray X-MP .

3.6.1 Logging onto the Cray X-MP

3.6.2 Using the Cray Operating System (COS)

3.6.3 Create COS Job Control Files. ,

3.6.4 Converting FORTRAN programs to run under COS

3.6.5 Running FINDIF on the Cray.

2

2

4

4

5

5

6

6

7

7

8

8

4 Summary 9

A Parameter and Batch files 11

B Accuracy of Results 13

C Cray JOB files 16

References 20

List of Tables

1

2

3

Timing results

Comparison of BMAX values for selected time steps

Performance statistics at time step 201

3

13

14

List of Figures

1 Comparison of benchmark times for the FINDIF code 10

ii

Abstract
During the past six months, the two-dimensional finite difference synthetic seismogram

code was installed and run on a number of different computer systems. The results were compared
for timing, accuracy and the ease with which the code was adapted to each system.

This report documents the software modifications and the methods used to implement the finite
difference code on each computer, and presents the results of the benchmark survey.

II

i Introduction

The finite difference method is used to solve the elastic wave equation in order to generate synthetic
seismograms in two-dimensions. The program that was used to benchmark the finite difference code
is described by Hunt, et al. (1983). The only modifications made to the code were those necessary
to make the code compile and run on each specific machine. Modifications are discussed in more
detail in section 3.

The software package consists of three programs, a model parameter input file and a batch

command file (VMS (g) or shell file (UNIX (g) to facilitate the execution ofthe program.

The model to be calculated is divided into three horizontal layers. The top layer is asigned the
physical properties of water and the bottom layer is the sub-surface stratum. Both of these layers
are assumed to be homogeneous, with a constant velocity structure. The layer between them is the
sea-floor boundary layer and contains the part of the model that varies. The velocities within this
layer are calculated by the SCNTBNY program.

The first Rrogram., SCNTPREP, reads the model parameter file and initializes the system for the
current modeL. The array bounds are calculated and written to a common file, SCOMFD8.FOR,
which is then included in the following two programs, SCNTBNY and SCNTDIF. These two pro-
grams are re-compiled for each new model so that the program size exactly matches the modeL. The
benchmark model that was calculated for this report requires approximately 15.2 Mb of memory.

The next step is to compile and run the program SCNTBNY, which sets up the transition zone
velocity structure. .

The final program, SCNTDIF, does the actual calculation of the elastic wave equation in two
dimensions by finite differences.

The output fies include 'snapshot' files generated at selected time steps, log files with accuracy
information and timing statistics and a time series file (if selected).

2 Overview of benchmark results

Table 1 shows the timing results of the benchmark runs; Appendix B contains a partial comparison
of the accuracy of the different machines.

The main difference in the code that was run on the various machines was in the subroutine
TIMIT.FOR, which calculates the timing statistics. The timing utilities on the various machines
were not always comparable. Whenever possible, CPU (system) time was measured but elapsed
time was also recorded. The benchmark runs were made in a "stand-alone" mode when possible but
on some of the larger time-sharing machines, other processes may have been running concurrently
with the benchmark process. In these instances, comparison of the elapsed and CPU times usually
indicated that there was little or no impact from the competing processes.

On computers with optimizing compilers, separate runs were made for each optimization leveL.
In the design of the programs, no effort was made to optimize the code for any particular machine
or machine architecture. The code was written to simply represent the physical phenomena in a
logical fashion.

The check for accuracy was made by comparing the values of the array A1DATA at selected

1

grid points at the end of each computer run. A1DATA is the array that contains the time series
at each receiver location.

The following sections describe how the benchmark program was run on each of the hardware
platforms.

3 Discussion of benchmark runs

The source code was installed on each computer in four separate sub-directories:

prep
bny
diff
cnt01

The prep sub-directory contains all of the source code for the SCNTPREP program. On
UNIX machines, there is a makefile; on computers running the VMS operating. system, there is a
file called SCNTPREP.LNK to perform the compilation and link. Similarly, the bnyand diff
sub-directories contain the source code and makefies or link files for the programs SCNTBNY and
SCNTDIF, respectively.

The sub-directory cnt01 contains the input model parameter Rle, CNT01.PARand a batch or
shell file used to run the series of programs (CNT01.BCH). The parameter file and some examples
of the batch and shell files used for this benchmark are shown in Appendix A. On some of the UNIX
machines, an additional shell fie (cnt01.sh) was used to generate the timing statistics via the UNIX
/bin/time utility.

The FORTRAN logical unit numbers were assigned in the VMS batch command files via the AS-
SIGN statement; on the Cray there is a COS (Cray Operating System) equivalent of the ASSIGN.
On the Convex, there is a setenv statement which performs the logical assignment but on the other
UNIX machines it was necessary to copy or rename the required fies to the filename fort.nn where
nn is the FORTRAN logical unit number to be assigned.

3.1 VAX 4000, 6420, 8600, 8800, 9000

All of the VAX/VMS computers (4000, 6420, 8600, 8800 and 9000) ran identical code. The timing
functions called in the TIMIT .FOR subroutine were the VAX/VMS library routines LIB$INIT _TIMER
and LIB$SHOW _TIMER.

As indicated in Appendix B,all of the VAX/VMS machines produced identical results.

The VAX 4000 is the new MicroVAX (uses the same CMOS ChipSet as the VAX6410). The
computer used in the benchmark had 128MB of memory. The VAX 4000 has a single processor and
no vector processor.

Although the VAX 6420 can do multiprocessing and can be configured with up to six processors,
the benchmark code was not parallelized. The VAX 6420 also has a vector processor; benchmark
runs were made both with and without vectorization.

The benchmark times for the VAX 4000 and the VAX 6420 run in scalar mode (not vectorized)

2

Time
Computer Date CPU (real) Elapsed Memory Comments
VAX 9000 21/12/90 0:09:08.74 0:10:46.26 512 mB scalar

21/12/90 0:07:47.22 0:09:25.23 512 mB vectorized
VAX 8800 12/6/90 1:27:33.94 1:42:49.93 48mB optimized (WHOI)

30/5/90 2:43:52.48 2:57:50.51 48mB not optimized (WHOI)
11/5/90 2:45:34.90 3:06:30.46 48mB not optimized (WHOI)
6/6/90 1:24:22.90 1:25:57.51 128 mB optimized (DEC)

VAX 8600 11/10/90 1:55:37.0 44mB optimized
8/11/90 1:19:00.0 44mB using FPS264, OPT=O
8/11/90 0:49:00.0 44mB using FPS264, OPT=1
9/11/90 0:34:00.0 44mB using FPS264, OPT=3

VAX 6420 23/5/90 1:07:05.87 1:08:28.77 128 mB scalar
0:57:00.00 0:59:00.00 128 mB vectorized

VAX 4000 10/7/90 1:06:34.54 1:08:27.04 128 mB
DEC 5000 5/2/91 1:37:56.8 1:58:11.0 16mB no optimization

6/2/91 1:15:09.2 1:18:45.1 16 mB optimization level -01
7/2/91 0:36:22.0 2:21:48.0 16 mB optimization level -02
8/2/91 0:36:03.6 1:04:04.3 16mB optimiz~tion level -03

IBM RS/6000 30/5/90 0:55:45.9 0:56:14.6 16 mB no optimization
model 320 13/6/90 0:55:44.9 0:56:30.4 16 mB no optimization

7/2/91 0:55:55.8 0:58:13.0 16 mB no optimization

2/1/91 0:13:33.4 0:15:05.2 16mB optimized
7/2/91 0:15:22.6 0:17:20.9 16mB optimized and inlined

SUN SPARC 2/1/91 2:58:45.2 3:15:22.3 40mB no optimlzation
model 4/60 2/6/91 1:29:37.3 1:42:47.6 40mB optimization level -03
CONVEX 30/ 5/90 0:58:48.0 128 mB no optimi~ation
model 220 8/ 6/90 0:55:32.0 128 mB no optimization

4/12/90 1:43:18.0 128 mB' no optimization (vers 6)
13/ 6/90 0:34:44.0 128 mB scalar level 0

4/12/90 0:35:01.0 128 mB scalar level 0 (vers 6)

13/ 6/90 0:31:19.0 128 mB scalar level 1

4/12/90 0:29:40.0 128 mB scalar level 1 (v~rs 6)

23/ 5/90 0:17:31.0 128 mB vectorized
25/ 5/90 0:17:19.0 128 mB vectorized
4/12/90 0:17:48.0 128 mB vectorized (vers 6)

CRAY X-MP 10/2/90 0:07:54.59 16mW 64-bit words

Table 1: Timing results

3

were nearly the same (Table 1). When the code was re-compiled using the VAX optimizing compiler
and run using the vector processor, the speed was not significantly improved.

The benchmark was run on two different VAX 8800'5, one at WHOI and one at DEC. The WHOI
VAX 8800 (48 mB memory) was not run in standalone mode but judging from the small difference
between the elapsed time and the CPU time, there was not a great load on the system. The code
was compiled both with and without optimization on the WHOI VAX 8800. Table 1 shows that the
optimized code was significantly faster. The optimized code run on the WHOI VAX 8800 (48 mB
of memory) was only slightly slower than the optimized code run in standalone mode on the DEC
VAX 8800 (128 mb of memory).

Four runs were made on the VAX 8600, using the four different levels of optimization available.
Without the FPS (Floating Point Accelerator), the VAX 8600 was comparable with the optimized
VAX 8800. Using the FPS considerably improved the speed.

The benchmark was run on a VAX 9000 both in scalar and vector mode. There was no significant
difference in the times of the two runs; the VAX 9000, in vector mode, had the fastest runtime of
all the hardware platforms tested.

3.2 DECstation 5000

The DECstation 5000 used in this study was running the ULTRIX operating system. The FOR-
TRAN code was identical to that run on the VAX machines running under VMS; the only modifi-
cation was to the batch command (shell) files. It is interesting to note, however, that the results of
the benchmark run on the DECstation 5000 were not identical to the results of the runs on the VAX
machines that were running VMS (Appendix B), although the results of the different optimization
levels on the DECstation 5000 were the same. The benchmark runs that were performed on UNIX
platforms were never identical, but varied after the fourth or fifth decimal place of precision. All
of the VAX/VMS runs produced identical results. There is apparently a floating-po\nt precision
difference in the various compilers that were used on the UNIX-based machines.

The DECstation 5000 FORTRAN 77 compiler (f77) allows for four levels of optimization:

-00 used to turn off all optimizations
-01 turn on all optimizations that complete quickly (default)
-0 or -02 invoke the global ucode optimizer

-03 perform all optimizations, include global register allocation

According to the online manual, when the highest level of optimization is specified (with the -03
flag), each FORTRAN 77 source file is compiled into a ucode object file with the extent .u. All files
are then ucode linked. Optimization is done on the resulting ucode linked file and then it is linked
as normal, producing an executable file.

3.3 IBM RS 6000

The IBM 6000 model 320 that was used in this study was running the UNIX System 5 operating
system. The IBM C timing function timeO as well as the UNIX /bin/time utility were used to
generate the timing statistics. The UNIX timing utility /bin/time was run from a shell, with the
output redirected to a file.

4

Modifications were made to several of the subroutines to remove the non-standard FORTRAN 77
code. In subroutines ZDIVCURL.F and ZSNPOUT.F the qualifier DISP='SAVE' was removed from
the OPEN and CLOSE statements. The non-standard qualifier CARRIAGECONTROL='LIST' was
removed from the OPEN statement in SOPNCOM.F.

To run the program SCNTPREP, the fie CNT01.PAR must be assigned to FORTRAN logical
unit number 55. Program SCNTBNY creates a file named CNT01.BNY which needs to be asociated
with FORTRAN logical unit number 54. The following lines were added to the file CNT01.BCH to
accomplish this:

Before running SCNTPREP: % cp CNT01.PAR fort.55
after running SCNTBNY: % mv CNT01.BNY fort.54

The IBM RS 6000 FORTRAN 77 compiler (xlf) has only one level of optimization available.
The benchmark code was compiled and run with no optimization and with optimization. Another
compiler option (-Q), which inlines all appropriate subprograms, was also tested. The optimized
code ran significantly faster than the non-optimized code. Inlining the code caused the performance
to deteriorate slightly (see Table 1). The results (from the *.LG4 files) were identical for all runs.

3.4 SUN SP ARCstation

The SUN SP ARCstation used to run the FINDIF code has 40 mB of memory and is running the
FORTRAN 77 compiler version 1.2.

On the SUN, the subroutine SOPNCOM.F was edited to remove the non-standard FORTRAN
77 qualifier CARRIAGECONTROL='LIST' in the OPEN statements. Subroutines ZSNPOUT.F,
ZDIVCRL.F and ZTSOUT.F were edited to remove the non-standard Fo.RTRAN 77 qualifier
DISP='SAVE' in the OPEN statements. Also, the call to DATE was commented out in subroutine
DATIM.F. The UNIX FORTRAN timing function dtimeO was used in subroutine timit.f.

,

The FORTRAN logical unit numbers were assigned in the same manner as on the IBM RS 6000.

On the SUN SPARCstation, runs were made with no optimization and with optimization level
-03 (global optimization). Optimization of the code reduced the runtime by approximately 50%.

The results of the two runs were identicaL.

3.5 Convex C220

The Convex C220 FORTRAN compiler operates at several different optimization levels. The FINDIF
code was compiled and run on the Convex at all of the optimization levels except for level 3 which
does parallel optimization. The first run was made with the -no compiler option selected; only

machine-dependent optimizations are performed at this level and they cannot be disabled.

The next level of optimization is selected by including the -00 compiler option. At this level,
local scalar optimization is performed. This optimization eliminates unnecessary computations on
sequences of code with one entrance and exit.

Global scalar optimization is selected with the -01 compiler option. At this level, optimization
is performed over entire program units, including conditional statements and loops.

Vectorization is selected by compiling the program with the -02 option. This option causes the

5

processor to use vector registers to calculate up to 128 elements of an array with a single instruction.
Local and global scalar optimization are also included.

The only modification required for the code was to use the Convex UNIX FORTRAN function
dtimeO in the subroutine timit.f.

A bug has been reported in the Convex optimizing FORTRAN compiler (Version 6.0) which has
the possibility of causing wrong answers with the -02 and -03 optimization levels. The results
of the FINDIF runs on the Convex are presented in Appendix B. Although the values that were
calculated at the different optimization levels are not identical, they are stil within the range of

differences found between the various platforms.

3.6 Cray X-MP

The FINDIF code was run on the Cray X-MP/216 located at the Naval Research Laboratory (NRL)
Central Computing Facility (CCF). The Cray is a dual procesor supercomputer with 16 milion
(64-bit) words of main memory. User interaction with the Cray is via a front-end computer. The
Cray at NRL runs under COS (Cray Operating SYSTEM) and is accessed via VAX front-ends,
running under VMS.

Editing and other file preparation was done on the VAX and submitted to the Cray for executionvia the CBATCH utility. .
Implementation of the benchmark programs on the Cray requited some modification of the FOR-

TRAN code and the development of COS Job Control Files to:

. transfer the source code and data files from the VAX onto the Cray

. compile the subroutines and programs on the Cray

. run the programs on the Cray

. transfer the log and output files from the Cray to the VAX

The following sections describe the process of logging onto the Cray, creating the Cray JOB files,
converting the FORTRAN programs to run under COS, running the FINDIF code on the Cray and
examining the results.

3.6.1 Logging onto the Cray X-MP

The NRL Cray can be accessed from WHOI via Internet. The procedure for logging onto the Cray
from the Red VAX is as follows:

$ telnet ccf.nrL.navy.mil

USERNAME: STEPHEN
PASSWORD:

6

3.6.2 Using the Cray Operating System (COS)

The Cray Operating System (COS) allows the user to submit, monitor and terminate batch jobs on
the Cray.

Some of the more useful COS commands include:

$ CRAY STATUS/OWNER lists any jobs currently running or waiting in the batch
queues and gives job sequence (jsq) number
show the status of jobs in the input queue and returns
their queue identification (qid) numbers
submits a JOB file to the Cray batch queues
permits display of a mesage whenever a file transfer
between Cray and VAX occurs

$ CRA Y KILL jsq stops a job and deletes its output files
$ CRA Y RELEASE jsq releases a job in holding status on the Cray
$ CRAY REMOVE qid removes the entry from the input queue

Programs are submitted to the Cray in batch. There are certain statements which must be

included in each job~ including the Cray account number and the user's password. CBATCH is
a utility developed at NRL to submit jobs to the Cray. CBATCH uses' a single encrypted file
($CRAY$.ACCOUNT) to store the required information (username, account number and pass-
word) and is the most secure method of submitting jobs: To submit a job using CBATCH, type:

$ CRA Y SHOW QUEUE

$ CBATCH jobfiename
$ CRAY SET TERMINAL INFORM

$ CBATCH job..le-iame

Cray passwords are set to expire every 90 days. When the password expires, you are required to
change it before Cray jobs wil run. To change the Cray password, the /NUPW qualifier is used on
the CBATCH command:

$ CBATCH/NUPW job..le-iame
New user password (NUPW): new_password

3.6.3 Create COS Job Control Files

All source code and data files (datasets) must be transferred (staged) to the Cray from the VAX
front-end before compilation and execution can occur. Files on the Cray are considered either local
or permanent. Local files are known only to a particular job and are lost when the job completes,
unless they are specifically saved. Permanent files are contained in the Cray Master File Directory
and must be made local in order to be accessed by a job.

The COS Job Control Language (JCL) is used to create JOB files to run programs on the Cray.
The basic commands are as follows:

7

CFT77
SEGLDR
FETCH
DISPOSE
SAVE
ACCESS
AUDIT
DELETE
ASSIGN
EXIT

compiles FORTRAN code
loads relocatable binaries into Cray memory
transfers a front-end file to the Cray (local)
transfers a local file from the Cray to the front-end
makes a local file permanent
makes a permanent file local to a job
displays a listing of permanent files
deletes a permanent dataset
used to asign files to Fortran logical unit numbers
allows for exit processing

The Cray JOB files created for the FINDIF code are included in Appendix C.

The FINDIF code consists of three programs. The first program, SCNTPREP, runs on the VAX
front-end, and creates the include files needed to run the other programs on the Cray. Input to
SCNTPREP is the file CNT01.PAR which describes the model to be calculated.

The next program, SCNTBNY, runs on the Cray, and creates a file CNT01.BNY which is required
by the final program SCNTDIF. All of the subroutines which do not require re-compilation at run-
time were transferred to the Cray, compiled and included in a binary module library.

3.6.4 Converting FORTRAN programs to run under COS

Several modifications were made to the standard FORTRAN 77 FINDIF programs. When a program
is compiled on the Cray, all INCLUDE files must be local (local dataset names consist of up to
7 characters, the first character must be an uppercase A through Z). Therefore, the INCLUDE
statements in the source code must contain the local dataset name (the name of the file that resides
on the Cray), not the name of the fie that resides on the VAX front-end.

The OPEN statements were removed from SLOGOUT.FOR and replaced by COS ASSIGN state-
ments in the .JOB fies. Unit 54 (CNT01.BNY) is for unformatted output. Unit 55 (èNT01.PAR)
is for input. Unit 66 is the output log file (CNT01.LGl).

3.6.5 Running FINDIF on the Cray

The CBATCH utility can also be invoked with options to change the default parameters that the
system uses to schedule and process the job. The CBATCH commands used to run the 3 programs
in the FINDIF code were:

$ CBATCH/P=2 PREP.JOB
$ CBATCH/P=2/MFL=12288000 BNY.JOB
$ CBATCH/P=2/MFL=12288000/T=800 DIFF.JOB

The /P=2 option submits the job at a priority level of2 (deferred priority). The /MFL=12288000
qualifier specifies that the maximum amount of memory available on the Cray is to be uséd for the
job. The /T=800 qualifier indicates the job's Cray CPU time limit in seconds (default is 60 sec-
onds).

The time series data are created on the Cray and then transferred back to the VAX front-end at
the end of the job in a file called diff.log. The timing statistics are found in the file diff.cpr.

8

The results of the Cray run of the FINDIF code are summarized in Appendix B. The values
for A1DATA and BMAX are considerably different from those calculated on other platforms.
The reason for this is unknown, although it should be mentioned that all arithmetic on the Cray is
calculated with 64-bit words.

The benchmark code was run again on the Convex using the -pd8 (and no optimization) compiler
option, which causes all arithmetic to be performed in double precision. The values of BMAX and
A1DATA were only slightly different from the Convex run with single precision arithmetic and
no optimization. The Cray results therefore remain suspicious, assuming that the 64-bit arithmetic
on the Cray is equivalent to the double precision arithmetic on the Convex. It was not possible to
resolve the problem with the FINDIF code on the Cray for this report.

4 Summary

The FINDIF code was run successfully on a number of hardware platforms and with various degrees
of compiler optimization. The values of BMAX (maximum value of the vertical displacement on
the whole grid at a given timestep) and A1DATA (array that contains the time series at each
receiver location) were output to a file after timestep 201. The values of BMAX and A1DATA
from each benchmark run are compared in Appendix B. On the VAX/VMS machines, the results
were always exactly the same; on the UNIX machines there were slight differences, probably due to
floating point round-off. In general, comparison of the results between different platforms was good
within 4 to 5 digits of precision. The only exception was the Cray, whose values were very different
from the rest.

The VAX 9000 (using the vectorizing compiler) and the Cray X-MP ran the benchmark code
the fastest (approximately 8 minutes), but the results of the Cray run are suspect. The IBM 6000
(optimized) and the Convex (vectorized) runs were next in speed at about 13.5 - 17.5 minutes.
Figure 1 shows the relative speeds of the hardware platforms discussed in this report.

9

Convex.
vector

Convex.
opt=!

Convex.
opt=O

Convex.
nopt

SUN SPARe
opt=3

SUN SPARC
nopt

IB lo 6000
Inllned

IBIo 6000
opt

IBIo 6000
nopt

DEe 5000
opt=3

DEe 5000
opt=2

DEe 5000
opt=!

DEe 5000
nopt

VAX .000

VAX 6.20
vector

VAX U20
scalar

VAX 8600.
opt=.5

VAX 8600.
opt=l

VAX 8600.
opt=O

VAX 8600.
opt

VAX 8800
nopt

VAX 8800
opt

VAX 9000
vector

VAX 9000
scalar

eray Xio-P

a 50 200100 150

Figure 1: Comparison of benchmark times (in minutes) for the FINDIF code
(* denotes elapsed time; no star denotes CPU time)

10

Appendices

A Parameter and Batch files
The following parameter file contains all of the input information required for the benchmark FIN-
DIF program (Hunt, et aI, 1983).

CNTOl - SOFT BOTTOM - HOMO - THIN
CNTO 1

1, 1, 0, -2, 1, 0, 0, 1

1201, 401, 201, 1, o . 000625 , o . 005 , 0.005
1, 201, 1, 1201, 12, 142
8, 50, 10, 50. 50
1.50, 0.0, 1.0, 1.7, 0.45, 1.42, 21, 223, 0.0, 0.0, 0.0
12, 1, 11, 2
11, 657.0, 0.146

The batch command fie used to run the benchmark FINDIF code on a computer running
VAX/VMS is:

$!
$! Command file to ru 2D finite differences programs
$! 10 May 1990
$!
$!
$!
$
$!
$
$
$
$

$
$
$
$

$
$!
$
$
$

$
$!
$

Define directories

DEFINE/TRANS=CONCEAL BENCH RNR2: (FIND. WSL 1 . JULIE.)

PUR *.LOG
PUR * .BNY
PUR * .LG*
PUR *. TSV
PUR *. VRT
PUR * .FOR
PUR *. TSP
PUR *. TSH
PUR *.HRZ

SET DEFAULT BENCH: (CNT01)
ASSIGN BENCH: (CNT01) CNT01. PAR FOR055
ASSIGN BENCH: (CNTO 1) CNTOl . BNY FORO 54
RUN BENCH: (PREP) SCNTPREP

! input parameter file
!output data file

set verify

11

$ COPY BENCH: (CNTOi)*.FOR BENCH: (BNY)*.*

$ SET DEFAULT BENCH: (BNY)

$ FOR SCNTBNYOi
$ ~SCNTBNYO i . LNK

$ SET DEFAULT BENCH: (CNTOi)

$ RUN BENCH: (BNY)SCNTBNYOi

$!
$ COPY BENCH: (CNTOi) *. FOR BENCH: (DIFF) * . *
$ SET DEFAULT BENCH: (DIFF)

$ FOR SCNTDIF. FOR

$ FOR SCNTTS9. FOR

$ FOR SCNTSUB7. FOR

$ ~SCNTDIF . UK

$ SET DEFAULT BENCH: (CNTOi)
$ RUN BENCH: (DIFF) SCNTDIF

$ set noverify
$!
$ EXIT
$!
$! End of command file

$!

The shell script used to run the benchmark FINDIF code on the Convex:

#
cd /mnt7 / julie/benchmark/ cntOi
rm *.log

rm *.BNY

rm * .LG*
rm *.TSV

rm *. VRT

rm *.FOR

rm *. TSP

rm *. TSH

rm *.HRZ

set en v FOR055 CNTO i . PAR

set en v FOR054 CNTO i . BNY

/mnt7 / julie/benchmark/prep/ scntprep
cp *.FOR /mnt7/julie/benchmark/bny

cd /mnt7/julie/benchmark/bny
make scntbnyOi
cd /mnt7/julie/benchmark/cntOi

/mnt7 / julie/benchmark/bny /scntbnyOi
cp * .FOR /mnt7/julie/benchmark/diff

cd /mnt7/ j ulie/benchmark/ diff
touch scntdif. f
touch scntts9. f

12

touch scntsub7. f
make scntdif

cd /mnt7/julie/benchmark/cnt01
/mnt7/julie/benchmark/diff/scntdif

B Accuracy of Results

Table 2 shows a comparison of the BMAX values at four different timesteps. BMAX corresponds
to vertical displacement; it is the maximum value on the whole grid at a particular timestep.

Table 2: Comparison of BMAX values for selected time steps

BMAX BMAX BMAX BMAX
Timestep=56, Timestep=104 Timestep=152 Timestep=200

Computer Point=1 Point=1 Point=1 Point=1

VAX 9000 0.1041646E+05 0.4976261E+06 0.6936726E+07 0.2869944E+08
VAX 8800 0.1041646£+05 0.4976261E+06 0.6936726E+07 0.2869944E+08
VAX 8600 0.2869944£+08
DEC 5000 0.1041644E+05 0.4976252E+06 o .6936703E+07 0.2869932£+08
IBM 6000 0.1041643E+05 0.4976249E+06 0.6936704E+07 o .2869926E+08
SUN SPARC 0.1041644E+05 0.4976251£+06 0.6936702E+07 0.2869933E+08
Convex (no) 0.1041643E+05 0.4976253E+06 0.6936711E+07 0.2869925E+08
Convex (sO) 0.1041643£+05 0.4976253E+06 0.693671 lE+u7 0.2869925£+08
Convex (sl) 0.1041644E+05 O.4976253E+06 0.6936706E+07 0.2869930E+08
Convex v6 (no) 0.1041644E+05 0.4976253E+06 0.6936706E+07 0.28a9932£+08
Convex v6 (sO) 0.1041643E+05 o .4976253E+06 0.693671IE+07 o .2869925E+08
Convex v6 (sI). 0.1041644E+05 0.4976253E+06 0.6936706E+07 0.2869930E+08
Convex v6 (v) 0.1041644E+05 0.4976249E+06 0.6936712E+07 0.2869922E+08
Convex (dp) 0.1041644E+05 0.4976249E+06 o .6936703E+07 0.2869928E+08
Cray X-MP 0.1041644E+05 0.4976280E+06 0.6936852E+07 0.2870085E+08

no no optimization
00 VAX 8600 optimization level 0
o 1 VAX 8600 optimization level 1
03 VAX 8600 optimization level 3
sO Convex 220 optimization level scalar 0
sl Convex 220 optimization level scalar 1

v Convex 220 optimization level vectorized
v6 Convex operating system version 6.0
dp double precision

13

Table 3 is a comparison of the values of the array AIDATA at selected grid points at the end of
the run (timestep 201). AIDATA is the array that contains the time series at each receiver location;
it corresponds to vertical displacement.

Table 3: Performance statistics at time step 201

Computer M=I,N=12 M=51,N=12 M=I,N=22 M=51,N=22

VAX 9000 1.0506451E+07 1.8830447E-08 60360.65 3.8512233E-08
VAX 8800 1.0506451E+07 1.8830447E-08 60360.65 3.8512233E-08
VAX 8600 (no) 1.0506451E+07 1.8830447E-08 60360.65 3.8512233E-08
VAX 8600 (00)
VAX 8600 (01)
VAX 8600 (03)
DEC 5000 1.0506432E+07 1.8830420E-08 60361.45 3.8511907E-08
IBM 6000 1.0506366E+07 1.8830317E-08 60360.61 3:8511843E-08
SUN SPARC 1.05064 E+07 1.88304 E-08 60359.8 3.85119 E-08
Convex (no) 1.0506382E+07 1.8830448E-08 60360.71 3.8511896E-08
Convex (sO) 1.0506382E+07 1.8830448E-08 60360.71 3.8511896E-08
Convex (sl) 1.0506408E+07 1.8830358E-08 60360.59 3.8511885E-08
Convex v6 (no) 1.0506388E+07 1.8830358E-08 60360.50 3.8511867E-08
Convex v6 (sO) 1.0506382E+07 1.8830448E-08 60360.71 3.8511896E-08
Convex v6 (sl) 1.0506408E+07 1.8830358E-08 60360.59 3.8511885E-08
Convex v6 (v) 1.0506348E+07 1.8830351 E-08 60360.80 3.8511939E-08
Convex (dp) 1.0506393E+07 1.8830345E-08 60360.42 3.8511928E-08
Cray X-MP 1.0507879E+07 1.8821599E-08 56352.02 1. 18 13f52E-08

Computer. . M=I,N=32 M=51,N=32 M=I,N:=42 M=51,N=42

VAX 9000 2819.799 2.7487550E-09 207.6557 3.8319286E-14
VAX 8800 2819.799 2.7487550E-09 207.6557 3.8319286&-14
VAX 8600 2819.799 2.7487550E-09 207.6557 3.8319286E-14
DEC 5000 2819.736 2.7487332E-09 207.6548 3.8318961E-14
IBM 6000 2819.782 2.7487286E-09 207.6547 3.8318883E-14
SUN SPARC 2819.80 2.74873 E-09 207.655 3.83190 E-14
Convex (no) 2819.763 2.7487332E-09 207.6545 3.8318961E-14
Convex (sO) 2819.763 2.7487332E-09 207.6545 3.8318961E-14
Convex (sl) 2819.743 2.7487337E-09 207.6547 3.8318957E-14
Convex v6 (no) 2819.741 2.7487326E-09 207.6548 3.8318957E-14
Convex v6 (sO) 2819.763 2.7487332E-U9 207.6545 3.8318961E-14
Convex v6 (sl) 2819.743 2.7487337E-09 207.6547 3.8318957E-14
Convex v6 (v) 2819.790 2.7487324E-09 207.6548 3.8318961E-14
Convex (dp) 2819.775 2.7487343E-09 207.6547 3.8319003E-14
Cray X-MP 372.265 2.7143833E-13 2.009895 9.0819405E-24

14

Table 3, continued.

Computer M=1,N=52 M=51,N=52 M=1,N=62 M=51,N=62

VAX 9000 3.038062 1.3996069E-21 1.4176460E-04 3.9228071E-31
VAX 8800 3.038062 1.3996069E-21 1.4176460E-04 3. 9228071E-3 1
VAX 8600 3.038062 1.3996069E-21 1.4176460E-04 3 .9228071E-3 1
DEC 5000 3.038037 1.3995938E-21 1.4176313E-04 3.9227662E-31
IBM 6000 3.038038 1.3995912E-21 1.417631OE-04 3.9227601E-31
SUN SPARC 3.03804 1.39959 E-21 1.41763 E-04 3.92277 E-31
Convex (no) 3.038034 1.3995939E-21 1.4176313E-04 3.9227619E-31
Convex (sO) 3.038034 1.3995939E-21 1.4176313E-04 3.9227619E-31
Convex (sl) 3.038038 1.3995938E-21 1.4176322E-04 3.9227610E-31
Convex v6 (no) 3.038039 1.3995936E-21 1.4176317E-04 3.9227615E-31
Convex v6 (sO) 3.038034 1.3995939E-21 1.4176313E-04 3.9227619E-31
Convex v6 (sl) 3.038038 1.3995938E-21 1.4176322E-04 3.9227610E-31
Convex v6 (v) 3.038034 1.3995938E-21 1.4176316E-04 3.9227624E-31
Convex (dp) 3.038037 1.3995968E-21 1.4176334E-04 3.9227794E-31
Cray X-MP 2.2160686E-03 3.4794050E-37 1.0939469E-07 5.0383479E-52

Computer M=I,N=72 M=51,N=72 M=I,N=82 M=51,N=82

VAX 9000 1.0583878E- 11 O. 7. 1139738E-21 O.
VAX 8800 1.0583878E-11 O. 7.1139738E-21 O.
VAX 8600 1.0583878E- 11 O. 7.1139738E-21 O.
D EC 5000 1.0583762E-11 1. 7025776E-42 7. 1138930E-21 O.
IBM 6000 L0583759E-11 1.7011 763E-42 7.1138890E-21 O. .
SUN SPARC 1.05838 E-11 1. 70258 E-42 7.11389 E-21 O.
Convex (no) 1.0583762E-11 O. 7. 1138938E-21 O.
Convex (sO) 1.0583762E- 11 O. 7.1138938E-21 O.
Convex (sl) 1.0583767E-11 O. 7.1138938E-21 O.
Convex v6 (no) 1.0583764E-11 O. 7. 1138946E-21 O.
Convex v6 (sO) 1.0583762E- 1 1 O. 7. 1138938E:2 1 O.
Convex v6 (sl) 1.0583767E-11 O. 7. 1138938E-21 O.
Convex v6 (v) 1.0583765E-11 O. 7. 1138946E-21 O. ,
Convex (dp) 1 .0583786E- 1 1 1. 7108603E-42 7.1139143E-21 1.8141990E-55
Cray X-Mp. 2.5145367E-14 7.0540859E-67 4.2665326E-23 7.6653262E-83

Computer M=I,N=92 M=51,N=92 M=1,N=102 M=51,N=102

VAX 9000 1.0261487E-31 o. o. o.
VAX 8800 1.0261487E-31 o. O. o.
VAX 8600 1.0261487E-31 O. O. O.
DEC 5000 1.0261366E-31 O. 5.6051939E-44 O.
IBM 6000 1.0261362E-31 O. 4.6242849E-44 O.
SUN SPARC 1.02614 E-31 o. 5.60519 E-44 O.
Convex (no) 1.0261380E-31 O. O. O.
Convex (sO) 1.0261380E-31 O. O. O.
Convex (sl) 1.0261380E-31 O. O. O.
Convex v6 (no) 1.0261382E-31 O. O. O.
Convex v6 (sO) 1.0261380E-31 O. O. O.
Convex v6 (v) 1.0261387E-31 O. O. O.
Convex (dp) 1.0261406E-31 6.0940049E-70 5.2429849E-44 7.3540342E-86
Cray X-l\fP 2.4992885E-33 5.6515166E-I00 1.1158869E-45 2.7138691E-118

15

C Cray JOB files

This appendix contains listings of the Cray JOB files used to run the benchmark programs on the
Cray XM-P at the Naval Research Laboratory.

*

* BNY. JOB - compile, link and ru scntbny
*

* Written by J. Allen

* 27 September 1990
*

FETCH, DN=SRC, TEXT = , SCNTBNY . FOR' .
FETCH, DN=SMODPAR, TEXT = 'SMODPAR.INC'.

FETCH, DN=SCOMFD8, TEXT = , COMFD8. INC' .
FETCH, DN=SIOUNIT, TEXT = , SIOUNIT . INC' .
CFT77 , I=SRC, ON=MX, L=LISTDN.

DISPOSE, DN=LISTDN, TEXT = , SCNTBNY . LIS' .
ACCESS, DN=FDOLB.

SEGLDR, LIB=FDOLB, ABS=BNYEXE, MAP=STAT.

SAVE, DN=BNYEXE.

FETCH, DN=CNT01, TEXT = 'CNT01.PAR'.

ASSIGN, DN=CNT01, A=FTSS.

ASSIGN, DN=BNYOUT, A=FTS4.

ASSIGN, DN=BNYLOG, A=FT66.

BNYEXE.

SAVE, DN=BNYOUT.

DISPOSE, DN=BNYLOG, TEXT=' BNY . LOG' .
EXIT.

*

* DIFF. JOB - compile, link and ru scntdif
*

* Written by J. Allen

* 27 September 1990
*

FETCH, DN=SRC, TEXT = ' SCNTDIF . FOR' .
FETCH, DN=SMODP AR, TEXT = , SMODP AR. INC' .
FETCH, DN=SCOMFD8, TEXT = ' COMFD8 . INC' .
FETCH, DN=SIOUNIT, TEXT = , SIOUNIT . INC' .
FETCH, DN=SCBLCK, TEXT = , SCBLCK. INC' .
CFT77, I=SRC, ON=MX, L=LISTDN.

DISPOSE, DN=LISTDN, TEXT = , SCNTDIF . LIS' .
FETCH, DN=SUB 1, TEXT = ' SCNTTS9 . FOR' .
CFT77, I=SUB1, ON=MX, L=LISTDN.

16

DISPOSE, DN=LISTDN, TEXT = 'SCNTTS9. LIS' .
FETCH, DN=SUB2, TEXT = 'SCNTSUB7 .FOR'.
CFT77 , I=SUB2, ON=MX, L=LISTDN.

DISPOSE, DN=LISTDN, TEXT = 'SCNTSUB7. LIS' .
FETCH, DN=SUB3, TEXT = 'ZDIVCRL.FOR'.
CFT77 , I=SUB3, ON=MX, L=LISTDN.

DISPOSE, DN=LISTDN, TEXT = 'ZDIVCRL. LIS' .
ACCESS, DN=FDOLB.

SEGLDR, LIB=FDOLB, ABS=DIFEXE, MAP=STAT.

FETCH, DN=CNT01, TEXT = 'CNT01.PAR'.

ASSIGN, DN=CNT01, A=FT55.

ACCESS, DN=BNYOUT.

ASSIGN, DN=BNYOUT, A=FT54.

ASSIGN, DN=DIFLOG, A=FT66.

DIFEXE.
DISPOSE, DN=DIFLOG, TEXT='DIF.LOG'.

SAVE, DN=HRZ0005.

SAVE, DN=VRTOOOS.

SAVE, DN=HRZ0010.

SAVE, DN=VRT0010.

SA VE, DN=HRZ0015.
SAVE, DN=VRT0015.

SA VE, DN=HRZ0020.
SAVE, DN=VRT0020.

SAVE, DN=CNT01TSH.

SAVE, DN=CNT01 TSP .
SAVE, DN=CNT01TSV.

AUDIT.
EXIT.

*

* PREP. JOB - compile, link and ru scntprep
*

* Written by J. Allen

* 26 September 1990
*

FETCH, DN=SRC, TEXT = 'SCNTPREP. FOR' .
FETCH, DN=SMODPAR, TEXT = 'SMODPAR.INC'.
CFT77 , I=SRC, ON=MX, L=LISTDN.

DISPOSE, DN=LISTDN, TEXT = 'SCNTPREP. LIS' .
ACCESS, DN=FDLIB, PDN=FDOLB.

SEGLDR, LIB=FDLIB, ABS=PREPEXE, MAP=ST AT.

SAVE, DN=PREPEXE.

FETCH, DN=CNTO 1, TEXT = 'CNTO 1 . PAR' .
ASSIGN, DN=CNT01, A=FTS5.

ASSIGN, DN=COMFD8, A=FT02.

ASSIGN, DN=COMSOR, A=FT03.

17

PREPEXE.
DISPOSE. DN=COMFD8, TEXT=) COMFD8. INC) .
DISPOSE. DN=COMSOR, TEXT=) COMSOR. INC) .
DELETE, PDN=PREPEXE, ED=-1.

EXIT.

18

Acknowledgement
We wish to thank the following for providing computing resources for the tests of the FINDIF

code:

SACLANT Undersea Research Center for the tests on the VAX 8600 and FPS264,

Naval Research Laboratory Central Computing Facility for use of the Cray X-MP, and

Digital Equipment Corporation for running the benchmark on the VAX 4000, VAX 8800 and
VAX 9000.

We also thank W.S. Little for the valuable asistance he provided during the preparation of this
report.

This work was funded by the Offce of Naval Research under Grant Number NOOOI4-89-J-I012.

19

References

Hunt, Mary M., Lee Gove and Ralph A. Stephen, 1983, FINDIF: A Software Package to Create
Synthetic Seismograms by Finite Differences, Woods Hole Oceanographic Institution Technical
Report, WHOI-83-42, 45pp.

20

DOCUMNT LIBRAY

Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92093

Hancock Library of Biology &
Oceanography

Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Offce of the International
Ice Patrol

c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library
Skid away Institute of Oceanography
P.O. Box 13687
Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center

Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Dohert Geological

Observatory
Columbia University
Palisades, NY 10964

Library
Serials Department
Oregon State University
Corvalls, OR 97331

March 11, 1991

Distrution Listfor Technical Report Exchange

Pell Marine Sdence Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collecton
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Sdence
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Offce
Stennis Space Center
NSTL, MS 39522-5001

Marine Sdences Collection
Mayaguez Campus Library
University of Puerto Rico
Mayaguez, Puerto Rico 00708

Library
Institute of Oceanographic Sdences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 5UB
UNITED KINGDOM

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538
Hobart, Tasmania
AUSTRALIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM

Mac 90-32

50272-101

REPORT DOCUMENTATION 11. REPORT NO.PAGE WHOI-91-31
4. Title and Subtitle

Benchmarking the Two-dimensional Finite Difference Synthetic
Seismogram Code

2. 3. Reclplent's Accession No.

5. Repo Date
September 1991

6.

7. Author(s) J.M. Allen and R.A. Stephen 8. Performing Organization Rept. No.

WHOI-91-31
10. ProjectlaskIork Unit No.9. Performing Organization Name and Address

Woods Hole Oceogrphic Institution
Woods Hole, Masahusett 02543

11. Contract(C) or Grant(G) No.

(C) NOOI4-89-J-1012

(G)

Office of Naval Reseh

13. Type of Repo & Period Covere

Technica Report

12. Sponsoring Organization Name and Address

14.

15. Supplementary Notes

This report should be cited as: Woos Hole Oceaog. InsL Tech. RepL, WHOI-91-31.

16. Abstract (Limit: 200 words)

Durng the past six months, the two-dimensional finite difference synthetic seismogr code was instaed and ru on a
number of different computer systems. The results were compa for timing, accurcy and the ea with which the code was
adapte to each system.

This report documents the softwar modifcaons and the method us to implement the finite diference code on each
computer, and presnts the results of the benchmark surey.

17. Document Analysis a. Descriptors

synthetic seismograms
finite diferences
benchmaks

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availabilty Statement 19. Security Class (This Report)

UNCLASSIFIED
21. No. of Pages

23
22. PriceApproved for public releas; ditrbution unlimited. 20. Security Class (This Page)

(See ANSI-Z39.18) See/nslrucl/ons on Reverse OPTIONAL FORM 272 (4-77
(Formerly NTIS-35)
Department of Commerce

