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Abstract

A Reynolds-averaged Euler-Lagrange sediment transport model (CFDEM-EIM) was de-

veloped for steady sheet flow, where the inter-granular interactions were resolved and the

flow turbulence was modeled with a low Reynolds number corrected k − ω turbulence

closure modified for two-phase flows. To model the effect of turbulence on the sediment

suspension, the interaction between the turbulent eddies and particles was simulated with

an eddy interaction model (EIM). The EIM was first calibrated with measurements from

dilute suspension experiments. We demonstrated that the eddy-interaction model was

able to reproduce the well-known Rouse profile for suspended sediment concentration.

The model results were found to be sensitive to the choice of the coefficient, C0, asso-

ciated with the turbulence-sediment interaction time. A value C0 = 3 was suggested to

match the measured concentration in the dilute suspension. The calibrated CFDEM-

EIM was used to model a steady sheet flow experiment of lightweight coarse particles

and yielded reasonable agreements with measured velocity, concentration and turbulence

kinetic energy profiles. Further numerical experiments for sheet flow suggested that when

C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended

sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Ad-
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ditional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that

CFDEM-EIM was capable of predicting sediment transport rates similar to empirical

formulations. Based on the analysis of sediment transport rate and transport layer thick-

ness, the EIM and the resulting suspended load were shown to be important when the

fall parameter is less than 1.25.

Keywords: Euler-Lagrange model, eddy interaction model, turbulent suspension,

steady sheet flow, Rouse profile, sediment transport rate

1. Introduction1

Studying sediment transport in rivers and coastal regions is critical to understand2

the fluvial geomorphology, loss of wetland, and beach erosion. For example, significant3

engineering efforts were devoted to control the river discharge and sediment budget to4

reduce the loss of Louisiana wetland (Mossa, 1996; Allison et al., 2012). In the Indian5

River inlet, significant erosion of the north beach is mitigated through proper beach6

nourishment that interacts with littoral drift (Keshtpoor et al., 2013). The characteristics7

of sediment transport vary significantly with sediment properties and flow conditions, and8

it is widely believed that sheet flow plays a dominant role in nearshore beach erosion and9

riverine sediment delivery, especially during storm and flood conditions, respectively.10

Sheet flow is an intense sediment transport mode, in which a thick layer of concen-11

trated sediment is mobilized above the quasi-static bed. The conventional single-phase-12

based sediment transport models assume the dynamics of transport can be subjectively13

separated into bedload and suspended load (e.g., van Rijn, 1984a,b). While the suspended14

load are directly resolved, the bedload are parameterized by empirical formulations. Sev-15

eral laboratory measurements of sheet flow with the full profile of sediment transport flux16

and net transport rate indicated that the split of bedload and suspended load may be17

too simple because sediment entrainment/deposition is a continuous and highly dynamic18

process near the mobile bed (e.g., O’Donoghue and Wright, 2004; Revil-Baudard et al.,19

2015). In sheet flow, the two prevailing mechanisms driving the sediment transport are20

inter-granular interactions and turbulent suspension (Revil-Baudard et al., 2015; Jenkins21
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and Hanes, 1998). In order to model the full profile of sediment transport, both mech-22

anisms must be taken into account. In the past decade, many Eulerian two-phase flow23

models have been developed for sheet flow transport in steady (Jenkins and Hanes, 1998;24

Longo, 2005; Revil-Baudard and Chauchat, 2013) and oscillatory flows (Dong and Zhang,25

2002; Hsu et al., 2004; Amoudry et al., 2008; Liu and Sato, 2006; Chen et al., 2011;26

Cheng et al., 2017a). By solving the mass and momentum equations of fluid phase and27

sediment phase with appropriate closures for interphase momentum transfer, turbulence,28

and intergranular stresses, these models are able to resolve the entire profiles of sediment29

transport without the assumption of bedload and suspended load.30

In the continuum description of the sediment phase, the assumption of uniform par-31

ticle properties and spherical particle shapes are usually adopted. To better capture the32

polydisperse nature of sediment transport and irregular particle shapes, the Lagrangian33

approach for the particle phase, namely the Discrete Element Method (DEM, Cundall and34

Strack, 1979; Maurin et al., 2015; Sun and Xiao, 2016a) is superior to the Eulerian ap-35

proach because individual particle properties may be uniquely specified (Calantoni et al.,36

2004; Harada and Gotoh, 2008; Fukuoka et al., 2014). One of the main challenges in mod-37

eling sheet flow arise from the various length scales involved in inter-granular interactions38

and sediment-turbulence interactions. To resolve the flow turbulence and turbulence-39

sediment interactions in sheet flow, the computational domain needs to be sufficiently40

large to resolve the largest eddies, while the grid resolution should be small enough to41

resolve the energy containing turbulent eddies. This constrain becomes even more chal-42

lenging in the Euler-Lagrange modeling framework. Large domains require both a large43

number of grid points to resolve a sufficient amount of turbulence energy cascade (i.e.,44

large-eddy simulation) and a large number of particles in a given simulation (e.g., Finn45

et al., 2016). It is well-established that in sheet flow, the transport layer thickness scales46

with the grain size and the Shields parameter (Wilson, 1987), suggesting that a common47

sheet flow layer thickness must be about several tens of grain diameters. To simulate48

the largest eddies and their subsequent cascade, the domain lengths in the two horizontal49

directions must be proportional to the boundary layer thickness, which is usually about50
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several tens of centimeters. For a bed layer thickness of 50 grains with a typical grain51

diameter of 0.2 mm, sheet flow simulations may require at least several tens of millions52

of particles. Therefore, to efficiently model sediment transport for many scenarios in53

sheet flow, a turbulence-averaged approach for the carrier phase may be necessary. In a54

turbulence-averaged formulation, turbulent eddies are not resolved and their effects on55

the averaged flow field are often parameterized via eddy viscosity. In this case, the domain56

lengths in the two horizontal directions are solely determined by the largest length scale57

of inter-granular interaction, which is usually captured within 50 grain diameters (Maurin58

et al., 2015). Consequently, the number of particles needed for each sheet flow simulation59

is limited to no more than a few hundred thousand.60

With a goal to develop a robust open-source coupled Computational Fluid Dynamics -61

Discrete Element Method (CFD-DEM) for sheet flow applications, we adopt a turbulence-62

averaged approach in this study. Existing Reynolds-averaged CFD-DEM models have the63

capability to model bedload transport (Durán et al., 2012; Maurin et al., 2015) and sheet64

flow for coarse sand (Drake and Calantoni, 2001), where the inter-granular interactions65

are dominant, and the turbulent suspension is of minor importance. The previous studies66

made significant progresses in understanding the sediment dynamics due to intergranu-67

lar collisions and interactions with the mean flow, and the key characteristics such as68

sediment transport rate and transport layer thickness close to the empirical formulations69

were obtained. In more energetic sheet flows with medium to fine sand particles, the70

role of turbulence-induced suspension can become important, where substantial sediment71

suspension occurs above the bedload layer (Bagnold, 1966; Sumer et al., 1996). In such72

condition, a more complete closure models for turbulent suspension and turbulence modu-73

lation by particles are needed. The natural way of describing the diffusion and dispersion74

of dispersed particles is to sample the turbulent velocity statistics along their trajectories75

in a stochastic manner (Taylor, 1922), and this idea lays the foundation of modeling the76

turbulent motions of particles with a Lagrangian approach.77

In the stochastic Lagrange model for particle dispersion, the turbulent agitation to78

the sediment particles are considered either through a random-walk model (RWM) or an79
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eddy interaction model (EIM). In the RWM framework, the strength of particle velocity80

fluctuations are typically assumed to be similar to the fluid turbulence, and a series81

of random velocity fluctuations are directly added to the particle velocities. While the82

Lagrange model with RWM is successful in studying the particle dispersion in mixing83

layer (Coimbra et al., 1998) and dilute suspension (Shi and Yu, 2015), the assumption of84

estimating the particle velocity fluctuations based on the fluid turbulence is crucial, and85

many researchers found that the correlation between the particle and fluid fluctuations86

are highly dependent on the particle Stokes number, St = tp/tl (Balachandar and Eaton,87

2010), where tp is the particle response time, and tl is the characteristic time scale of88

energetic eddies. For the particles with very small inertia (St � 1), they can closely89

follow the eddy motion. However, if St � 1, the particle trajectory is hardly affected90

by the fluid eddy motion. Due to the particle inertia effect, it was found that the fluid91

turbulent intensity needs to be enhanced for medium to coarse particles (Shi and Yu,92

2015). This problem can be largely remedied by the EIM (Matida et al., 2004), where93

the fluid velocity fluctuations associated with the fluid turbulence are added through the94

particle-sediment interaction force, i.e., the drag force. This approach incorporates the95

particle inertia effect naturally and it is applicable for a wide range of sediment properties.96

Graham (1996) found that the dispersion of inertial particles may be correctly represented97

with a suitable choice of maximum interaction time and length scales with the eddies.98

This model was later improved by using a randomly sampled eddy interaction time, in99

which more realistic turbulent scales become possible, and the enhanced dispersion of100

high-inertia particles are captured. In the previous studies of particle dispersion (e.g., Shi101

and Yu, 2015), the turbulent intensity is either prescribed from the empirical formula, or102

modeled using clear fluid turbulence closure without considering turbulence modulation103

by the presence of particles. In sheet flow, it is well-known that the sediment-turbulence104

interaction is important in attenuating the flow turbulence, thus the presence of sediment105

can dissipate/enhance flow turbulence through drag/density stratification.106

In this paper, we present an application of the eddy interaction model (EIM) in a107

Reynolds-averaged Euler-Lagrange formulation to study sheet flow. The eddy interaction108
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model is implemented into an open source coupled CFD-DEM scheme called CFDEM109

(Goniva et al., 2012), and the new solver is called CFDEM-EIM. The fluid phase is110

modeled in a similar way as the Eulerian two-phase flow model SedFOAM (Cheng et al.,111

2017a), and the particles are modeled with the discrete particle model, LIGGGHTS (Kloss112

et al., 2012). The paper is organized in the following manner. The model formulation113

is described in Section 2. The model calibration with dilute suspension experiments is114

presented in Section 3.1, followed by model validation of steady sheet flow (Section 3.2)115

using a comprehensive dataset (Revil-Baudard et al., 2015, 2016). Section 4 discusses116

the model sensitivity of the resulting sediment diffusivity and Schmidt number to model117

coefficients in the eddy interaction scheme, and effects of the EIM on the modeled sediment118

transport rate and transport layer thickness are also evaluated. Finally, a practical regime119

for the EIM to be important is proposed based on the fall parameter. Concluding remarks120

are given in Section 5.121

2. Model formulations122

2.1. Discrete particle model123

In the framework of the discrete element method (Cundall and Strack, 1979), the124

position of each particle is tracked by integrating the particle equation of motion,125

dxp,i
dt

= vi, (1)

where xp,i is the position of particle i and vi is the translational velocity. The governing126

equation for the translational motion of particle i with radius ri and mass mi may be127

written as,128

mi
dvi
dt

= fpf,i +
Nc∑
j=1

(fn,ij + ft,ij) +mig. (2)

The forces acting on the i-th particle include the particle-fluid interaction force, fpf,i, the129

gravitational force, mig, and the normal, fn,ij, and tangential, ft,ij, contact forces where130

Nc is the number of particles in contact with the particle i. The rotational motion of131
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particle i with moment of inertia Ii may be written as,132

Ii
dΩi

dt
=

Nc∑
j=1

(Mt,ij + Mr,ij), (3)

where Ωi is the angular velocity of particle i. The torque acting on particle i from133

particle j consists of two components. Closures are used for Mt,ij, which is generated by134

the tangential force, and Mr,ij, which is commonly known as the rolling friction torque135

(Luding, 2008).136

To model grain contact forces, we adopt the soft-sphere approach (Cundall and Strack,137

1979) based on Hertz-Mindlin theory. Hertz theory is implemented in the normal di-138

rection, and the improved Mindlin no-slip model is implemented in the shear direction139

(Mindlin, 1949). In the soft-sphere model (e.g., Di Renzo and Di Maio, 2005), particles are140

allowed to overlap slightly, and the contact between two particles may be described as a141

nonlinear spring-dashpot, where the normal contact force, fn,ij, is determined by the over-142

lap, δij, and relative velocity between colliding particles, Vr,ij, while the tangental force,143

ft,ij, is calculated in a similar way and includes the tangental contact history. In addition,144

if the tangential force exceeds the Coulomb frictional limit, the particles begin to slide,145

and the tangential force is set to ft,ij = µcfn,ij, where µc is the Coulomb friction coefficient.146

In the present study, we only consider the torque induced by particle-particle/particle-wall147

contact, and the influence of fluid-induced torque is ignored.148

In general, the particle-fluid interaction force, fpf , is the sum of all types of particle-149

fluid interaction forces on individual particles by fluid, including the so-called drag force,150

fd, the pressure gradient force, fp, buoyancy force if assuming locally hydrostatic flow,151

virtual mass force, fvm, Basset force, fB and lift forces such as the Saffman force, fSaff , and152

the Magnus force, fMag. We assume that the fluid and particles share the pressure field,153

thus the fluid pressure gradient force is also included in the fluid-particle interactions154

(Maxey and Riley, 1983; Zhou et al., 2010). In CFDEM-EIM, only the two dominant155

forces, namely the drag force and pressure gradient force, are retained. Here the total156

fluid-particle interaction force acting on particle i may be written as,157

fpf,i = fd,i + fp,i. (4)
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The pressure gradient force acting on particle i is calculated as,158

fp,i = (fx,i −∇ip) · Vi, (5)

where fx,i is the external body force driving the steady flow. ∇ip is the interpolated fluid159

pressure gradient at particle i, and Vi is the volume of particle i. The drag force acting160

on particle i is expressed as,161

fd,i =
1

2
CDAs,i |uf,i − vi| (uf,i − vi) , (6)

where uf,i is the instantaneous fluid velocity interpolated at particle i, and As,i is the pro-162

jected area of the i-th spherical particle (or equivalent spherical particle for non-spherical163

particles). According to the Reynolds decomposition, the instantaneous fluid velocity164

is decomposed into the Reynolds-averaged component uf,i and the turbulent fluctuating165

component u′f,i. In CFDEM-EIM, the Reynolds-averaged velocities are provided by the166

carrier fluid model. While the turbulent fluctuating component is modeled with an ad-167

ditional eddy-interaction closure (see Section 2.4). To generalize the drag coefficient for168

both spherical and non-spherical particles, the drag coefficient CD is given by (Haider and169

Levenspiel, 1989),170

CD = f(φ)

[
24

Rep
(1 + A ·RepB) +

C

1 +D/Rep

]
, (7)

where Rep = (1 − φ) |uf,i − vi| di/νf is the particle Reynolds number, νf is the fluid171

kinematic viscosity, and di is the diameter of the spherical particle or an equivalent sphere172

that has the same volume as the non-spherical particle. The four parameters A,B,C, and173

D are proposed to be functions of particle sphericity, η, with174

A = exp
(
2.3288− 6.4581η + 2.4486η2

)
, (8)

B = 0.0964 + 0.5565η, (9)

C = exp
(
4.905− 13.8944η + 18.4222η2 − 10.2599η3

)
, (10)

D = exp
(
1.4681 + 12.2584η − 20.7322η2 + 15.8855η3

)
. (11)

For spherical particles, η = 1, and for nonspherical particles, η < 1. In the drag coefficient175

(Eqn. 7), a correction for particle concentration, f(φ), is introduced to take into account176
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the hindered settling effect (Di Felice, 1994),177

f(φ) = (1− φ)2−n. (12)

where, the empirical exponent, n, is related to the particle Reynolds number,178

n = 3.7− 0.65 exp

[
−(1.5− log10Rep)

2

2

]
. (13)

The local sediment concentration, φ, is calculated by averaging the sediment instantaneous179

sediment concentration within one CFD time step,180

φ =
1

Ns

Ns∑
j=1

φj, (14)

where Ns is number of DEM time steps within one CFD time step (see more details181

in Section 2.5), the divided volume fraction model (Goniva et al., 2012) is used for the182

instantaneous sediment concentration at each DEM time step, where the particle volumes183

are divided into 29 parts using the satellite points, and the volumes are distributed into184

the touched fluid grid cells. The model works well when particle size is similar to the185

mesh size.186

2.2. Fluid phase governing equations187

In contrast of the particle phase, the fluid phase is solved in an Eulerian framework188

and the coupled Euler-Lagrange system follows the so-called model “A” (e.g., Zhou et al.,189

2010). By further carrying out Reynolds-averaging, the fluid momentum equation may190

be written as,191

∂ρf (1− φ)uf
∂t

+∇·
[
ρf (1− φ)ufuf

]
= (1−φ)fx−(1−φ)∇p+∇·τf+ρf (1−φ)g+Fd, (15)

where the overbar ‘ ’ denotes the ensemble-averaged fields, ρf is the fluid density. The192

first term on the right-hand-side (R.H.S.) is the external body force that drives the steady193

flow. The second term on R.H.S. is the pressure gradient force. τf is the total fluid stress194

tensor, which includes the viscous stress (τν) and the Reynolds stress (τft). The last term195
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on the R.H.S. is the sum of the drag force from the particles within the fluid grid volume196

(Vcell), which must satisfy the Newton’s 3rd law,197

Fd = − 1

NsVcell

Ns∑
j=1

Ncell∑
i=1

fd,i. (16)

The sediment concentration (φ) calculated directly by grid averaging in the DEM198

is usually not smooth, and averaging errors may depend on the averaging length scale199

(Simeonov et al., 2015). To ensure numerical stability, a diffusion model is often used to200

obtain a sufficiently smoothed concentration profile,201

∂φ

∂t
= ∇ · (Dt∇φ). (17)

The diffusion constant, Dt, is calculated as, Dt = L2
d/dt, where Ld is a length scale, and202

dt is the fluid phase time step (i.e., CFD time step). The choice of length scale, Ld = d is203

found to be stable and necessary when the fluid grid length is similar to or smaller than the204

particle diameter (Pirker et al., 2011; Capecelatro and Desjardins, 2013). Note that this205

smoothed concentration field is only used in the fluid governing equations and turbulence206

closures. The model results (mainly in Section 3 and 4) of the sediment concentration,207

sediment velocity and transport rate are directly obtained from the DEM part (i.e., not208

smoothed by the diffusion model). To ensure a stable calculation of conservation of mass,209

a mixture continuity equation for the incompressible fluid-particle system can be derived210

and is solved (Cheng et al., 2017a),211

∇ ·
[(

1− φ
)

uf + φus
]

= 0. (18)

2.3. Fluid turbulence modeling212

As briefly described in Eqn. 15, the total fluid stress tensor consists of the viscous213

stress (τν) and the Reynolds stress (τft):214

τf = τν + τft = ρf (1− φ)
[
(νf + νft)

(
∇uf +∇Tuf −

2

3
I∇ · uf

)
− 2

3
kfI

]
, (19)

in which, the Reynolds stress in the Reynolds-averaged Eulerian fluid model may be215

written as,216

τft = ρf (1− φ)
[
νft
(
∇uf +∇Tuf −

2

3
I∇ · uf

)
− 2

3
kfI

]
, (20)
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where I is a identity tensor, ∇T is the transpose of gradient tensor, νft is the turbulent217

eddy viscosity, and kf is the fluid turbulent kinetic energy (TKE). The eddy viscosity and218

TKE are modeled with a low Reynolds number version k − ω turbulence model (LRN219

k − ω closure (Wilcox, 1992)) modified for two-phase flows.220

2.3.1. Low Reynolds number corrected k − ω closure for two-phase flow221

In LRN k − ω closure, the low Reynolds number correction was introduced based222

on the local Reynolds number, Ret = kf/(νfωf ). With this correction, the LRN k − ω223

closure is capable of capturing transitional turbulent flow in the near-bed region. To224

take into account of the sediment effect on the flow turbulence, the sediment-turbulence225

interaction terms were added to both the transport equations for the fluid TKE (kf )226

and specific turbulent dissipation frequency (ωf ), similar to the approach suggested by227

Amoudry (2014) and Chauchat et al. (2017),228

∂kf
∂t

+ uf · ∇kf =
τft
ρf

: ∇uf +∇ ·
[(
νf +

νft
σk

)
∇kf

]
− C∗µkfωf

−2β(1−λ)φkf
ρf (1−φ)

− 1
(1−φ)

νft
σc

(
ρs
ρf
− 1

)
g · ∇φ, (21)

where the operation ‘:’ denotes the scalar product of two tensors. C∗µ is model coefficients229

with low Reynolds number corrections based on the original coefficient Cµ (see table 1),230

C∗µ = Cµ
4/15 + (Ret/Reβ)4

1 + (Ret/Reβ)4
, (22)

where the model constant Reβ = 8 is a critical Reynolds number.231

Except for the last two terms on the R.H.S. of Eqn. (21), the rest of the terms in the232

present kf equation are essentially the same as those in the clear fluid TKE equation. The233

last term in Eqn. (21) represents the buoyancy term. For typical sediment concentration234

with an upward decaying profile, this term represents the well-known sediment-induced235

density stratification that can attenuate the fluid turbulence. The fourth term on the236

R.H.S. represents attenuation of TKE due to drag with β calculated as,237

β =
3

4

ρfCD |Ur|
d

, (23)
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where CD is calculated by Eqn. (7) with particle Reynolds number, Rep = (1−φ) |Ur| d/νf ,238

in which |Ur| is the magnitude of relative velocity seen by the fluid. Here, to better es-239

timate Ur in dilute condition, where instantaneous sediment concentration fluctuation is240

significant, a temporal average of the relative velocity is carried out,241

Ur =
1

t− t0

∫ t

t0
(uf − us) dt, (24)

where t0 is the starting time of the time average, and t is the current run time of the sim-242

ulation. For a steady sheet flow application, this time average procedure is representative243

of the ensemble-averaged relative velocity between fluid and sediment phases. Through-244

out the simulations in this study, the quasi-steady state is usually reached within 5 s of245

numerical simulations, thus we choose t0 = 5 s. To quantify the effect of fluid-particle246

turbulence modulation, the parameter λ is introduced by following Cheng et al. (2017a),247

λ = e−Cs·St, (25)

where Cs is an empirical coefficient. St = tp/tl, is the particle Stokes number, i.e., the248

ratio of the particle response time (tp = ρs/β) to the characteristic time scale of energetic249

eddies. In the literatures of Reynolds-averaged turbulence closures, the general expression250

for the eddy life time can be written as, tl = Ct/(Cµωf ), and the value of the coefficient251

Ct ranges from 0.135 to 0.41 (Milojeviè, 1990), which is highly dependent on the flow252

conditions. From the preliminary numerical experiment, we found the the eddy life time253

is vital for the turbulence-sediment interaction, thus we chose the coefficient Ct = 1/6254

by following Cheng et al. (2017a), and the model coefficients associated with the eddy255

life time are left as model calibration. For example, the coefficient Cs in Eqn. (25) is256

calibrated using the sheet flow experimental dataset (see Section 3.2) to match the flow257

hydrodynamics, and it was chosen to be Cs = 1.258

The balance equation for ωf follows the original work of Wilcox (1992). However,259

for turbulence-particle sinteractions, similar damping terms as in the kf equation are260

included. The ωf equation is written as,261

∂ωf
∂t

+uf · ∇ωf = C∗1ω
ωf

kf

τft
ρf

: ∇uf +∇ ·
[(
νf +

νft
σω

)
∇ωf

]
− C2ωωf

2

−C3ω
2β(1−λ)φωf

ρf (1−φ)
− C4ω

ωf

kf

1
(1−φ)

νft
σc

(
ρs
ρf
− 1

)
g · ∇φ+ ωbed

Trelax
Γ(φ), (26)
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where the fourth and fifth terms take into account of the sediment effect on the fluid tur-262

bulence through drag and buoyancy, respectively. The coefficients C∗1ω is also modulated263

using the local turbulent Reynolds number as,264

C∗1ω = C1ω
1

α∗
α0 +Ret/Reω
1 +Ret/Reω

, (27)

where α∗ is a damping function based on Ret,265

α∗ =
α∗0 +Ret/Rek
1 +Ret/Rek

. (28)

where α∗0 and Rek are model coefficient for the low Reynolds number corrections. The266

model constant C1ω, C2ω, σk, σω, Rek, Reω and α0 are similar to the closure coefficients267

suggested by Guizien et al. (2003) (see Table 1). The coefficient of the buoyancy term,268

C4ω = 0 is chosen for stable stratification applicable for steady sheet flow (Rodi, 1987).269

Through a series of sensitivity test, we found that the modeled flow velocities are also270

sensitive to the coefficient C3ω, and the optimum value of C3ω is 0.14, which is close to271

the value 0.2 suggested by Amoudry (2014). A full list of the coefficients associated with272

the low Reynolds number k − ω model used in this study is presented in Table 1.

α0 α∗0 Rek Reω Reβ Cµ σk σω Cs C1ω C2ω C3ω C4ω

1/9 0.024 6 2.95 8 0.09 2.0 2.0 1.0 0.52 0.072 0.14 0

Table 1: List of coefficients in the LRN k − ω equations for two-phase flows.

273

Finally, the turbulent eddy viscosity νft is calculated by the fluid turbulence kinetic274

energy kf (TKE) and specific turbulence dissipation rate ωf ,275

νft = α∗
kf
ωf
. (29)

It shall be noted that the LRN k−ω can be reduced to the original k−ω model (Wilcox,276

1993) in the fully turbulent region when the local Reynolds number is sufficiently high277

compared with the critical Reynolds numbers.278
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2.3.2. Smooth and Rough wall functions279

The wall functions for a smooth bed and rough bed are both relevant to the present280

study. For clear fluid or dilute suspension, such as the experiment of Muste et al. (2005)281

to be discussed in Section 3.1, a smooth wall is exposed and the ωf value in the viscous282

sublayer scales with 1/z2, where z is the distance to the bottom wall boundary. As a283

result, ωf goes to infinity at the wall boundary. In the numerical implementation, a finite284

value of ωf is imposed to the first grid above the solid smooth wall, and the following285

bottom boundary condition is specified (Menter and Esch, 2001; Bredberg et al., 2000),286

ωwall =
√
ω2
vis + ω2

log, (30)

with the ωwall value specified as a blend function of the values in the viscous sublayer287

(ωvis) and logarithmic layer (ωlog),288

ωvis =
6νf

0.075z2o
, ωlog =

u∗√
Cµκzo

, (31)

where κ = 0.41 is the von Karman constant, and the bottom frictional velocity is calcu-289

lated as u∗ =
√

(νf + νft)|∂uf/∂z| at the wall boundary. It was found that this formu-290

lation of bottom boundary condition for smooth wall is robust for low to high Reynolds291

number turbulent boundary layer flows.292

On the other hand, the bed is covered with a thick layer of sediment particles in sheet293

flow condition, and the particles imposes a rough wall boundary to the flow above the bed.294

However, the location of the bed in sediment transport is difficult to determine as a priori295

due to possible erosion processes. To avoid this complexity, the last term on the R.H.S.296

of Eqn. (26) is proposed to impose a desired value of specific turbulence dissipation rate,297

ωbed, in the sediment bed, and Γ(φ) is a step-like function of sediment concentration,298

Γ(φ) =
tanh[500(φ− φb)] + 1

2
, (32)

where φb should be specified as the sediment concentration in the bed, so that the ωf299

value is only imposed inside the sediment bed. In this study, we choose φb = 0.55. An300

intrinsic relaxation timescale is used for Trelax, which sums the proper timescale on the301
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R.H.S. of the ωf equation,302

1

Trelax
= C2ωωf + C3ω

2β(1− λ)φ

ρf (1− φ)
+ C4ω

1

kf

1

(1− φ)

νft
σc

(
ρs
ρf
− 1

)
g · ∇φ. (33)

It shall be noted that the relaxation time scale proposed here is positive in sheet flow303

applications. For specific energy dissipation frequency ωbed inside the bed, the rough wall304

value can be specified as (Wilcox, 1988),305

ωbed = Sr
u2∗
νf
, (34)

where u∗ is the bottom frictional velocity at the bed interface specified based on the flow306

forcing to drive the steady channel flow and Sr is a parameter depending on the bed307

roughness,308

Sr =


(
200
k+s

)2
, k+s < 5

Kr

k+s
+
[(

200
k+s

)2
− Kr

k+s

]
e(5−k

+
s ), k+s ≥ 5

, (35)

where k+s = ksu∗/νf is the normalized wall roughness in wall units, and ks is the Niku-309

radse’s equivalent sand roughness, which is related with the sand grain size, ks = 2.5d.310

The original coefficient Kr is 100 as suggested by Wilcox (1988), however, Fuhrman et al.311

(2010) proposed that this coefficient needs to be reduced to Kr = 80 to match the law of312

wall. Therefore, Kr = 80 is used throughout this paper.313

2.4. Eddy interaction model314

The drag force (Eqn. 6) in the particle momentum equation depends on the instan-315

taneous fluid velocity. However, only the Reynolds-averaged fluid velocity (uf,i) is solved316

and hence an additional closure model for the fluid velocity fluctuation in turbulent flow317

(u′f,i) is required. Appropriate consideration of particle dispersion by turbulent eddies318

provides a key suspension mechanism in sediment transport (i.e., turbulent suspension).319

Following Graham and James (1996), particle dispersion by turbulence can be modeled320

with a stochastic Eddy Interaction Model (EIM), and a series of random Lagrangian ve-321

locities can be used to represent the fluid turbulent motions, i.e. u′f,i = U t
iσ1, v

′
f,i = V t

i σ2,322

and w′f,i = W t
i σ3, where σ1,2,3 are Gaussian random numbers with a zero mean value and323

a standard deviation of unity. In this study, the velocity fluctuations are calculated using324
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the fluid turbulent kinetic energy, U t
i = V t

i = W t
i =

√
2kf,i/3, where kf,i is interpolated325

turbulence kinetic energy at the mass center of particle i. It is possible to model the326

anisotropic velocity fluctuations in three directions, however, to be consistent with the327

two-equation turbulence-averaged models (LRN k−ω closure), the turbulent fluctuations328

are assumed to be isotropic.329

In the eddy interaction model, the velocity fluctuations (i.e., U t
i , V

t
i , W t

i ) are updated330

every step with the particle position. However, the random numbers σ1,2,3 remained331

unchanged until the eddy interaction time tI is exceeded, which is determined either332

when a particle has completely crossed a turbulent eddy or remains in an eddy but333

exceeds the eddy life time. The mean life time of the turbulent eddy can be estimated as334

Tl,i = (6Cµωf,i)
−1 in the LRN k − ω model. However, the instantaneous turbulent eddy335

life time is of random-like nature (Kallio and Reeks, 1989; Mehrotra et al., 1998) and it336

is estimated as,337

te,i = −C0 ln(1− ξ)Tl,i, (36)

where ξ is the random number ranging from 0 to 1. As discussed in Section 2.3, due to the338

uncertainties in the parameterization of the eddy life time, the coefficient C0 is introduced339

as a constant for model calibration (see Section 3.1). As a result, the turbulent eddy340

length le can be estimated as le,i = te,i
√

2kf,i/3. With the estimation of the turbulent341

eddy length le, the eddy crossing time for a particle can be computed as (Gosman and342

Loannides, 1983),343

tc,i = −tp,i ln
(

1− le,i
| vi − uf,i | tp,i

)
, (37)

where tp,i is the particle response time calculated as tp,i = 4ρs,idi/(3ρf | vi − uf,i | CD).344

It is noted that Eqn. (37) is only evaluated when le,i <| vi − uf,i | tp,i, and the eddy345

interaction time tI,i is the minimum between eddy lifetime te,i and eddy crossing time tc,i.346

Once the time interval exceeds tI,i, the particle i enters another turbulent eddy, i.e., the347

gaussian random numbers σ1,2,3 are re-evaluated every interval tI,i = min{te,i, tc,i}.348
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2.5. CFD-DEM coupling procedure349

In the present Euler-Lagrange modeling framework, the coupling between the fluid350

phase and sediment phase utilizes the open source code CFDEM (Goniva et al., 2012),351

which couples the Finite-volume CFD toolbox OpenFOAM (Weller, 2002) with the DEM352

solver LIGGGHTS (Kloss et al., 2012). At the beginning of the simulation, the particle353

positions and velocities are initialized in the DEM module, and the fluid velocity and354

turbulence quantities are initialized in the CFD module. The loop of the CFD-DEM355

coupling begins with the update of particle positions and velocities for Ns DEM time356

steps within one fluid time step (dt), in which the time step dts in the DEM module is357

related to the fluid time step by dts = dt/Ns. In the contact force model, the energy358

stored in the collision increases rapidly with the overlapping length of particles, thus the359

time step dts should be sufficiently small to avoid the unphysical energy generation due360

to particle contacts. In this study, the following three criteria are used to determine dts:361

(1) The overlap length δn is smaller than 0.5% of particle diameter d, i.e., dts <362

0.005d/Vrn, where Vrn is normal component of the relative velocity to the contact363

face between two contacting particles.364

(2) To capture the energy transmission in the solid particles, the time step dts is cho-365

sen to be small enough compared with the Rayleigh timescale Tr, where Tr =366

πr
√
ρs/G(0.163ν + 0.8766)−1 and G is the shear modulus. G is further related to367

the Young’s modulus E and the Poisson ratio υ as 2G(1 + υ) = E.368

(3) dts is required to be smaller than the Hertzian contact time in order to capture the369

contact process. The Hertzian contact time is the duration of a pair of particles370

in contact, which can be estimated as, Tc = 2.87 (m∗2/r∗E∗2Vrn)
1/5

, where r∗ =371

( 1
ri

+ 1
rj

)−1, m∗ = ( 1
mi

+ 1
mj

)−1, and E∗ = (
1−ν2i
Ei

+
1−ν2j
Ej

)−1. For a contact between a372

sphere particle i with wall j, the same relationship applies to E∗, whereas r∗ = ri373

and m∗ = mi.374

The dts is constant throughout the simulation once appropriately chosen to satisfy the375

above criteria, and the particle velocities are updated every dts, where the forces acting on376
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each particles are solved according to Eqn. (4). In the calculation of drag forces, the eddy377

interaction model is implemented to model the turbulence-induced sediment suspensions,378

where a fluctuating component of velocities are introduced to the drag forces through a379

stochastic procedure, which is outlined as follows:380

(a) Initially at t = 0, the time marker tmark,i, and eddy interaction time tI,i are set to381

zero for each particle.382

(b) Random numbers σ1,2,3 are generated and the fluid velocity fluctuation u′f,i, v
′
f,i, w

′
f,i383

are updated. The drag forces are then calculated using Eqn. (6).384

(c) The following two scenarios are considered:385

(i) If (t − tmark,i)≥tI,i, the particle enters a new turbulent eddy, and then new386

Gaussian random number σ1,2,3 are generated, and fluid fluctuations are up-387

dated with the new values of σ1,2,3. Both tmark,i and tI,i are updated to the388

current values.389

(ii) Else if (t−tmark,i) < tI,i, the particle remains in the same eddy, thus the existing390

Gaussian random numbers are retained, and tmark,i and tI,i remains unchanged.391

However, the fluid fluctuations are updated with new particle positions (i.e.,392

new kf,i).393

After solving the particle velocities and positions, the particle informations are com-394

municated to the fluid phase. However, prior to solving the fluid equations, the diffusion395

model of Sun and Xiao (2016a) (see Eqn. 17) is applied to the sediment concentration396

to obtain a smooth profile. The fluid phase is computed in a similar way as the Eulerian397

two-phase flow model SedFOAM (Cheng et al., 2017a). The fluid momentum equation398

in Eqn. (15) is solved over a collocated grid arrangement, in which the velocities and399

pressure are stored in the cell centers. The convection terms (including the k − ω equa-400

tions) are discretized using a total variation diminishing (TVD) scheme based on a Sweby401

limiter (Sweby, 1984). The second-order central scheme is used for the diffusion terms.402
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For the temporal integration, a first-order implicit Euler scheme is used. The PISO (Pres-403

sure Implicit Splitting Operation) algorithm is used for the velocity-pressure decoupling,404

so that the continuity equation (18) is satisfied. More details on the numerical solution405

procedures for the fluid solver can be found in Rusche (2002).406

3. Model Results407

Through preliminary numerical experiments, we confirmed that the modeled sediment408

concentration profile is sensitive to the prediction of fluid TKE and the coefficient C0 in409

estimating the turbulent eddy life time in the eddy interaction model (see Eqn. 36).410

This is somewhat expected as the turbulent intensity and the eddy interaction time are411

the main factors differentiating the present stochastic procedure for modeling turbulent412

diffusion from incoherent random motions. Therefore, we first validated the turbulence413

closure with direct numerical simulation (DNS) of clear fluid turbulent channel flow. After414

establishing the accuracy of the turbulence closure for clear fluid, the coefficient C0 in the415

eddy interaction model is calibrated with the dilute suspension experiment of Kiger and416

Pan (2002), where the velocity, sediment concentration and Reynolds shear stress profiles417

are measured for sand in a steady channel flow over a smooth bed (starved bed). The418

calibrated model is then applied to predict the suspended sand concentration and tur-419

bulence of another similar dilute suspension experiment reported by Muste et al. (2005).420

Because the sediment concentration is very dilute (< 1%) and there is negligible deposit421

on the bed, these datasets allow us to solely calibrate the C0 value in the eddy interaction422

model without complication from intergranular interactions. After the calibration, the423

model is applied to the steady sheet flow experimental configuration of Revil-Baudard424

et al. (2015). A sensitivity analysis of the model results to the C0 value is investigated425

in detail to illustrate the effects on the turbulent suspension in steady sheet flow. The426

capability of the present CFDEM-EIM is further demonstrated by comparing predictions427

of sediment transport rate and transport layer thickness with classical empirical formula.428
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3.1. Model calibration of dilute suspension in steady channel flow429

Firstly, the LRN k − ω turbulence closure is validated against the DNS dataset of430

Moser et al. (1999) for a clear fluid steady wall-bounded channel flow at a Reynolds431

number of Reτ = u∗h/νf = 570 (Moser et al., 1999), where h is the channel half-width.432

We carried out a 1DV numerical simulation at the same Reynolds number with a vertical433

domain height h = 0.02 m. A shear-free symmetric boundary condition is used at the top434

boundary, while the bottom boundary condition is a no-slip wall. The standard smooth435

wall functions for k and ω are used at the bottom wall boundary (see Eqn. 31). In both436

x and y directions, periodic boundaries are used and only one grid cell is used in these437

two directions with a grid size (domain size) of Lx = Ly = 0.02 m. The vertical domain is438

discretized into 168 grid cells with a uniform grid size ∆z = 0.122 mm. The flow is driven439

by a mean pressure gradient of fx = 43.5 Pa/m, so that the bottom frictional velocity440

is u∗ = 0.0285 m/s. The distance of the first grid center to the bottom boundary patch441

corresponds to a wall unit ∆+
z = 0.5u∗∆z/νf = 1.76. Therefore, the first cell center is442

within the viscous sublayer.443

The comparisons of the mean Reynolds shear stress, velocity and TKE profiles between444

the LRN k − ω model and DNS data are shown in Fig. 1. Very good agreements on445

all three profiles are obtained, especially the velocity profile and Reynolds shear stress.446

The agreement in the Reynolds shear stress profile confirms that the flow has reached447

a quasi-steady state and the flow condition is similar to the DNS simulation of Moser448

et al. (1999). Meanwhile, it is evident that the overall shear stress follows a linear profile449

τtot = u2∗(1−z/h) in the range of z/h > 0.1 (dashed curve in Fig. 1b). The modeled TKE450

is also remarkably close to the DNS data. It is evident that the LRN k− ω model is able451

to resolve the peak of turbulent kinetic energy near the bottom wall (around z = 0.02h),452

even though the peak value from the LRN k − ω closure (4.4u2∗) is slightly smaller than453

the DNS data (4.75u2∗).454

Kiger and Pan (2002) later conducted a sediment-laden turbulent flow experiment at a455

similar Reynolds number as Moser et al. (1999). The data of Kiger and Pan (2002) can be456

further used to calibrate the C0 coefficient in the EIM. In the experiment, the half channel457
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Figure 1: The comparison of non-dimensionalized (a) streamwise velocity profile (uf/u∗), (b) Reynolds

shear stress profile (−u′fw′f/u2∗), and (c) TKE profile (kf/u
2
∗) between LRN k − ω closure (solid curves)

and DNS data (symbols) of Moser et al. (1999). In panel (b), the dashed curve denotes a linear fit of the

total shear stress, τtot = u2∗(1− z/h).

height is h = 0.02 m, which is the same as the clear fluid simulation at Reτ = 570, and458

hence we kept the same domain setup and boundary conditions as the clear fluid 1DV459

simulation. In the DEM implementation, the particles are tracked in a meshless 3D460

domain (domain size is the same as in the CFD). The lateral boundaries in DEM are461

periodic, while the wall boundary was used for both the top and bottom boundaries to462

conserve the number of particles in the domain. The sediments are spherical particles463

with a density of ρs = 2605 kg/m3, and the grain diameter is d = 0.195 mm. The particle464

settling velocity is about 0.024 m/s, which corresponds to a shape factor η = 1 in the465

drag model (see Eqn. 8-11). The domain averaged sediment volumetric concentration in466

the experiment is Φ = 2.3×10−4. To match the domain-averaged sediment concentration467

in Kiger and Pan (2002), a total of N = 476 particles are simulated in the DEM.468

To calibrate the C0 value in the EIM, we carried out four simulations with different469

C0 values, C0 = 1, 2, 3, 4. The resulting profiles of the streamwise velocity, TKE and470

sediment concentration are compared with the measured data of Kiger and Pan (2002)471
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Figure 2: The comparison of (a) fluid velocity profile, (b) nondimensional fluid turbulent kinetic energy

(kf , normalized by u2∗) and (c) normalized concentration profile between model results (solid curves) and

measured (or DNS) data (symbols). In all panels, the triangle symbols are measured data from Kiger

and Pan (2002), and the DNS data of Moser et al. (1999) is shown as circle symbols in panel (a) and (b).

In panel (c), sediment concentrations are plotted in semi-logrithmic scale. The solid curves corresponds

to C0 = 1 (magenta), C0 = 2 (blue), C0 = 3 (red) and C0 = 4 (black). The dashed curve is the fitted

Rouse profile with Ro = 1.44.

and clear fluid DNS data of Moser et al. (1999) in Fig. 2. Due to the dilute sediment472

concentration in the domain, the numerical results of the streamwise velocity profile are473

not very sensitive to the C0 values, so only the velocity profiles corresponding to C0 = 3474

is shown. We notice that the measured velocity profile differs slightly from the DNS475

data, possibly due to the effect of the presence of sediment in the water column and/or476

measurement uncertainties. In addition, the averaged particle velocity profile (not shown)477

is very close to the fluid velocity. The measured data of the turbulent intensity is only478

available for the streamwise (u′rms) and vertical (w′rms) velocity fluctuations. In order479

to compare the turbulence kinetic energy of numerical results and measured data, the480
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spanwise velocity fluctuation is reconstructed following the relationship suggested by Jha481

and Bombardelli (2009), v′rms = 0.3u∗ − 0.6u′rms. Thus the turbulent kinetic energy in482

the experiment can be estimated by kf = (u′2rms + v′2rms +w′2rms)/2. The model results also483

predict slightly smaller turbulence kinetic energy compared with clear fluid counterpart,484

but the reduction is very small due to dilute sediment concentration. Overall, the velocity485

and turbulence kinetic energy profiles are in good agreement with the measured data.486

The sediment concentration profiles corresponding to different C0 values are presented487

in Fig. 2c (solid curves) and they can be compared with measured data (symbols in Fig.488

2c). It is evident that the suspended sediment concentration is strongly affected by the489

coefficient C0. In general, more significant sediment suspension is obtained with a larger490

C0 value. Clearly, a C0 value of 1 under-predicts the suspended sediment concentration,491

and almost all the sediment particles accumulate near the bottom (z/h < 0.15, see ma-492

genta curve in Fig. 2c). When the C0 value is increased to C0 = 2, considerably more493

sediments are suspended, however, the resulting sediment concentration remains to be494

lower than the measured data. The optimum C0 value is found to be C0 = 3, and the495

resulting sediment concentration profile is in good agreement with the measured data.496

Finally, using C0 = 4 clearly over-predicts sediment concentration. It is well-known that497

the sediment concentration profile in a steady turbulent channel flow follows the Rouse498

profile (Vanoni, 2006),499

φ

φr
=

(
h− z
z

zr
h− zr

)−Ro
, (38)

where Ro = wsSc/(κu∗) is the Rouse number, in which the Schmidt number Sc is the ratio500

of turbulent eddy viscosity over the sediment diffusivity. zr is the reference location above501

the bed, and φr is the concentration at the reference location. We choose the reference502

location to be zr = 0.1h, corresponding to the lowest elevation that the Reynolds shear503

stress follows a linear profile. The dashed curve in Fig. 2c shows the fitted Rouse profile504

to the measured data with the Rouse number Ro = 1.44. It is evident that both the505

measured data and the numerical result with C0 = 3 match the Rouse profile very well.506

The calibrated C0 is further applied to another similar dilute suspension experiment507

reported by Muste et al. (2005, see Table 2). The flow is driven by a prescribed pressure508
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gradient force in order to match the bottom friction velocity of u∗ = 0.042 m/s in a flow509

depth of h = 0.021 m. The sand density is ρs = 2650 kg/m3 and the grain diameter is510

d = 0.23 mm. The measured settling velocity is about 2.4 cm/s, which correspond to a511

shape factor of η = 0.644 (see Eqn. 8-11). A similar numerical setup as the simulation of512

Kiger and Pan (2002) is used, except that the domain height is h = 0.021 m to match the513

experimental condition. The streamwise and spanwise domain lengths are specified to be514

Lx = Ly = 100d. In the vertical direction, uniform grid sizes are used with Nz = 210515

grids to resolve the entire flow depth, and the first grid center above the bottom wall516

corresponds to a wall unit ∆+
z = 1.05. A total number of particles used in the DEM is517

N = 803, which matches the domain averaged concentration Φ = 4.6× 10−4.518

Cases d (mm) ρs(kg/m3) ws(cm/s) u∗(cm/s) Φ× 103 N

Kiger and Pan (2002) 0.195 2605 2.4 2.85 0.23 476

NS1 in Muste et al. (2005) 0.23 2650 2.4 4.2 0.46 803

Table 2: List of numerical simulations of dilute sand suspension in steady channel flows.

The model results of velocity profile, concentration profile and TKE (kf ) profile with519

C0 = 3 are compared with the measured data in Fig. 3. The resulting fluid velocity520

profile (Fig. 3a) matches the measured data reasonably well, except that the velocity521

magnitude is slightly over-predicted in the range of 0.1 < z/h < 0.5. The normalized522

sediment concentration (normalized by the mean concentration φr at the reference location523

zr/h = 0.1) shows that the suspended sediment concentration profile is similar to the524

measured data as well as the Rouse profile with a Rouse number Ro = 0.86 (dashed curve525

in Fig. 3b). In Fig. 3c, the numerical result of TKE is compared with the measured data.526

The measured data of the turbulent intensity is reconstructed in the same way as the527

measurement of Kiger and Pan (2002). Overall, the magnitude of the turbulent kinetic528

energy is smaller than the measured data by no more than 30%. However, the vertical529

profile shape is reproduced well by the model.530

In summary, the LRN k−ω model is validated using a clear fluid DNS dataset of Moser531
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Figure 3: The comparison of (a) fluid velocity profile, (b) normalized concentration profile, and (c) fluid

turbulent kinetic energy (kf , normalized by u2∗) between model results and measured data of case NS1

in Muste et al. (2005). In all panels, the symbols represent the measure data in Muste et al. (2005), and

the solid curves are model results. In panel (b), sediment concentrations are plotted in semi-log scale.

The dashed curve is the Rouse profile with Ro = 0.86.

et al. (1999) and the eddy interaction model is calibrated by using the measurements532

from Kiger and Pan (2002) and Muste et al. (2005). It is found that the optimum C0533

value that matches the measured concentration profiles for both experiments is C0 = 3.0,534

while C0 < 3.0 underestimated the suspended sediment concentration. Therefore, this535

calibrated C0 value is applied to the sheet flow applications in the following subsection.536

3.2. Steady sheet flow537

In this section, we further apply CFDEM-EIM to model steady sheet flow, where both538

bedload (inter-granular interaction dominant) and suspended load (turbulent suspension539

dominant) are important. The laboratory experiments reported by Revil-Baudard et al.540

(2015, 2016), which include a steady flow over a rough fixed bed (“FB”) and a steady541

sheet flow (mobile bed, “MB”) were used for model validation. The flow condition and542
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sediment properties are summarized in Table 3. The sediment particles are irregularly543

shaped with density ρs = 1192 kg/m3, and median grain diameter d = 3 mm. The544

resulting mean settling velocity is measured to be ws = 5.59 cm/s. Similar to the case545

NS1 in Muste et al. (2005), we used a sphericity of η = 0.594 to match the settling velocity546

with the experiment, while the original grain size d is retained in the DEM contact model.547

In the DEM model, the Young’s modulus of particles is specified as E = 5× 106 Pa, the548

restitution coefficient is e = 0.5, the Coulomb friction coefficient is µc = 0.5 and the549

poison ratio is ν = 0.45. In the fixed bed (“FB”) experiment, these particles are glued to550

the bed forming a single layer rough elements, while the bed is covered by thick layers of551

particles in the “MB” case, and the particles are free to move.552

Cases h(m) u∗ (cm/s) ρf (kg/m3) νf (m2/s) d (mm) s = ρs/ρf ws(cm/s)

FB 0.105 5.2 1000 10−6 3 – –

MB 0.128 5.0 1000 10−6 3 1.192 5.59

Table 3: Flow condition and sediment properties in the fixed bed (“FB”) and mobile bed (“MB”) sheet

flow experiment of Revil-Baudard et al. (2015, 2016).

We first carried out a numerical simulation of the case FB to establish the accuracy553

of the present numerical model on hydrodynamics before presenting more complicated554

mobile bed sheet flow model validation. To simulate the flow over fixed rough bottom, a555

single layer of particles are fixed above the bottom boundary in the DEM (i.e., the particle556

velocities are zero and their positions are fixed). The rough wall function (Eqn. 34) is557

used with a bed roughness ks = 2.5d to estimate the ωbed in the turbulence closure. In the558

experiment of Revil-Baudard et al. (2016), the flow depth above the fixed particles is about559

h = 0.105 m. The vertical domain length is chosen to be Lz = h + d = 0.108 m with a560

uniform grid size of ∆z = 0.25 mm. Therefore, the fixed bed layer is resolved by the first 12561

grid points above the bottom. The measured bottom frictional velocity in the experiment562

is u∗ = 0.052 m/s. To match the bottom shear stress, the flow driving force is prescribed563

as fx = 25.8 Pa/m. The model results of the fluid velocity, Reynolds shear stress and the564

TKE profiles are compared with the measured data in Fig. 4, where the fixed particle layer565
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Figure 4: The comparison of (a) velocity profile, (b) normalized Reynolds shear stress and (c) TKE

profile between numerical results (solid curves) and measured data (filled triangle symbols) for the fixed

bed case (‘FB’) in the experiment of Revil-Baudard et al. (2016); In all panels, the fixed particle layer

is denoted as circle symbols. In panel (b), the dashed curve is denotes a linear profile of the total shear

stress.

is also denoted as circle symbols. Due to the drag force from the fixed particles above the566

bottom, the velocity profile drops to zero within the fixed bed layer, and good agreements567

in the streamwise velocity profiles are obtained with the measured data. The modeled568

Reynolds shear stress profile captures the linear decaying shape (dashed curve) and it569

matches the experimental data reasonably well. In particular, the Reynolds-averaged570

closure provides a good prediction of the TKE magnitude throughout most of the water571

column. The good agreement with the FB case confirms that the turbulence closure works572

well for the steady flow over a rough fixed sediment bed.573

The mobile bed sheet flow (see case MB in Table 3) is then studied with a thick layer of574

particles at the bottom of the domain. To prepare the sediment bed, the particle velocities575

are initialized to be zero, and 43929 particles are well mixed in the whole domain. Due576

to the gravitational settling, the particles settle down to the bottom until their kinematic577

energies are minimized. After this initialization step, the initial bed level locates at578
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z = 0.045 m above the bottom of the domain. Due to the sediment suspension, the579

final bed depth at the quasi-steady state will be smaller. Through a preliminary test, we580

determined that the total vertical domain height should be Lz = 0.168 m so that the final581

flow depth of h = 0.128 m (sediment bed location becomes zb = 0.04 m) can be obtained582

after the flow reaches the steady state. The vertical domain is discretized into 168 grid583

cells with a uniform grid size ∆z = 0.001 m. The streamwise and spanwise domain584

lengths are Lx = 0.144 m and Ly = 0.072 m. In these two horizontal directions, only one585

CFD grid cell is used in each direction. To confirm the model domain size is adequate,586

we carried out a comparative case by reducing the streamwise domain length by half587

(Lx = 0.072 m), and the model results on mean flow quantities show good convergence.588

The same coefficient C0 = 3 calibrated for dilute suspension (see Section 3.1) is used589

here for the sheet flow simulation using the LRN k − ω model. The snapshot of the590

horizontal fluid velocity profile and sediment particle distribution after the flow reaches591

the statistically steady state is shown in Fig. 5. Although the flow is solved using a592

Reynolds-averaged turbulence closure, the stochastic motions of the sediment particles593

are captured by the eddy interaction model and particle collisions. As a result of the594

eddy interaction model, the sediment particles are suspended away from the bed via595

turbulent suspension.596

The numerical results of the mean velocity profile, normalized concentration profile,597

sediment fluxes (Qs = φus) and TKE profiles are compared with the measured data in Fig.598

6. To reduce the fluctuations due to stochastic motion of particles, time-averaging with599

a 10 second window is applied to calculate the mean flow quantity after the flow reaches600

steady state. In panel (a), we observe that the modeled fluid velocity profile is similar to601

the measured data in the upper water column ((z−zb) > 7d) when sediment concentration602

is very dilute. In the region of intermediate sediment concentration, (0 < (z− zb)/d < 7),603

sediment velocity is slightly smaller than the fluid velocity and agrees with measured604

velocity profile. This lag in sediment phase velocity is consistent with many particle-laden605

flow observations (e.g., Muste et al., 2005; Pal et al., 2016). The modeled velocity profiles606

without the eddy interaction model are similar and hence they are not shown here for607
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Figure 5: A snapshot of flow velocity field (arrows) and sediment particles (assumed to be spherical) for

the entire computation domain along with the definition of coordinate system. The initial bed depth is

denote as zb, and the water depth is denoted as h.

brevity. Very near the bed ((z− zb) ≤ 3d), the model over-predicts the velocity gradient,608

while the measured data shows a milder increase of velocity away from the bottom in the609

range of 0 < (z−zb) < 7d. As a result, the numerical model under-predicts the shear layer610

thickness above the bed. According to Revil-Baudard et al. (2015), the large nearbed shear611

layer observed in the experiment may be related to the nearbed intermittencies. Even612

though the EIM is used for the turbulence-sediment interaction, the stochastic model is613

still too simple to model the bed intermittency, and a turbulence-resolving simulation614

approach may be necessary for such feature (Cheng et al., 2017b).615

The sediment concentration profiles normalized by the maximum sediment concentra-616

tion φmax are compared in Fig. 6b. It shall be noted that our numerical model predicts617

that the maximum sediment concentration is φmax ≈ 0.635, while the measured data618

gives φmax = 0.55. The discrepancy in the maximum packing concentration is probably619

related to the non-spherical particle shape used in the experiments. From the normalized620
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Figure 6: The comparison of (a) velocity profile, (b) normalized concentration profile and (c) sediment

flux profile between numerical results and measured data with eddy interaction model (solid curve) and

without eddy interaction model (dashed curve); In all panels, the circle symbols are measured data. In

panel (a), solid curve denotes the fluid velocity, and dash-dot curve is the sediment velocity with EIM.

sediment concentration profiles, we can see that the modeled sediment concentration with621

EIM shows a more smooth vertical distribution and is more consistent with measured con-622

centration profile. On the other hand, the concentration profile without the EIM indicates623

that a dense, thin transport layer is predicted between 3d < (z− zb) < 5d. Consequently,624

excessive sediment accumulation occurs in this region, and sediment flux is over-predicted625

(see Fig. 6c). This feature is similar to typical bedload transport model results for much626

coarser particles or aeolian transport (Durán et al., 2012). Here, the ‘shoulder-shape’627

concentration profile is clearly absent in the measured data and the model result with628

EIM shows a better agreement. At the higher Shields parameter and a fall parameter629

(ratio of settling velocity to friction velocity) around 1 or smaller, the suspended trans-630

port becomes non-negligible. This point will be discussed more extensively in Section 4.2.631

Comparisons presented here indicate that the EIM can effectively model the the turbulent632

diffusion of sediment concentration. Therefore, including the eddy-interaction model in633
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Reynolds-averaged formulation is essential to accurately model sediment concentration.634

Although the concentration profile with C0 = 3 captures the main features similar to the635

measured data, it is clear that the present model under-predicts the sediment suspension636

in the range of 5d < (z − zb) < 10d, and hence the sediment flux is also under-predicted637

(see panel (c) in Fig. 6). While it is possible to further increase C0 (increase turbulent638

suspension) to match the measured data better, it may not be physically valid. The TKE639

profiles are further compared with the measured data in Fig. 6d. Firstly, we can see640

that including/excluding the EIM has negligible impact on the modeled TKE profile, and641

both results show under-prediction of TKE away from the bed ((z − zb)/d > 7) and very642

near the bed ((z − zb)/d < 3). As presented in Fig. 4, the model predicts the TKE643

profile very well for fixed rough bed condition of similar bottom friction velocity. Inter-644

comparison of the measured TKE between the “FB” and “MB” conditions indicate that645

turbulence is enhanced by about 40% away from the bed (7 < (z − zb)/d < 25) and a646

significant enhancement is also observed very near the bed ((z− zb)/d < 3) in the mobile647

bed experiment. Revil-Baudard et al. (2016) attribute the enhancement of turbulence648

to near-bed intermittency. More recent Eulerian two-phase Large-eddy simulation study649

(Cheng et al., 2017b) further demonstrated that turbulence above the concentrated sheet650

layer ((z − zb)/d > 7) can be enhanced through these frequent but intermittent sediment651

burst events. It is noted that the present turbulence-averaged model is not designed to652

capture these intermittent turbulent features.653

In summary, including the eddy interaction model is required for the prediction of654

sediment concentration and sediment flux under sheet flow conditions. Although sedi-655

ment concentration in the dilute region is under-predicted with C0 = 3 in the EIM, the656

discrepancy is believed to be caused by under-prediction of turbulence due to intermittent657

turbulent features but not EIM itself. The sensitivity of the modeled suspended sediment658

concentration will be discussed in more details subsequently.659
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4. Discussion660

4.1. Sensitivity of sediment diffusivity to the coefficient C0661

As demonstrated in Section 3.1 for the channel flow with dilute sediment suspension,662

the sediment concentration profiles are sensitive to the coefficient C0 in the eddy interac-663

tion model, and the suspended sediment concentration gradient increases with C0 values.664

It is clear that the gradient of sediment concentration profile is related to the particle665

dispersion (or sediment diffusion). In this section, we further analyze the sensitivity of666

the suspended sediment concentrations and the sediment diffusivity to the coefficient C0667

under steady sheet flow conditions by varying C0 = 2, 3, 6, and 8.668

The effect of C0 values on the sediment concentration profile is illustrated in Fig. 7.669

Similar to the Rouse profile in dilute particle-laden flows (Eqn. 38), the Rouse profile in670

the sheet flow can be determined as,671

φ

φr
=

(
z − zb

h+ zb − z
h+ zb − zr
zr − zb

)−Ro
, (39)

In practice, the Rouse profile is only applicable when the turbulent suspension is dominant672

while the particle-particle interactions are negligible. Therefore, the reference location zr673

is chosen to be the lowest elevation at which the Reynolds shear stress follows a linear674

profile. The shear stress profiles corresponding to different C0 values are shown in Fig.675

7a. The Reynolds shear stress profile is nearly unaffected by the C0 value. Meanwhile,676

the Reynolds shear stress follows the linear distribution above (z − zb)/d = 7.5, and677

therefore it can be conjectured that the inter-granular stress becomes important below678

(z − zb)/d = 7.5 and a common reference location zr = zb + 7.5d is chosen.679

The normalized sediment concentration profiles are plotted in logarithmic scale in680

Fig. 7b, where the thick curves are numerical results, and thin dash-dot curves are the681

corresponding fitted Rouse profiles. The modeled sediment concentration profiles fit the682

Rouse profile well in the dilute region ((z−zb) > 7d) for all the C0 values tested. However,683

different slopes of concentration profiles were observed by varying C0 values. We quantify684

the slope of sediment concentration in logarithmic scale using the Rouse number Ro (see685

Eqn. 39). For C0 = 2, nearly no sediment is suspended above (z − zb)/d = 15 and the686
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Figure 7: The comparison of (a) Reynolds shear stress profiles and (b) sediment concentration profiles

plotted in semi-log scale for model result (C0 = 2, thick solid curve; C0 = 3, thick magenta dashed curve;

C0 = 6, thick black dash-dot curve; C0 = 8, thick blue dash-dot curve) and measured data (symbols). In

panel (a), the thin dashed curve denotes a linear fit to the Reynolds shear stress profile. In panel (b),

the thin dash-dot curves are the fitted Rouse profile with Rouse number Ro = 4.78, 2.98, 2.42 and 1.64

for the model results of C0 = 2, 3, 6 and 8, respectively. The value for the measured data is Ro = 2.14.

Rouse number Ro = 4.78 is large compared with the measured data Ro = 2.14. Using687

C0 = 3, sediments are suspended much higher in the water column and the resulting688

Ro = 2.98 is significantly lower. Further increasing C0 to 6 and 8, the Rouse number689

reduced to 2.42 and 1.64. Although the model result using C0 = 6 matches the measured690

sediment concentration profile, as discussed before, increasing C0 may not be physically691

justified because the predicted suspended sediment concentration also depends on modeled692

turbulence quantities.693

For given sediment properties and flow conditions, the Rouse number depends on694

the Schmidt number Sc, which is defined as the ratio between the fluid turbulent eddy695

viscosity (νft) and the sediment diffusivity (νp). In many Reynolds-averaged Eulerian696
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simulations of sediment transport (e.g., Hsu et al., 2004; Revil-Baudard and Chauchat,697

2013; Cheng et al., 2017a), the gradient transport assumption is adopted,698

ws′φ′ = −νp
∂φ

∂z
, (40)

where the sediment diffusivity is often parameterized by the turbulent eddy viscosity,699

νp = νft/Sc, with a constant Schmidt number (e.g., Hsu et al., 2003; Chen et al., 2011;700

Cheng et al., 2017a). Alternatively, the sediment diffusivity may be evaluated as νp =701

−wsφ/(∂φ/∂z) by considering the balance between the turbulent suspension flux and the702

settling flux, ws′φ′ = wsφ. In the present model, the sediment motion is directly resolved703

by a Lagrangian approach, and the eddy interaction model is incorporated to simulate704

the sediment suspension by the flow turbulence. Therefore, it is interesting to evaluate705

the eddy interaction model in terms of the resulting sediment diffusivity and Schmidt706

number.707

The vertical profiles of turbulent eddy viscosity and sediment diffusivity for C0 =2,708

3, 6 and 8 are compared in Fig. 8(a) and (b). The turbulent eddy viscosity profiles709

obtained using different C0 values are similar to each other and their vertical distributions710

are close to the measured data. However, the magnitude of the eddy viscosity is over-711

predicted compared with the measured data. Recall in Fig. 6(d) that the present model712

also under-predict TKE, we can conclude that the model may significantly under-predict713

ω due to inability to resolve intermittent turbulent motion and sediment burst. This714

may provide some useful insights to further improve the present k − ω model for two-715

phase flow in the future. As shown in Fig. 8(b), the vertical profiles of the sediment716

diffusivities are sensitive to the C0 values (see Fig. 8(b)), and the sediment diffusivity717

increases with the increasing values of C0. Because discrepancies exist in both eddy718

viscosity and sediment diffusivity, the overall evaluation was also examined by the ratio719

of these two quantities, namely the Schmidt number. The resulting Schmidt numbers720

(Sc = νft/νp) are presented in Fig. 8(c). We noticed that the predicted Schmidt number721

was more or less a constant in the suspension layer (z−zb) > 6d for all the runs regardless722

of C0 values, and this feature is consistent with the measurement. With C0 = 3 the723

resulting Schmidt number is around unity (Sc ≈ 1), which is significantly larger than724
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Figure 8: The vertical structure of turbulent eddy viscosity and sediment diffusivity are compared in

panel (a) and (b), respectively. The corresponding vertical structure of Schmidt number (Sc = νft/νp)

is plotted in panel (c). In all three panels, model result with C0 = 2 is denoted as thick solid curve,

C0 = 3 is denoted as thick dashed curve, C0 = 6 is denoted as thick dash-dot curve and C0 = 8 is denoted

as magenta thick dash-dot curve. The symbols are the measured data. In panel (c), the thin dash-dot

curves show the mean level of Schmidt number (Sc = 0.44 for measured data, Sc = 1.5, 1, 0.75 and 0.65

for model results with C0 = 2, 3, 6 and 8, respectively).

the measured value (Sc ≈ 0.44). The observed larger Schmidt number is consistent with725

the under-prediction of suspended sediment concentration and over-prediction of eddy726

viscosity discussed above. By increasing the value of C0 to 6 and 8, the resulting Schmidt727

number decreased to Sc ≈ 0.75 and Sc ≈ 0.65, respectively. With this analysis, we can728

also conclude that simply increasing C0 cannot reproduce the measured Schmidt because729

the eddy viscosity is over-predicted by the present two-phase flow k − ω model.730

In summary, we showed that the discrepancies in the sediment diffusivity and Schmidt731

number could be due to the inability of the Reynolds-averaged model to capture the732

nearbed intermittencies as observed in the sheet flow experiment of Revil-Baudard et al.733

(2015). The nearbed intermittency enhances the turbulent intensities within the dense734

layer and upper water column. As a result, the present model under-predicted turbulent735

35



intensity in these regions, which can further cause the under-prediction of the suspended736

sediment concentration. To fully understand the dependence of Schmidt number on737

turbulent flow characteristics and sediment properties, a more sophisticated turbulence-738

resolving models may be needed. Secondly, several interphase momentum transfer forces739

such as the added mass and lift forces are neglected in the present study. It is expected740

that these interphase transfer forces are less important for heavy sand particles. How-741

ever, they can become important for lightweight coarse particles (Jha and Bombardelli,742

2010). Finally, we shall note that detailed experimental measurements on natural sand743

transport in sheet flow are needed to study the relevance of this nearbed intermittency744

of lightweight particles for the sand transport. More comprehensive investigations are745

warranted for future work.746

4.2. Transport rate and transport layer thickness747

The present model is applied to study the role of turbulent suspension (modeled748

by EIM) on sediment transport rate and transport layer thickness. In sediment trans-749

port applications, the sediment transport rate is often of high interest, as it is directly750

used in regional-scale models to study morphological evolutions (e.g., Lesser et al., 2004;751

Warner et al., 2008). Many steady flow experiments revealed that the dimensionless752

sediment transport rate can be parameterized by the non-dimensional bottom shear753

stress (e.g., Meyer-Peter and Muller, 1948; Nnadi and Wilson, 1992; Ribberink, 1998).754

The non-dimensional form of the bottom shear stress is called Shields parameter, θ =755

τb/[(ρs − ρf )gd]. To evaluate the model capability to predict sediment transport rate, we756

carried out 14 cases with Shields parameter ranging from θ = 0.3 to 1.2 with/without757

EIM (see Table 4).758

The resulting sediment concentration profiles and sediment flux profiles for three rep-759

resentative Shields parameters (θ =0.5, 0.8 and 1.2) are shown in Fig. 9, where panels760

(a, b) corresponds to the results with EIM, and panels (c, d) corresponds to the results761

without EIM. As the shear stress exerted on the granular bed increases, the shear-induced762

dilation causes a larger erosion depth in the dense layer (φ/φmax > 0.5 or (z − zb)/d < 3,763

see Fig. 9a and 9c). This phenomenon is similar to the observations of Boyer et al. (2011)764
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d (mm) u∗ (cm/s) θ F = ws/u∗ Ψb Ψt δb/d δt/d

3 3.87 0.3 1.44 0.48 0.67 2.28 2.90

3 4.47 0.4 1.25 0.93 1.16 2.90 4.15

3 5.0 0.5 1.12 1.40 1.89 3.32 5.39

3 5.48 0.6 1.02 1.81 2.85 3.94 6.43

3 6.32 0.8 0.88 3.03 4.20 4.98 7.88

3 7.07 1.0 0.79 5.01 7.39 6.01 10.16

3 7.74 1.2 0.72 7.67 11.05 7.05 12.44

Table 4: A summary of the numerical experiments to study the effect of EIM on the sediment transport

rate and transport layer thickness at various Shields parameters. The transport rate and transport layer

thickness with EIM are denoted as Ψt and δt, respectively, while the results without EIM are denoted as

Ψb and δb, respectively.

for dense immersed granular flows, and it occurs regardless of the EIM. As a result of765

the shear-induced dilation, more sediments are eroded as the Shields parameter increases766

(the vertical location corresponding to φ/φmax = 0.5 is lower as θ increases). Between767

3.5 < (z− zb)/d < 10, the turbulent suspension mechanism is missing without EIM, thus768

a steep concentration gradient is obtained in each case in Fig. 9(c). As a consequence769

of the much rapid decrease of sediment concentration below φ/φmax = 0.3, the sediment770

transport flux occurs mostly in the relatively dense layer (see Fig 9d, e.g., sediment flux771

is nearly zero for (z − zb)/d > 8 for the case with the highest Shields parameter). On772

the other hand, when EIM is incorporated to model turbulent suspension, sediments are773

suspended further away from the bed. The sediment transport flux in the relatively di-774

lute layer (φ/φmax < 0.3) is significantly larger, and the total flux is expected to be larger775

compared with the cases without EIM (see Fig. 9b).776

The sediment transport rate can be obtained by integrating the sediment transport777

flux (Qs) over the entire vertical domain, and the dimensionless sediment transport rate778
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Figure 9: The sediment concentration profile and transport flux profile at three different Shields pa-

rameter, θ = 0.5 (solid curve), θ = 0.8 (dashed curve) and θ = 1.2 (dash-dot curve). Panel (a) and (b)

corresponds to the result with eddy interaction model, while panel (c) and (d) are the results without eddy

interaction model. The sediment concentration is normalized by the maximum sediment concentration

φmax = 0.635, and the transport flux is normalized by
√

(s− 1)gd.

can be computed as (Durán et al., 2012),779

Ψ =

∑N
i=1 viVi/(LxLy)√

(s− 1)gd3
. (41)

In this study, the sediment transport rate obtained with EIM is denoted as Ψt, while the780

transport rate without EIM is denoted as Ψb. According to the previous experimental781

results on the sediment transport rate, a general form of power law relationships between782
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the dimensionless sediment transport rate and the excess Shields parameter (θ − θc) can783

be written as,784

Ψ = M0(θ − θc)N0 , (42)

Where a typical critical Shields parameter θc = 0.05 is used, several different values of785

the coefficient M0 and N0 were proposed from various experimental results. On the basis786

of the flume experiments for rather coarse sand (d > 3 mm) at low Shields parameter787

(θ < 0.2), Meyer-Peter and Muller (1948) proposed that M0 = 5.7 and N0 = 1.5. This788

is the well-known power law where the transport rate is proportional to the 3/2 power of789

the excess Shields parameter (θ − θc). Based on the duct flow experiment with a smaller790

grain size (d = 0.7 mm) at higher Shields parameters (θ > 1), Nnadi and Wilson (1992)791

suggested that the coefficient M0 should be increased to M0 = 12. More recent study792

by Ribberink (1998) found that the power 3/2 should be increased to about 1.67 as the793

suspended load becomes important when the Shields parameter becomes larger.794

The numerical results of the dimensionless sediment transport rates as a function of795

the Shields parameters are plotted in Fig. 10. Clearly, the sediment transport rates796

predicted with EIM (circle symbols) and without EIM (triangle symbols) increase rapidly797

when the Shields parameter increases, and this trend follows the empirical power law798

(Eqn. 42) very well. The dash-dot curve in Fig. 10 shows the power law with N0 = 1.5799

(Meyer-Peter and Muller, 1948) and the resulting best fit is M0 = 8.1. However, the800

fitted curve with a power of N0 = 1.5 over-predicts the sediment transport rate for lower801

Shields parameters (θ < 1), while the transport rate in the higher Shields parameter range802

is under-predicted. On the other hand, the best fit of the power law for the present model803

results gives M0 = 8.27 and N0 = 2.0, which is consistent the the values reported by804

Ribberink (1998), M0 = 10.4 and N0 = 1.67. In addition, the transport rate without EIM805

is also compared with that of EIM. It is evident that the transport rate without EIM is806

generally smaller, and the discrepancy increases as the Shields parameter increases. If we807

further fit the transport rate obtained without EIM into the power law formula, we obtain808

that M0 = 5.5 and N0 = 2.0. It is interesting to note that although the proportionality809

constant M0 is much lower than that of EIM, the power N0 remains the same.810
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Figure 10: The nondimensional transport rate (panel a) and transport layer thickness (panel b) as a

function of Shields parameter θ. The circled symbols are model results with eddy interaction model

(denoted as Ψt). To contrast the effect of EIM, the model results without EIM (Ψb) are denoted as

triangle symbols. The solid curve shows the empirical formulation of Eqn. (42) with θc = 0.05, M0 = 8.27

and N0 = 1.97, while the dash-dot curve corresponds to θc = 0.05, M0 = 8.1 and N0 = 1.5. The best fit

to the transport rate without EIM is Eqn. (42) with θc = 0.05, M0 = 5.5 and N0 = 2.0. In panel (b),

the solid curve is the linear fit transport layer thickness with EIM, while the dashed curve is for the cases

without EIM.

As shown in Figure 9 (b) and (d), the sediment horizontal flux mainly occurs within811

a thick layer of about 10 ∼ 15 grain diameters above the bed. In sheet flow applications,812

the transport layer thickness is another quantity of interest, because this is where a813

large portion of transport takes place. For example, Wilson (1987) argues that mobile814

beds at high shear stresses can neither be considered as a rough or smooth fixed wall815
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but they obey their own friction law with a frictional length scale proportional to the816

thickness of the major transport layer. Wilson (1987) defined the major transport layer817

thickness as the distance of the lowest mobile bed layer (us < 1 mm/s) and the sediment818

concentration φ = 8%. However, we noticed that using the 8% threshold may neglect too819

much transport for the present analysis and a lower threshold may be more appropriate.820

Here, we define the transport layer directly from the sediment flux profile, where the821

dimensionless sediment flux is larger than a small threshold: Qs/
√

(s− 1)gd > 0.05. The822

resulting transport layer thickness with EIM (δt) and without EIM (δb) are compared823

in Fig. 10b. It is evident that the transport layer thickness increases with the Shields824

parameter. According to the experimental observations (e.g., Wilson, 1987; Sumer et al.,825

1996), the transport layer thickness is nearly proportional to the grain diameter and826

Shields parameter. As shown in Fig. 10b, we can see that a linear relationship can827

be found regardless of whether EIM is adopted or not, even though the proportionality828

coefficients are quite different. Without EIM, the transport layer thickness can be well829

described as δb/d = 6.18θ. However, the transport layer thickness with EIM is much830

larger, δs/d = 10.28θ with the proportional coefficient very close to the value 10 as831

suggested by Wilson (1987).832

According to Bagnold (1966), the particle suspension occurs when the dominant ver-833

tical velocity of the turbulent eddies exceeds the particle settling velocity. Assuming834

that the vertical velocity fluctuation can be quantified by the vertical turbulent velocity835

fluctuation, we can assume that the turbulent suspension is important if w′rms > ws. In836

the present model, an isotropic turbulence is assumed, such that the vertical turbulence837

intensity is approximated as, w′rms ≈
√

2k/3. Nezu (1993) suggested that the maximum838

TKE can be estimated as 4.78u2∗ for turbulent flow over smooth bed. In the present sheet839

sediment transport with coarse light particles, the maximum TKE can be reasonably rep-840

resented by 3u2∗ (see Fig. 6d), thus the turbulent suspension can be initiated when the841

shear velocity satisfies, ws/u∗ <
√

2. This is similar to the discussion of van Rijn (1984b)842

and Sumer et al. (1996), where they suggested that the relative importance between sus-843

pended load and bedload sediment transport can be categorized by the fall parameter,844
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F = ws/u∗. As summarized in Table 4, the fall parameter varies from 1.44 to 0.72 as845

the shear velocity increases from 3.87 to 7.74 cm/s. From the previous discussion on the846

sediment transport rate and transport layer thickness, it is found that the difference of the847

transport rate between the results with and without EIM is negligible when the Shields848

parameter is smaller than 0.5 (fall parameter F ≥ 1.25). However, when the Shields849

parameter is larger than 0.5 (or F < 1.25), the difference becomes noticeable.850
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Figure 11: Nondimensional suspended sediment transport rate Ψsus in the dilute region (φ < 0.08) as a

function of the fall parameter F = ws/u∗. The circled symbols are model results with eddy interaction

model, while the triangle symbol denotes the transport rate obtained without EIM.

To carry out more quantitative analysis, we consider that the turbulent suspension is851

most significant for the suspended load, which mainly occurs in the region of φ < 0.08.852

The non-dimensional suspended load sediment transport rate can be defined as,853

Ψsus =
1√

(s− 1)gd3

∫ Lz

z(φ=0.08)
φusdz. (43)

To illustrate the importance of EIM on the prediction of suspended sediment flux, the854

suspended load with/without EIM are compared in Fig. 11 for a range of fall parameters.855

As the fall parameter increases, the sediment particles are less likely to be suspended856
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by the turbulent eddies, thus the suspended sediment transport reduces rapidly. This is857

confirmed by the results of EIM, where the non-dimensional suspended sediment transport858

rate is reduced from 1.4 to 0.2 when the fall parameter increases from 0.72 to 1.44.859

However, we can see that the suspended load predicted without EIM is quite small (around860

0.2) and more or less a constant independent of the fall parameter. This indicates that861

the EIM is essential to capture the suspended sediment flux. For F < 1.25, suspended862

load flux can be significantly under-predicted and EIM should be included in the Euler-863

Lagrange model for steady sheet flows.864

5. Conclusion865

In this paper, a Reynolds-averaged Euler-Lagrange sediment transport model was de-866

veloped and applied to steady sheet flow, where the inter-granular interaction is directly867

resolved and the turbulent suspension of particles is modeled using an eddy interaction868

model. A LRN k − ω model extended for two-phase flow is implemented for the flow869

turbulence, which also provides the required turbulence statistics for the eddy-interaction870

model. The eddy interaction model was first calibrated using the dilute suspension ex-871

periments of Kiger and Pan (2002) and Muste et al. (2005). While the model is able to872

predict the measured flow velocity and turbulence kinetic energy very well, the model873

results are found to be sensitive to the coefficient C0 associated with the eddy-particle874

interaction time (see Eqn. 36), and a value of C0 ≈ 3 is calibrated to match the measured875

concentration profile in the dilute particle-laden flow.876

After calibrating the eddy-interaction model for dilute suspension, an application of877

CFDEM-EIM to steady sheet flow was carried out by simulating the laboratory exper-878

iment of Revil-Baudard et al. (2015) with C0 = 3. Although good agreements for flow879

velocity, turbulence kinetic energy, sediment concentration and sediment flux profiles are880

obtained for most of the sheet flow layer, the model clearly under-predicts turbulence and881

suspended sediment concentration in the dilute region. The under-predicted suspended882

sediment concentration is quantified by sediment diffusivity and we found that the sed-883

iment diffusivity decreases as the coefficient C0 increases, while the fluid turbulent eddy884

43



viscosity is not sensitive to C0 values. As a result, the resulting Schmidt number (ratio885

of fluid eddy viscosity to the sediment diffusivity) reduces as C0 increases. However, the886

Schmidt number cannot be reduced to the measured value of 0.44 unless an unrealistic887

large value of C0 is used. Therefore, it is likely that the under-prediction of suspended sed-888

iment concentration in the dilute region is mainly due to under-prediction of turbulence889

kinetic energy above the major sheet flow layer. As the higher level of turbulence may be890

associated with intermittent sediment burst events especially pronounced for lightweight891

particles (Revil-Baudard et al., 2015), a turbulence-resolving approach for the present892

Euler-Lagrange model may be necessary. Meanwhile, as the model can reproduce the893

major features of sheet flow layer, a model investigation was carried out to investigate the894

role of EIM and the resulting turbulent suspension on sediment transport rate and trans-895

port layer thickness. Model results confirmed that the non-dimensional transport rate896

follows a power law with the Shields parameter consistent with empirical formulations.897

Significant under-prediction of sediment transport rate were obtained without EIM due to898

lack of turbulent suspension, and the discrepancy between the result of EIM and without899

EIM is more pronounced when the fall parameter is lower than 1.25 (relatively smaller900

setting velocity or larger bottom friction velocity). Further analysis on transport layer901

thickness suggests that only when EIM is incorporated, the model is able to reproduce902

the well-known formula suggested by Wilson (1987).903

Future improvements of the present CFDEM-EIM are suggested in the following as-904

pects: First, the eddy interaction model is included only in the drag force, while the other905

interphase momentum transfer forces such as added mass and lift forces are ignored. How-906

ever, their relative importance to the drag force in the eddy interaction model needs more907

investigations, especially for lightweight coarse particles. Secondly, even though the par-908

ticles are tracked in a 3D domain with a Lagrangian approach, the fluid is solved only in a909

1DV domain, and the flow is assumed to be homogeneous in the streamwise and spanwise910

directions. This assumption is reasonable for typical sheet flow conditions. However, for911

flows over nonuniform bathymetry or bedforms, this assumption is violated, and multi-912

dimensional simulations are needed for the fluid phase. Thirdly, the turbulence is assumed913
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to be homogeneous and isotropic, thus the eddy interaction model may be too simple to914

reproduce the inhomogeneous features such as turbulent burst and preferential concen-915

trations. Within the context of turbulence-averaged formulation, more sophisticated tur-916

bulence closure and eddy-interaction schemes can be pursued. Fourthly, it is noted that917

the model results are sensitive to the estimation of eddy life time, which is also highly918

variable based on the flow condition (Coimbra et al., 1998), and a more sophisticated919

turbulence model that directly resolves the eddy life time will be highly viable. Fur-920

thermore, to make good use of the coupled Euler-Lagrange scheme, CFDEM-EIM should921

be extensively applied to study the effects of grain size distribution and grain shape on922

sediment transport (Calantoni et al., 2004; Calantoni and Thaxton, 2008; Fukuoka et al.,923

2014; Harada and Gotoh, 2008; Harada et al., 2015). Finally, the present study focused924

on developing a robust turbulence-averaged Euler-Lagrange model for various sediment925

transport applications. However, we also identified several outstanding issues in sheet926

flow sediment transport requiring further investigations, such as near bed intermittency927

and sediment diffusivity, which may require a turbulence-resolving simulation approach.928

Clearly, a fundamental understanding on many aspects of turbulence-particle interactions929

must be addressed by turbulence-resolving simulations and some encouraging works using930

the CFDEM framework have been reported (Schmeeckle, 2014; Sun and Xiao, 2016b).931
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