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Abstract 16 

Shelled pteropods are planktonic molluscs that may be affected by ocean 17 

acidification. Limacina retroversa from the Gulf of Maine were used to investigate the 18 

impact of elevated carbon dioxide (CO2) on shell condition as well as swimming and 19 

sinking behaviours. Limacina retroversa were maintained at either ambient (ca. 400 µatm) 20 

or two levels of elevated CO2 (800 and 1200 µatm) for up to four weeks, and then 21 

examined for changes in shell transparency, sinking speed, and swimming behaviour 22 

assessed through a variety of metrics (e.g., speed, path tortuosity, wing beat frequency). 23 

After exposures to elevated CO2 for as little as four days, the pteropod shells were 24 

significantly darker and more opaque in the elevated CO2 treatments. Sinking speeds were 25 

significantly slower for pteropods exposed to medium and high CO2 in comparison to the 26 

ambient treatment. Swimming behaviour showed less clear patterns of response to 27 

treatment and duration of exposure, but overall, swimming did not appear to be hindered 28 

under elevated CO2. Sinking is used by L. retroversa for predator evasion, and altered 29 

speeds and increased visibility could increase the susceptibility of pteropods to predation. 30 

 31 

Introduction 32 

The chemistry of the oceans is rapidly changing due to the infiltration of 33 

anthropogenic carbon dioxide (CO2) into the surface ocean, a process known as ocean 34 

acidification. One of the effects of ocean acidification is a decrease in the availability of 35 

carbonate ion (CO3
2-) which affects calcifying organisms that use calcium carbonate 36 

(CaCO3) to build shells and other structures (e.g. Orr et al. 2005, Royal Society 2005). A 37 

shifting balance of dissolution and calcification as saturation state decreases due to ocean 38 
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acidification jeopardises the shell structure that, in many cases, provides protection from 39 

predators (e.g. Fabry et al. 2008). Ocean acidification could also change the way that some 40 

organisms move in their environment since calcified structures govern the movements of 41 

certain planktonic organisms, including echinoderms and molluscs (e.g. Chan et al. 2011, 42 

Wheeler et al. 2013). 43 

Thecosomes, or shelled pteropods (Order Euthecosomata; henceforth referred to 44 

simply as pteropods), are planktonic molluscs that build calcium carbonate shells in the 45 

crystal form of aragonite, which is less stable than the other common form, calcite. 46 

Pteropod shells are becoming increasingly soluble in some regions of their habitat due to 47 

ocean acidification (e.g. Fabry et al. 2008). The shells of many species of pteropod are 48 

transparent, but turn darker and more opaque when exposed to seawater under-saturated 49 

with respect to aragonite, possibly due to an increased roughness of the shell’s surface 50 

associated with partial dissolution (Almogi-Labin et al. 1986, Haddad and Droxler 1996, 51 

Lischka et al. 2011, Lischka and Riebesell 2012, Wall-Palmer et al. 2013). Laboratory 52 

experiments have also shown that lowering the saturation state decreased calcification, 53 

leading to impaired shell growth (Comeau et al. 2009, Comeau et al. 2010, Bednaršek et 54 

al. 2014). Wild caught Limacina helicina from regions naturally low in aragonite 55 

saturation state have also shown signs of dissolution under scanning electron microscopy 56 

(Bednaršek, et al. 2012, Bednaršek, et al. 2014, Bednaršek, and Ohman. 2015). 57 

Shelled pteropods are a food source for many marine organisms, including 58 

seabirds, whales, salmon, trout, mackerel, cod, myctophids, and other zooplankton 59 

(LeBrasseur 1966, Ackman et al. 1972, Conover and Lalli 1974, Levasseur et al. 1996, 60 

Pakhomov et al. 1996, Armstrong et al. 2005, Hunt et al. 2008, Karnovsky et al. 2008, 61 
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Pomerleau et al. 2012, Sturdevant et al. 2013), and hence any effects of ocean acidification 62 

on pteropod populations also could have effects on a wide range of marine species. The 63 

ability of pteropods to move through the water column could be affected by ocean 64 

acidification via changes to the shell. Pteropods have evolved wings, or parapodia, to 65 

propel themselves through the water. The spiral shaped pteropod species (Limacinidae) 66 

swim in a zig-zag motion, rotating their shell between a power stroke followed by a 67 

recovery stroke to provide lift (Chang and Yen 2012, Murphy et al. 2016). Many species 68 

of pteropods make daily migrations to depth during the day to avoid visual predators and to 69 

the surface at night to feed (Wormuth 1981, Comeau et al. 2012, Maas et al. 2012); 70 

sinking of the negatively buoyant shell is presumed to be an important component of the 71 

downward part of this diel vertical migration. Pteropods can also use swimming and 72 

sinking to escape from predators that are in their immediate proximity (Comeau et al. 73 

2012). Harbison and Gilmer (1986) observed both swimming and sinking behaviours when 74 

pteropods were disturbed. Furthermore, after pteropods die, their sinking shells sequester 75 

inorganic carbon to the deep ocean (Byrne et al. 1984) and pteropod shells are estimated to 76 

account for 12% of the global carbonate flux (Berner and Honjo 1981). Changes in the 77 

fitness, abundance, and sinking of pteropods under ocean acidification thus also have 78 

consequences to the carbon cycle. 79 

The species examined in this study, Limacina retroversa, is found in the Gulf of 80 

Maine, a region that is particularly susceptible to ocean acidification (Wang et al. 2013). 81 

Due to deep water formation in the North Atlantic, the infiltration of anthropogenic CO2 82 

into intermediate and deep water is pronounced in this region and is causing the carbonate 83 

chemistry throughout the water column to change more quickly than the average global 84 
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rate (Sabine et al. 2004). Furthermore, recent studies along the length of the U.S. East 85 

Coast found that the Gulf of Maine had the lowest saturation states observed as well as the 86 

lowest total alkalinity to dissolved inorganic carbon ratio, indicative of strong sensitivity to 87 

continued acidification (Wang et al. 2013; Wanninkhof et al. 2015). Although found year 88 

round in the Gulf of Maine, L. retroversa is also found in the open ocean, in the temperate 89 

and subpolar Atlantic of the Northern and Southern hemispheres. As a broadly distributed 90 

species that is also readily available relatively close to shore, it serves as a useful model 91 

species for examining the response of pteropods to ocean acidification.  92 

In this study, L. retroversa were captured and reared under different concentrations 93 

of CO2 over the course of multiple seasons to examine the impacts on shell condition and 94 

locomotion, testing the hypotheses that 1) The appearance of shells changes after exposure 95 

to elevated levels of CO2; 2) L. retroversa sinking speed differs among CO2 treatments; 96 

and 3) The swimming ability of L. retroversa is affected by exposure to elevated CO2. 97 

 98 

Methods 99 

 Four cruises into the Gulf of Maine allowed for the capture of shelled pteropods, 100 

Limacina retroversa. The pteropods were brought back to the laboratory and reared in 101 

seawater modified by bubbling with three different levels of CO2, an ambient treatment 102 

(nominally 400 ppm) and two elevated treatments, 800 and 1200 ppm, hereafter referred to 103 

as the ambient, medium, and high CO2 treatments, respectively. These were intended to 104 

yield over-saturated, marginal, and strongly under-saturated conditions with respect to 105 

aragonite. The actual pCO2 levels and saturation states achieved via bubbling were 106 

calculated from measured dissolved inorganic carbon (DIC) and total alkalinity (TA) using 107 
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CO2SYS (see below). The condition of shells along with swimming performance and 108 

sinking rates of animals was examined after 2 days to 4 weeks of exposure.  109 

 110 

Animal Sampling  111 

Limacina retroversa were collected in water depths of ca. 45-260 m in the Gulf of 112 

Maine near Provincetown, MA aboard the R/V Tioga during four cruises in April, August, 113 

and November 2014 and April 2015, with each expedition lasting one to three days. 114 

Oblique tows were conducted with a 1-m diameter Reeve net with 333 µm mesh size. The 115 

net was equipped with a large cod-end and hauled at slow speeds (ca. 5 m/min) to collect 116 

animals in healthy condition. Limacina retroversa were isolated from the rest of the 117 

plankton sample and placed into 1-L jars filled with Gulf of Maine seawater pumped in 118 

situ from a depth of ca. 30 m and filtered through a 64 µm sieve. The pteropods were kept 119 

at densities of ca. 30-40 individuals per litre and maintained in a refrigerator at ca. 8°C and 120 

later in coolers for transfer to the laboratory. 121 

 122 

Culturing and Experimental Set-up 123 

Upon returning to the laboratory, L. retroversa were moved with a soft pipette into 124 

13-L carboys with 2-3 replicate carboys per treatment. The carboys were filled with in situ 125 

seawater collected during the cruise that had been transferred a day earlier to the laboratory 126 

and filtered to 1µm. For the duration of each experiment, as well as for ca. 8-16 hours prior 127 

to the addition of animals, each carboy was bubbled continuously using one of the three 128 

CO2 concentrations, ambient (nominally ca. 400 ppm), 800, and 1200 ppm. For the 129 

medium and high treatments, the target air-balanced CO2 gases used for bubbling were 130 
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achieved by mixing pure CO2 gas and CO2-free air using mass-flow controllers. The 131 

ambient treatment was not controlled but rather was derived from the CO2 content of 132 

ambient air drawn from outside the building. 133 

The carboys were kept in a cold room at 8°C at a density of ca. 15 individuals per 134 

litre. The pteropods were fed a mixed diet of Rhodomonas lens (1500-4000 cells/mL) and 135 

Heterocapsa triquentra (150-500 cells/mL) with lower concentrations provided over the 136 

course of each experiment as the pteropod culture density decreased due to mortality and 137 

use for various measurements. Water and pteropods were siphoned out of the carboys 138 

every week so that the seawater could be replaced with clean pre-bubbled water (collected 139 

in situ in the Gulf of Maine and kept after the cruise in a holding tank filtered continuously 140 

at 1 µm) and dead pteropods could be separated from the live ones. Additional details on 141 

culturing protocols can be found in Thabet et al. (2015). 142 

During water changes, samples of the water leaving each carboy and the water 143 

entering the carboys were collected in 250 mL borosilicate glass bottles, poisoned with 100 144 

µL saturated mercuric chloride, and then capped with a greased stopper for later analysis of 145 

TA and DIC. TA was measured using an Apollo SciTech alkalinity auto-titrator (AS-146 

ALK2, Apollo SciTech, Newark, DE, USA), an Orion 3 Star pH metre, and a Ross 147 

combination pH electrode based on a modified Gran titration method (Wang and Cai 148 

2004). DIC was analysed with a DIC auto-analyzer (AS-C3, Apollo SciTech, Newark, DE, 149 

USA) via acidification and non-dispersive infrared CO2 detection (LiCOR 7000: Wang and 150 

Cai 2004). The saturation state of aragonite (ΩA), pCO2, and pH were calculated from DIC 151 

and TA with the CO2SYS software (Pierrot et al. 2006), using constants K1 and K2 from 152 
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Mehrbach et al. (1973) refitted by Dickson and Millero (1987), and the KHSO4 153 

dissociation constant from Dickson (1990). 154 

In order to monitor conditions and adjust bubbling rates accordingly between water 155 

changes, pH in each carboy was measured every 2-3 days using a USB 4000 spectrometer 156 

with an LS-1 light source and a FIA-Z-SMA-PEEK 100-mm flow cell (Ocean Optics, 157 

Dunedin, FL, USA), and 2 mM m-Cresol indicator dye (50 µL in 20 mL of sample). The 158 

DIC/TA-based calculations of ΩA and pCO2 described above were used as the primary 159 

means of assessing the carbonate chemistry of the experimental treatments, but ΩA and 160 

pCO2 were also calculated using CO2SYS from measurements of pH along with the 161 

nearest measurement of TA in time, as a means of assessing variability between water 162 

changes. 163 

 164 

Shell Condition 165 

Ten live animals were removed from each of the ambient, medium, and high 166 

treatments at days 2, 4, 8, and 15 during the April 2015 experiment. They were rinsed in 167 

deionised water, weighed wet and dry with a Cahn C-33 microbalance with a precision of 168 

1 µg, then placed in 8.25% hypochlorite bleach for 24-48 hours to remove tissue, rinsed in 169 

deionised water again, and dried.  170 

Using a light microscope, the empty shells were photographed at 2.5X 171 

magnification for transparency, opacity, and length measurements. For transparency, the 172 

shell was positioned in a glass petri dish with the aperture facing up and the light coming 173 

from below and through the shell. A photograph was taken through the microscope with a 174 

2-ms exposure, and with white balance, contrast, and brightness values conserved across 175 
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images. Similarly, opacity was measured from images of shells placed with the aperture up 176 

with 2-ms exposure, but with the lighting coming from two iridescent lights that 177 

illuminated the shell parallel to the camera in order to measure reflected light. The lights 178 

were positioned opposite each other to reduce shadows, and about 10 cm away from the 179 

shell’s location at the centre of the petri dish. 180 

Images were analysed in MATLAB to calculate transmittance and opacity. For 181 

transmittance, the shell was identified against the white background by thresholding the 182 

image to black and white. The aperture as well as any holes were manually cropped from 183 

the object. The transmittance was calculated as the mean grayscale value (range: 0-255) of 184 

the pixels of the shell divided by 255 to get a scale of 0 (black) to 1 (white). The image 185 

analysis was similar for opacity, but instead the shell was identified by thresholding the 186 

brighter shell from a dark background. For opacity the mean grayscale value of the shell, 187 

after cropping out the aperture and any holes, was calculated on the same scale of 0 (black) 188 

to 1 (white), like transmittance.  189 

 190 

Videography 191 

Live and active L. retroversa (shell lengths ranging from 0.56 mm to 2.37 mm) 192 

were removed from each of the CO2 treated carboys for filming during the 1st, 2nd, 3rd, and 193 

4th weeks of exposure to the different CO2 treatments. Due to the length of time needed to 194 

make a sufficient number of observations, filming was done over two to five days for each 195 

week. The exact numbers removed from the treatments for each week as well as which 196 

weeks were sampled varied among experiments due to variability in the number of live 197 

animals available and needs for companion studies of physiology and gene expression. The 198 
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removed animals were moved to another cold room at 8°C, in 1-L jars of filtered seawater 199 

at the ambient CO2 concentration. Videos were recorded with a Photron Fastcam SA3 high 200 

speed camera at 500 frames per second. A triangular prism tank with a mirrored face on 201 

the hypotenuse of the isosceles right triangle was used so that both the animal and its 202 

orthogonal projection were visible in the field of view and the 3D position and velocity of 203 

the pteropod could be recorded (Figure 1a). Illumination was delivered by an LED panel 204 

with the light diffusing through a thin plastic sheet. The mirrored tank was filled with 205 

filtered seawater with a density between 1024-1026 kg/m3. Density was measured with a 206 

digital seawater refractometer (Hanna Instruments, model 96822). Three types of 207 

movements were examined: sinking with wings withdrawn, sinking with wings extended, 208 

and upward swimming. 209 

 210 

Sinking 211 

For quantification of sinking rates, a rigid pipette was attached to a ring stand and 212 

placed so that the narrow end was in the water and at the top of the camera’s frame (Figure 213 

1b,c). The camera was focused and a ruler used to calibrate distance in the tank. The field 214 

of view for sinking trials was 5.7 cm x 5.7 cm. Each L. retroversa was sucked into a soft 215 

pipette and then released into the fixed pipette. The constriction in the fixed pipette caused 216 

the animal to slow and then accelerate as it left the fixed pipette and sank through the 217 

frame. Individual animals were filmed for 3-6 repeat sinking trials, which were used to 218 

calculate average sinking rates for each experimental animal later used in statistical 219 

comparisons among treatments. In April, August, and November of 2014, animals were 220 

filmed sinking with their wings extended and also with their wings withdrawn. In April 221 
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2015, only animals sinking with wings withdrawn were recorded in order to dedicate more 222 

time and generate a larger sample sizes for this behaviour, since by then the difference 223 

between wings withdrawn and wings extended during sinking had already been 224 

determined.  225 

The videos were analysed in MATLAB by converting the frames to black and 226 

white. With the pteropod and its reflection isolated as objects, the length and position of 227 

the animal and its reflection were measured. Over successive frames, the difference in 228 

position was used to calculate speed. Since the animals rotated slightly about the horizontal 229 

axis the maximum length of the animal or reflection observed over the course of the video 230 

was used to estimate the length of the long axis. Speed vs. time plots were fit with a 231 

hyperbolic tangent function, giving an analytical solution for terminal speed. The 232 

hyperbolic tangent function solves for sinking velocity for a high Reynolds number regime 233 

(Owen and Ryu 2005). The Reynolds number is a non-dimensional number describing the 234 

ratio of inertial to viscous forces and is calculated here as animal length multiplied by the 235 

speed of the pteropod divided by the kinematic viscosity of water. Although L. retroversa 236 

move at low to intermediate Reynolds numbers (ca. 5-50), the hyperbolic tangent function 237 

fit the data better than the low Reynolds number solution (negative exponential function).  238 

 239 

Swimming 240 

Swimming trials were conducted by placing animals below the camera’s field of 241 

view via soft pipette and filming their swimming up through the frame. The size of the 242 

field of view was calibrated with a ruler and was 2.7 cm x 2.7 cm, with the bottom of the 243 

field of view 2-3 cm above the floor of the tank. In the April 2014 and August 2014 244 
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experiments, multiple pteropods from the same treatment were placed in the tank together 245 

and swimming trials were recorded. Each of these swimming trials was included separately 246 

in statistical comparisons among treatments, but since the exact identity of swimmers was 247 

not known, the more active individuals could have contributed multiple swimming 248 

observations. Therefore, for improved accuracy, in November 2014 and April 2015, a 249 

single individual was placed in the tank and multiple swimming trials were recorded for 250 

each animal; swimming metrics averaged over the multiple trials for each individual were 251 

then used in statistical comparisons among treatments.  252 

Video analysis was done in MATLAB with similar protocols as for sinking. The 253 

frames were converted to black and white to allow for the identification of the pteropod 254 

and its reflection to track its properties (length, position) from one frame to the next. These 255 

properties were used to determine the speed, distance travelled, and trajectory. Path 256 

tortuosity was measured as the total cumulative distance travelled over a video segment 257 

divided by the direct distance between the last and first frame; each video segment was at 258 

least 0.5 seconds and recorded at least three wing beats (power and recovery strokes). The 259 

swimming metrics examined were the mean speed (calculated in 3D), frequency of wing 260 

beats, path tortuosity, ratio of horizontal to vertical displacement, and asymmetry of speed 261 

between the power and recovery strokes (Figure 2). 262 

 263 

Statistics 264 

One-way analyses of variance (ANOVA), or a Kruskal-Wallis one-way ANOVA 265 

on ranks when the data failed either the equal variance or normality tests, were used to test 266 

for differences among treatments in shell transmittance and opacity, sinking speeds 267 
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(separately for wings withdrawn and extended), swimming speed, wing beat frequency, 268 

swimming path tortuosity, ratio of horizontal to vertical displacement, and asymmetry in 269 

speed between the power stroke and recovery stroke. If there were significant effects from 270 

these tests, post-hoc pairwise comparison tests were conducted using the Holm-Sidak 271 

method for one-way ANOVAs and Dunn’s method for Kruskal-Wallis one-way ANOVAs. 272 

Sinking speed with wings withdrawn was compared to sinking speed with wings extended 273 

using a Wilcoxon Paired-Sample Signed-Rank signed rank test. Correlation coefficients 274 

were also calculated among swimming metrics. 275 

 276 

Results 277 

Experimental Treatments 278 

The nominal target values for pCO2 of 400, 800, and 1200 µatm were not always 279 

achieved and calculated values varied among experiments, but overall the carbonate 280 

chemistry measurements indicated clear distinctions among treatments (summarised in 281 

Table 1 and see Supplementary Table S1 for full details). The ambient treatment had 282 

higher levels than the nominal 400 µatm (the approximate global average atmospheric 283 

concentration), closer to 450 µatm. Calculations of achieved pCO2 for the medium and 284 

high treatments also indicated variability, likely due to a combination of uncertainty in the 285 

sampling and measurements of DIC and TA, uncertainty in the mixture of gas by the mass-286 

flow controllers, and variability in the degree of bubbling. In April and August 2014 the 287 

calculated pCO2 of pre-bubbled water that was entering the carboys at the onset of the 288 

experiment was consistently lower than that calculated for the outgoing water, suggesting 289 

incomplete pre-equilibration (Supplementary Table S1). Subsequent measurements of pH 290 
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made between water changes, however, indicated that the seawater chemistry for these 291 

treatments attained their target values after less than 24 h. 292 

Measurements of outgoing water made during water changes indicated that the 293 

ambient treatments always had over-saturated conditions with respect to aragonite 294 

(ΩA=1.49-1.61), medium treatments were near the threshold of saturation (0.76 in 295 

November 2014, 1.21 in August 2014, and otherwise 0.94-1.05), and the high treatment 296 

had strongly under-saturated conditions (ΩA=0.63-0.80, Table 1). The medium treatment 297 

showed the greatest variability, likely due to a combination of sampling error, issues with 298 

the mass-flow controllers (in November 2014, where saturation states were overly low), 299 

and insufficient bubbling (in August 2014, where saturation states were overly high). The 300 

ambient treatment was significantly different in aragonite saturation state from both of the 301 

elevated CO2 treatments in three of the experiments (one-way ANOVA, p<0.001), while in 302 

the August 2014 experiment only the ambient and high treatments were significantly 303 

different (Kruskal-Wallis one-way ANOVA, H=11.7, p=0.003). The medium and high 304 

treatments were also significantly different from one another in April of 2014 and 2015 305 

(Holm-Sidak, p<0.05), though not in August or November 2014. TA showed relatively 306 

small differences between experiments, presumably related to natural seasonal processes in 307 

the Gulf of Maine region (Supplemental Table S1). 308 

 309 

Shell Condition 310 

Shell condition from the April 2015 experiment for the ambient treatment was 311 

mostly unchanged relative to duration of exposure, while the medium and high CO2 312 

treatments showed decreased transmittance and increased opacity over the course of 15 313 
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days of exposure (Figure 3, Table 2). On day 2, there was not a significant difference in the 314 

appearance of shells among treatments, but both shell transmittance and opacity were 315 

significantly different among treatments on days 4, 8, and 15 (Table 3). Post-hoc pairwise 316 

comparisons showed that the transmittance from the ambient and high treatments were 317 

significantly different on days 4, 8, and 15 (p<0.05), the medium and high treatments were 318 

never significantly different, and the medium and ambient treatments were only 319 

significantly different on day 15 (p<0.05). For opacity, on days 4 and 8 only the ambient 320 

and high treatments were significantly different (p<0.05), whereas on day 15, each 321 

treatment was significantly different from the others (p<0.05). 322 

The dry masses of the shells (with animal body tissue present) from April 2015, 323 

normalized to length, indicated an overall decrease over the course of the 15 days of 324 

exposure and also substantial overlap among treatments (Supplementary Figure S1). Mass 325 

normalized to length was significantly different between the CO2 treatments at days 8 326 

(Kruskal Wallis one-way ANOVA, H=6.1, p=0.048) and 15 (one-way ANOVA, F=4.1, 327 

p=0.037), but not for the earlier time points. At day 8, there were not significant pairwise 328 

differences in mass normalized to length among treatments (Dunn’s method, p>0.05), and 329 

on day 15 only the medium and high treatment were significantly different from one other 330 

(Holm-Sidak method, p<0.05). 331 

 332 

Sinking 333 

Sinking rates showed differences associated with treatment, duration of exposure, 334 

experiment, and behaviour (i.e. wings extended or withdrawn). After one week of 335 

exposure, sinking rates for animals with wings withdrawn were similar among treatments 336 



16 

 

and showed no significant differences for two of three experiments (Figure 4a, Table 3), 337 

while during week one of the third experiment (April 2015) sinking rates differed 338 

significantly among treatments. Sinking rates were significantly slower for animals in the 339 

elevated CO2 treatments than in the ambient treatment after two or more weeks of exposure 340 

during every experiment. In all pairwise comparisons, the ambient treatment was 341 

significantly different from both the medium and high treatments, except for the second 342 

week of the November 2014 when only the ambient and high treatments were significantly 343 

different (p<0.05).  344 

On average there was an 84% reduction in sinking speed for animals holding their 345 

wings extended compared to wings withdrawn, and sinking speeds with wings withdrawn 346 

and wings extended measured for the same individuals were significantly different 347 

(Wilcoxon Paired-Sample Signed Rank, Z=-8.981, p<0.001). Sinking rates for animals 348 

with wings extended also showed similar trends to those with wings withdrawn with 349 

respect to treatment and duration of exposure (Figure 4b). While there were no significant 350 

differences among the treatments after one week of exposure, significant differences were 351 

observed among treatments after an exposure duration of two weeks and onwards, with 352 

significantly faster sinking rates evident for the L. retroversa exposed to ambient CO2 353 

compared with the high treatment (November 2014 week 2) or to the medium and high 354 

treatments (April 2014 week 4).  355 

In order to account for possible uncertainty introduced by any differences in the 356 

size of animals among treatments and time points, attempts were also made to normalise 357 

the sinking rate measurements relative to individual size. Linear regressions based on log-358 

log plots were used to examine the effect of length on sinking speed of animals with wings 359 
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withdrawn. The resulting power law scaling relationships between sinking speed and 360 

length for the ambient, medium, and high treatments were 0.45, 0.74, and 0.52 respectively 361 

(Figure 5), suggesting that normalising the sinking speeds by the square root of length 362 

(0.50 scaling) was appropriate. In all but one case, normalising sinking speed by length in 363 

this way did not affect the significance of the differences among treatments, with the 364 

exception of week one for November 2014. In this case, in contrast to the initial test, when 365 

normalised, the Kruskal-Wallis one-way ANOVA showed significant differences among 366 

treatments in sinking speeds (H=7.3, p=0.026) due to faster sinking in the high treatment, 367 

followed by the medium, then ambient.  368 

 369 

Swimming  370 

In contrast to sinking, swimming rates did not differ in a consistent manner among 371 

treatments and durations of exposure. For the two experiments (August 2014 and April 372 

2015) where observations were made after one week, mean swimming speed was 373 

significantly different among treatments but differed in which treatment showed the fastest 374 

swimming (Figure 6a, Table 3). Significant differences were not seen among treatments at 375 

two or three weeks. There was also not a significant correlation between swimming speed 376 

and animal length (Table 4): in the log-log plot of swimming speed vs. animal length the 377 

slopes of the linear regressions were nearly zero (see Supplementary Figure S2) and hence 378 

no attempts were made to normalise swimming measurements to animal size. 379 

For the initial two experiments (April and August 2014) where multiple animals 380 

were together in the filming tank and individual swim analyses were not possible, wing 381 

beat frequency showed no differences among treatments (Figure 6b, Table 3). For the two 382 
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later experiments (November 2014 and April 2015), where individual animals were 383 

measured separately, a trend of decreasing flapping frequency under elevated CO2 was 384 

evident, and the frequency of wing beats was significantly higher in the ambient treatment 385 

compared to the medium and high treatments in week one of the April 2015 experiment, 386 

although not in week two of the November 2014 experiment or week two of April 2015.  387 

Tortuosity only differed significantly during the initial experiments (April 2014 and 388 

August 2014), where multiple animals were placed together during filming (Figure 6c, 389 

Table 3). In the November 2014 and April 2015 experiments, no significant differences 390 

were seen in tortuosity among the treatments, although there was a high degree of 391 

variability during the November 2014 week two experiment, where the ambient treatment 392 

had the highest tortuosity due to an outlier (4.05) and low sample size (n=3). The average 393 

ratio of horizontal to vertical displacement averaged over all the experiments was 394 

0.35±0.15 (±standard deviation) and similar to tortuosity there were only significant 395 

differences between treatments in April 2014 (Kruskal-Wallis one-way ANOVA, H=8.7, 396 

p=0.013) and August 2014 (Kruskal-Wallis one-way ANOVA, H=6.9, p=0.032). The 397 

asymmetry between the peak speeds of the power and recovery strokes did not differ 398 

among treatments for any of the experiments (one-way ANOVA). The average and 399 

standard deviation of asymmetry between the power/recovery strokes over all the 400 

experiments was 7.2±5.1% (n=191).  401 

There was a significant positive correlation between mean swimming speed and 402 

wing beat frequency and a significant negative correlation between wing beat frequency 403 

and length (Table 4). The mean swimming speed also had significant negative correlations 404 

with both tortuosity and the asymmetry between the speeds of the power and recovery 405 
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strokes. There were no significant correlations between tortuosity or the asymmetry of the 406 

strokes and length. 407 

  408 

Discussion 409 

The condition of Limacina retroversa shells and sinking speeds of live animals 410 

were significantly affected by exposure to elevated carbon dioxide. Since the passive 411 

motion of sinking was slower in the elevated CO2 treatments, even for animals with wings 412 

withdrawn, this indicates that the slower sinking rates likely relate to differences in the 413 

shells. Swimming behaviour showed less clear patterns of variability in relation to 414 

treatment and duration of exposure, and overall swimming ability did not appear to be 415 

hindered under elevated CO2. 416 

 417 

Shell Condition 418 

The appearance of shells changed significantly in the elevated CO2 treatments. 419 

Differences in transmittance and opacity of the shells from the medium and high 420 

treatments relative to the ambient treatment were apparent from day four of exposure, 421 

while in contrast the shells from the ambient treatment did not change significantly over 422 

time. Other studies have found that short exposures to similar CO2 concentrations (750, 423 

880, and 1000 ppm for 7-8 days) can cause changes in shell condition of L. retroversa 424 

(Lischka and Riebesell 2012, Manno et al. 2012) and in the congeneric species L. helicina 425 

(Lischka et al. 2011, Bednaršek et al. 2012, Busch et al. 2014, Bednaršek et al. 2014). The 426 

present study adds to these earlier observations by offering a new, quantitative metric for 427 

assessing shell condition based on transparency to light-based microscopy and by 428 
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extending the duration over which effects on shell condition were examined. Although 429 

they were measured and considered separately, transmittance and opacity are highly related 430 

optical properties and as such expectedly showed very similar patterns (though in opposing 431 

directions). Future studies employing our light microscopy-based approach might thus 432 

focus on transmittance, since the transverse lighting used for opacity measurements causes 433 

some glare on the shells regardless of condition which may affect the sensitivity of this 434 

metric. 435 

A loss of transparency could have a negative impact on shelled pteropods since 436 

transparency is a form of camouflage in the open ocean environment. Although some 437 

pteropod predators, notably the gymnosome (or shell-less) pteropods, are non-visual, the 438 

decrease in transparency could potentially serve to increase visibility to visual predators 439 

known to feed on pteropods, such as fish and birds (LeBrasseur 1966, Levasseur et al. 440 

1996, Armstrong et al. 2005, Hunt et al. 2008, Karnovsky et al. 2008, Sturdevant et al. 441 

2013). It is not known how small of a change in CO2 concentration will elicit a response in 442 

shell condition, but it is noteworthy that changes were evident here in the medium 443 

treatment, which in April 2015 was just above an aragonite saturation state of one, a 444 

potential environmental threshold. The loss of transparency is likely caused by dissolution 445 

of the calcium carbonate matrix, as has been seen at higher resolution using scanning 446 

electron microscopy (e.g. Bednaršek et al. 2012). It is possible that the more gradual 447 

change in CO2 concentrations that will occur as a result of climate change could allow for 448 

adaptation, although shell dissolution has already been documented for wild populations of 449 

L. helicina exposed to naturally low saturation state conditions (Bednaršek et al. 2012, 450 

Bednaršek et al. 2014). The methods provided here for examining the transparency of 451 
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shells could be applied to natural populations to look for seasonal and inter-annual 452 

changes. 453 

 454 

Sinking 455 

Although sinking speeds have been previously quantified in some pteropod species 456 

(Lalli and Gilmer 1989), the effect of elevated CO2 on pteropod sinking has not previously 457 

been examined, despite the important role that sinking plays in pteropod locomotion and 458 

carbonate flux. In this study, the sinking speeds of L. retroversa were slower during the 459 

second week of exposure to elevated CO2 and onwards. Measurements of mass made for 460 

the April 2015 experiment, normalized to length to account for variability in size, did not 461 

indicate a clear pattern among treatments indicative of dissolution due to exposure to 462 

enhanced CO2. It is thus not clear whether the change in sinking speed are due to the shells 463 

changing in mass, density, or if they are modified in a way that increases drag. It is also not 464 

known whether the experimentally manipulated chemical conditions had any impacts on 465 

the mass of the animal bodies, separate from the shells. Given the relatively massive shells 466 

and direct linkage between under-saturated conditions and calcium carbonate dissolution, 467 

however, it seems likely that changes in sinking speed relate primarily to changes in the 468 

shells. The ambient treatment also showed slower sinking with increased duration of 469 

exposure, but nonetheless the effect of elevated CO2 treatment was persistent and sinking 470 

both with wings withdrawn and extended showed a similar treatment effect. The decrease 471 

in sinking speed for the ambient treatment could indicate a captivity effect, where animals 472 

in all treatments might decrease in overall health and vigour with increased duration of 473 

time in captivity. It could also be due to removal of larger individuals earlier in the 474 



22 

 

experiments, leading to smaller pteropods being tested in the later weeks, although the 475 

effect of exposure on sinking speed was consistent when normalised by the square root of 476 

length (based on the observed relationship between size and sinking speed) so this is less 477 

likely. In an earlier study, the scaling between shell length and sinking speed for the 478 

congeneric species L. helicina was between 0.3 and 0.4 (Chang and Yen, 2012), similar to 479 

the scaling of 0.5 found in this study. Animal length and speed are also important in 480 

determining the Reynolds number (Re). Since L. retroversa moves in a transitional regime 481 

of Re between ca. 5 and 50, decreases in sinking and swimming speeds might lead to a 482 

decrease in Re that could result in increased viscous drag (Walker 2002). 483 

Extended wings slowed sinking, presumably as an adaptation to minimise energetic 484 

expenditure on swimming to maintain position in the water column. In the laboratory, our 485 

observation is that pteropods alternate periods of swimming upwards with sinking, while in 486 

the field, the production of mucous webs is thought to slow or even halt sinking, although 487 

the prevalence of this behaviour is not well known (Gilmer and Harbison 1986). The bio-488 

energetic consequences to pteropods in the wild of reduced sinking speeds are thus 489 

somewhat difficult to assess, but it may be that metabolic costs of maintaining position in 490 

the water column are overall reduced under exposure to enhanced CO2. In contrast, 491 

changes in sinking speed may have negative consequences in terms of vulnerability to 492 

predation. The gymnosome pteropods feed exclusively on shelled pteropods and for this 493 

monospecific predator-prey relationship, withdrawing wings into the shell might make it 494 

harder for the predatory shell-less pteropods to successfully capture and consume their 495 

prey (Conover and Lalli 1974). Sinking behaviour in the wild is also believed to be a mode 496 

of predator avoidance: a response to a disturbance was noted for the pteropod species 497 
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Diacria quadridentata, which withdrew its wings presumably to achieve a faster sinking 498 

speed (Gilmer and Harbison 1986). Overall, there are only a few field observations of 499 

pteropod behaviour in the wild, but along with the decrease in transparency and 500 

camouflage, a decrease in sinking speed with increased CO2 is another way that L. 501 

retroversa and other shelled pteropods might have increased vulnerability to predators due 502 

to ocean acidification. 503 

Post-mortem sinking of pteropod shells is important for the biogeochemical cycling 504 

of carbon (Berner and Honjo 1981). The solubility of aragonite increases with depth, 505 

dropping below a saturation state of one at a depth known as the aragonite compensation 506 

depth, which is shoaling due to ocean acidification (Fabry et al. 2008). Dissolution is not 507 

immediate below the aragonite compensation depth, however, and shells that sink more 508 

slowly have more time to be dissolved before reaching deeper water (Byrne et al. 1984). 509 

The combination of the slower sinking rates observed here with the shoaling of the 510 

compensation depth and the elevated rate of dissolution expected from ocean acidification 511 

is likely to cause pteropod dissolution and redistribution of carbonate to occur at 512 

increasingly shallower depths. 513 

 514 

Swimming 515 

Although the degradation of the shell after exposure to elevated CO2 might have 516 

been expected to have consequences to the animal’s weight and ballast, swimming 517 

behaviour did not show clear changes when L. retroversa were exposed to elevated CO2. 518 

In particular, unlike sinking speed, swimming speed did not show any clear reduction in 519 

the elevated CO2 treatments. It may be that the differences among the experiments in 520 
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swimming behaviour and the sensitivity of the various swimming metrics to CO2 relate to 521 

seasonal differences in the overall condition, developmental state, and vigour of the 522 

animals prior to capture that persisted through the experiments; these differences may also 523 

be influenced by overall low sample sizes. It should also be noted that variability in 524 

individual swimming performance may have affected the patterns evident in the April and 525 

August 2014 experiments, where multiple animals were present in the filming tank 526 

concurrently, relative to the multiple runs done on individual animals in the November 527 

2014 and April 2015 experiments. This methodological change was unfortunate and 528 

introduces the possibility of pseudo-replication in the earlier two experiments if swimming 529 

was observed for the same animal more than once. Given the overall low sample sizes and 530 

dearth of previous information, we have presented the observations from both the initial 531 

sub-optimal experiments as well as the latter two more rigorous investigations. No 532 

consistent differences across the measured swimming metrics were evident associated with 533 

the change in method. 534 

The significant differences in swimming speed in the first week of exposure may be 535 

spurious, as the treatment with the fastest swimmers was not consistent among experiments 536 

and significant differences among treatments did not persist after longer exposure 537 

durations. A previous study by Manno et al. (2012) manipulated CO2 and salinity to 538 

examine how swimming was affected in L. retroversa and found that elevated CO2 alone 539 

did not cause a change in swimming speed or wing beat frequency after eight days of 540 

exposure, while decreased salinity combined with increased CO2 conditions slowed the 541 

swimming and increased the beat frequency. This supports the idea that our findings at one 542 

week are spurious.  543 
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More consistent in the present study than the patterns in swimming speed was a 544 

trend towards decreased wing beat frequency in the medium and high treatments relative to 545 

ambient, albeit only significant in one of the experiments. This reduction in wing beat 546 

frequency is interesting in its not being accompanied by an associated difference between 547 

treatments in swimming speed (although at the individual level, wing beat frequency was 548 

positively correlated with swimming speed). A reduction in beat frequency may suggest a 549 

reduced metabolic cost of swimming in the animals exposed to elevated CO2, and is 550 

perhaps associated with a less massive shell. While there was not a good correlation 551 

between swimming speed and length, there was a significant negative correlation between 552 

wing beat frequency and length, which has also been noted in another study where larger 553 

L. helicina beat their wings less frequently but achieved greater speeds (Chang and Yen 554 

2012). That more detailed study of swimming kinetics also found that across sizes the 555 

trajectory and timing of the wing strokes varied, possibly as a response to changing 556 

Reynolds number regimes.  557 

Tortuosity often, but not always, showed differences associated with treatment in 558 

the present study, with greatest tortuosity in the ambient treatment. Tortuosity was 559 

significantly negatively correlated to swimming speed, as animals tended to exhibit more 560 

horizontal movements that often appeared helical in nature when swimming at lower 561 

speeds. Tortuosity and length were also negatively related, though not quite significantly. 562 

Chang and Yen (2012) similarly found that the helical component of L. helicina swimming 563 

paths was greater for larger individuals. Pteropod swimming relies on the rotation of the 564 

shell between the power and recovery strokes and differential dissolution along the 565 

elongate shells of individual L. retroversa could conceivably influence swimming 566 
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efficiency. Examining the asymmetry in swimming speed induced by the power and 567 

recovery strokes, however, did not show any effect of CO2 exposure. In general it is 568 

possible that the limited effects observed on the swimming metrics examined here in 569 

relation to CO2 exposure are due to shell dissolution (and associated potential impacts on 570 

weight and ballast) not being advanced enough to result in discernible consequences to 571 

swimming. If future studies can overcome limitations in the durations over which 572 

pteropods can be maintained in captivity, the longer-term effects on locomotion of 573 

enhanced CO2 might be examined.   574 

 575 

Conclusions 576 

This study observed decreased sinking speeds in pteropods exposed to conditions 577 

of elevated CO2 that could exist by the end of the century, suggesting that ocean 578 

acidification could affect pteropod fitness, as sinking is a mode of predator avoidance. 579 

Decreased sinking speeds will likely also slow the passive transport of calcium carbonate 580 

to depth. Ocean acidification could potentially also increase the visibility of pteropods to 581 

predators, since increased CO2 significantly affected the transparency of shells. Longer 582 

perturbation experiments or greater replication may be needed to understand whether 583 

ocean acidification affects swimming. The cues that pteropods respond to that motivate 584 

their upward swimming are not known, and whether these cues are influenced by CO2 585 

treatment is also uncertain. Overall, more behavioural experiments on pteropods are 586 

needed to understand the consequences of ocean acidification, although this relies on the 587 

development of improved culture techniques in order to achieve adequately large sample 588 

sizes and to examine impacts over longer time periods (Howes et al. 2015).  589 
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 590 

Supplementary Materials 591 

Supplementary material is available at ICES JMS online, including figures of shell mass 592 

measurements normalized to length vs. exposure duration for the April 2015 experiment 593 

and swimming speed vs. length as well as a table providing the full carbonate chemistry 594 

measurements and calculations. MATLAB code for the analysis of pteropod shell 595 

transmittance and opacity is available at http://www.bco-dmo.org/project/2263.  596 
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Captions 739 

Figure 1. (a) Schematic of the filming set up. The seawater tank had a mirror to show the 740 

actual and reflected image of an animal sinking or swimming, allowing position to be 741 

determined in three dimensions. A high speed camera was used for filming and 742 

illumination was provided by an LED panel. The tank was 10 cm long, 10 cm wide, and 10 743 

cm high. (b) Filming set up showing the mirrored tank with the fixed pipette that was used 744 

to drop the pteropods through for sinking trials. (c) One frame of a video shows the actual 745 

image and mirrored image of a sinking pteropod with wings withdrawn, shortly after 746 

exiting the fixed pipette. 747 

 748 

Figure 2. (a) Speed vs time plot of a swimming trial, showing the full time-series of speed 749 

from the 3 second video segment (blue), along with calculated mean speed (red line), a 750 

wing beat period, and the asymmetry in peaks. The wing beat frequency was calculated as 751 

1/(beat period) and included both the power and recovery strokes. Power strokes were 752 

consistently associated with greater speeds and asymmetry between the peak speeds of the 753 

power and recovery stroke was measured as the difference between subsequent peaks of 754 

speed divided by the larger of the two. (b) The 3D trajectory of a swimming L. retroversa 755 

shows the pattern of motion. Note that this is a scatter plot but the high frame rate of the 756 

camera leads to the points appearing essentially as a line. Tortuosity was calculated as the 757 

total cumulative distance traveled divided by the direct distance from starting point to 758 

finish. 759 

 760 
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Figure 3. (a) Transmittance (proportion of transmitted light) and (b) opacity (proportion of 761 

reflected light) of L. retroversa shells from the April 2015 experiment relative to duration 762 

of exposure for each of the three CO2 treatments. 763 

 764 

Figure 4. (a) Terminal sinking speed for L. retroversa with wings withdrawn for the four 765 

experiments (circle: April 2014; square: August 2014; diamond: November 2014; triangle: 766 

April 2015) after durations of exposure of 1-4 weeks. From left to right within each weekly 767 

bracket the ambient, medium, and high treatment are plotted, although the treatments were 768 

measured together of the course of 2-5 days and are spaced along the x-axis simply for 769 

easier visualisation. The error bars denote standard error. (b) The terminal sinking speed 770 

with wings extended for the April 2014, August 2014, and November 2015 experiments. 771 

No measurements of sinking with wings extended were made in April 2015 or in week 3 of 772 

any of the experiments. 773 

 774 

Figure 5. Log10 terminal sinking speed with wings withdrawn vs log10 shell length for each 775 

treatment (points) along with a linear regression for each treatment (lines). The slope of the 776 

linear regressions shows the power scaling between sinking speed and shell length. 777 

Contours of constant Reynolds numbers (Re) of 5, 10, and 20 are shown in black. 778 

 779 

Figure 6. (a) Mean swimming speed, (b) wing beat frequency, and (c) tortuosity for L. 780 

retroversa for the four experiments (circle: April 2014; square: August 2014; diamond: 781 

November 2014; triangle: April 2015) after durations of exposure of 1-3 weeks. From left 782 

to right within a week the ambient, medium, and high treatment are plotted, although 783 
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treatments were measured together over the course of 2-5 days. The error bars denote 784 

standard error. Both the power and recovery stroke are included in each wing beat in 785 

calculating wing beat frequency.  786 

  787 
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Table 1. The carbonate chemistry parameters partial pressure of CO2 (pCO2), pH, and aragonite saturation 788 
state (ΩA) are average values for the water leaving the treatment carboys at days 7 and 14 during water 789 
changes. TA and DIC were directly measured and were used for calculation of the other parameters. 790 
Measurements of ingoing water at the start of each week of exposure in April and August 2014 appeared to 791 
indicate insufficient pre-equilibration, although target levels were reached by day 1 (see text and 792 
Supplementary Table S1). The values are reported as the mean ± standard deviation. 793 
 794 

Experiment Treatment pCO2 (µatm)  pH 

 

 ΩA 

 

April 2014 Ambient 470±20 7.96±0.02 1.54±0.06 

Medium 850±40 7.73±0.02 0.94±0.03 

High 1190±120 7.59±0.04 0.70±0.07 

Aug 2014 Ambient 440±40 7.98±0.03 1.58±0.11 

Medium 650±170 7.84±0.11 1.21±0.30 

High 990±100 7.66±0.04 0.80±0.08 

Nov 2014 Ambient 480±50 7.95±0.04 1.49±0.11 

Medium 1100±290 7.63±0.10 0.76±0.15 

High 1320±160 7.55±0.05 0.63±0.07 

April 2015 Ambient 440±30 7.99±0.03 1.61±0.09 

Medium 740±100 7.78±0.05 1.05±0.12 

High 1180±190 7.59±0.07 0.70±0.11 

  795 
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Table 2. Representative images showing the changes in 796 
shell appearance from day 2 to day 15 for each treatment 797 
during the April 2015 experiment. Transmittance images 798 
are taken when light is shining from below the sample, 799 
and opacity images are taken when light is illuminating 800 
the sample from the sides. 801 
 802 

 Treatment Day 2 Day 15 

Transmit-

tance 

Ambient   

Medium   

High   

Opacity Ambient   

Medium   

High   

 803 
  804 
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Table 3. Cruise and experiment details and associated statistics. For each type of observation of L. retroversa (shell condition, sinking, or swimming) and each 805 
duration of exposure the sample sizes are listed (ambient, medium, high). Test statistics (F for one-way ANOVAs and H for Kruskal-Wallis one-way ANOVAs 806 
on ranks) are reported for comparisons among treatments for multiple sinking, swimming, and shell variables abbreviated as follows: “Sinking wings in” is 807 
sinking speed with wings withdrawn, “Sinking wings out” is sinking speed with wings extended, “Swim speed” is mean swimming speed, “Beat” is wing beat 808 
frequency, and “Tort” is tortuosity. * p<0.05, ** p<0.01, *** p<0.001, NS=Non-Significant 809 
 810 

811 Experiment Cruise Dates Type of 

Observation 

Exposure 

Duration 

Sample Size 

Amb., Med., High 

One-way ANOVA: F  

Kruskal-Wallis one-way ANOVA: H 

April 2014 25 April – 

27 April 2014 

Sinking 4 Weeks 10, 10, 7 Sinking wings in: F=9.8***; Sinking wings out: F=9.0** 

Swimming 3 Weeks 11, 7, 10 Swim speed: F=0.9NS, Beat: H=1.7NS, Tort: H=8.4* 

August 2014 19 August 

2014 

Sinking 1 Week 10, 12, 13 Sinking wings in: H=1.1NS, Sinking wings out: F=1.0NS 

Swimming 1 Week 13, 21, 17 Swim speed: F=4.6*, Beat: H=2.1NS, Tort: H=10.6** 

November 

2014 

4 November – 

6 November 

2014 

Sinking 1 Week 20, 22, 20 Sinking wings in: F=0.3NS, Sinking wings out: F=0.4NS 

Sinking 2 Weeks 25, 20, 18 Sinking wings in : F=4.2*, Sinking wings out : F=6.4** 

Swimming 2 Weeks 3, 10, 10 Speed: H=1.6NS, Beat: F=1.6NS, Tort: H=2.3NS 

April 2015 26 April – 

27 April 2015 

Sinking 1 Week 25, 26, 25 Sinking wings in: F=5.8** 

Sinking 2 Weeks 26, 26, 22 Sinking wings in: H=11.6** 

Sinking 3 Weeks 26, 22, 16 Sinking wings in: F=19.0*** 

Swimming 1 Week 15, 18, 16 Swim speed: F=3.7*, Beat: F=9.5***, Tort: H=4.7NS 

Swimming 2 Weeks 8, 14, 18 Swim speed: F=0.1NS, Beat: F=1.5NS, Tort: H=5.1NS 

Shells 2 Days 8, 9, 8 Transmittance: F=0.1NS, Opacity: H=0.8NS 

Shells 4 Days 8, 8, 8 Transmittance: H=9.0*, Opacity: H=8.1* 

Shells 8 Days 8, 7, 5 Transmittance: H=14.5***, Opacity: H=13.0** 

Shells 15 Days 7, 7, 5 Transmittance: F=60***, Opacity: F=212*** 
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Table 4. Correlation coefficients (r) among the swimming variables: mean swimming speed, wing beat 812 
frequency, path tortuosity, and asymmetry between the peaks of speed (i.e. the difference between the power 813 
and recovery stroke). Bold indicates significant correlations. * p<0.05, ** p<0.01, *** p<0.001, NS=Non-814 
Significant 815 

 816 
  817 

Correlation 

coefficient 

Length Wing Beat 

frequency 

Tortuosity Asymmetry in 

peaks 

Speed 0.0005NS 0.2395 *** -0.4357*** -0.18233* 

Length   -0.3785*** -0.1418 NS 0.110331 NS 

Wing Beat     0.1209 NS -0.13198 NS 

Tortuosity       0.059909 NS 
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  818 

 819 

 820 
 821 
Figure 1. (a) Schematic of the filming set up. The seawater tank had a mirror to show the actual and reflected 822 
image of an animal sinking or swimming, allowing position to be determined in three dimensions. A high 823 
speed camera was used for filming and illumination was provided by an LED panel. The tank was 10 cm 824 
long, 10 cm wide, and 10 cm high. (b) Filming set up showing the mirrored tank with the fixed pipette that 825 
was used to drop the pteropods through for sinking trials. (c) One frame of a video shows the actual image 826 
and mirrored image of a sinking pteropod with wings withdrawn, shortly after exiting the fixed pipette. 827 
  828 
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 829 

 830 
 831 
Figure 2. (a) Speed vs time plot of a swimming trial, showing the full time-series of speed from the 3 second 832 
video segment (blue), along with calculated mean speed (red line), a wing beat period, and the asymmetry in 833 
peaks. The wing beat frequency was calculated as 1/(beat period) and included both the power and recovery 834 
strokes. Power strokes were consistently associated with greater speeds and asymmetry between the peak 835 
speeds of the power and recovery stroke was measured as the difference between subsequent peaks of speed 836 
divided by the larger of the two. (b) The 3D trajectory of a swimming L. retroversa shows the pattern of 837 
motion. Note that this is a scatter plot but the high frame rate of the camera leads to the points appearing 838 
essentially as a line. Tortuosity was calculated as the total cumulative distance traveled divided by the direct 839 
distance from starting point to finish. 840 
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 842 

 843 
 844 
 845 
Figure 3. (a) Transmittance (proportion of transmitted light) and (b) opacity (proportion of reflected light) of 846 
L. retroversa shells from the April 2015 experiment relative to duration of exposure for each of the three CO2 847 
treatments. 848 
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 850 

  851 
 852 
 853 
Figure 4. (a) Terminal sinking speed for L. retroversa with wings withdrawn for the four experiments (circle: 854 
April 2014; square: August 2014; diamond: November 2014; triangle: April 2015) after durations of 855 
exposure of 1-4 weeks. From left to right within each weekly bracket the ambient, medium, and high 856 
treatment are plotted, although the treatments were measured together of the course of 2-5 days, and are 857 
spaced along the x-axis simply for easier visualisation. The error bars denote standard error. (b) The terminal 858 
sinking speed with wings extended for the April 2014, August 2014, and November 2015 experiments. No 859 
measurements of sinking with wings extended were made in April 2015 or in week 3 of any of the 860 
experiments. 861 
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 863 
 864 
 865 
Figure 5. Log10 terminal sinking speed with wings withdrawn vs log10 shell length for each treatment (points) 866 
along with a linear regression for each treatment (lines). The slope of the linear regressions shows the power 867 
scaling between sinking speed and shell length. Contours of constant Reynolds numbers (Re) of 5, 10, and 20 868 
are shown in black. 869 
  870 

-3.4 -3.3 -3.2 -3.1 -3 -2.9 -2.8 -2.7 -2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

 

 

Re=5 

Re=10 

Re=20 

Slopes = 0.45 - 0.74 

Ambient 

Medium 

High 

Log Shell Length (log10(m)) 

L
o

g
 S

in
k

in
g
 S

p
ee

d
 (

lo
g

1
0
(m

/s
))

 



43 

 

    871 

    872 

    873 
 874 

Figure 6. (a) Mean swimming speed, (b) wing beat frequency, and (c) tortuosity for L. retroversa for the four 875 
experiments (circle: April 2014; square: August 2014; diamond: November 2014; triangle: April 2015) after 876 
durations of exposure of 1-3 weeks. From left to right within a week the ambient, medium, and high 877 
treatment are plotted, although treatments were measured together over the course of 2-5 days. The error bars 878 
denote standard error. Both the power and recovery stroke are included in each wing beat in calculating wing 879 
beat frequency. 880 
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Supplementary Materials 881 

 882 

 883 
 884 
Supplementary Figure S1. Shell dry mass with animal tissue present (i.e., prior to digestion with bleach) 885 
normalized to individual length from the April 2015 experiment relative to duration of exposure for each of 886 
the three CO2 treatments. 887 
 888 
 889 

 890 
 891 
 892 
Supplementary Figure S2. The log10 mean swimming speed vs log10 shell length (points, coloured according 893 
to treatment) along with a linear regression for each treatment (coloured lines). The slopes of the linear 894 
regressions indicate the power scaling between swimming speed and shell length. Reynolds numbers (Re) 5, 895 
10, and 20 are shown in black lines. 896 
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Supplemental Table S1. Carbonate chemistry parameters measured and calculated over the course of the four 898 
experiments for the three treatments: ambient, medium, and high, nominally targeting pCO2 levels of 400, 899 
800, and 1200 µatm, respectively. Water changes happened at weekly intervals, at which time dissolved 900 
inorganic carbon (DIC) and total alkalinity (TA) were measured. The TA/DIC measurements of ingoing pre-901 
bubbled water entering the carboys are labelled “In” and the TA/DIC measurements of outgoing water 902 
leaving the carboys are labelled “Out”. Mid-week measurements of pH were made between water changes, 903 
labelled “Mid.” “Out” and “Mid” measurements shown are an average of the 2-3 carboys for each treatment, 904 
while “In” is a single measurement from the pre-bubbled holding tanks for each treatment. For the ingoing 905 
and outgoing water, DIC/TA measurements were used to calculate the values in the last three columns: pH, 906 
dissolved CO2 (pCO2), and aragonite saturation state (ΩA). Mid-week measurements of pH were used with 907 
the nearest measurement of TA in time to calculate the pCO2 and ΩA values to estimate the carbonate 908 
chemistry between water changes. 909 

    MEASURED CALCULATED 

Cruise Treat Day Water 

Change 

DIC 

(µmol/kg) 

TA 

(µmol/kg) 

pH pH pCO2 

(µatm) 

ΩA 

Apr 

‘14 

Ambient 0 In 2058 2216 --- 8.03 390 1.76 

1 Mid --- --- 7.96 --- 470 1.54 

3 Mid --- --- 7.97 --- 450 1.57 

5 Mid --- --- 7.99 --- 440 1.62 

7 Out 2093 2234 --- 7.96 470 1.54 

7 In 2068 2216 --- 8.01 420 1.68 

8 Mid --- --- 7.97 --- 450 1.58 

10 Mid --- --- 7.96 --- 460 1.54 

13 Mid --- --- 7.98 --- 440 1.59 

14 Out 2082 2215 --- 7.97 460 1.55 

26 Mid --- --- 8.03 --- 390 1.77 

29 Mid --- --- 8.03 --- 390 1.74 

Medium 0 In 2092 2214 --- 7.94 500 1.45 

1 Mid --- --- 7.75 --- 790 0.99 

3 Mid --- --- 7.77 --- 760 1.02 

5 Mid --- --- 7.78 --- 750 1.05 

7 Out 2175 2227 --- 7.72 860 0.93 

7 In 2147 2217 --- 7.78 740 1.05 

8 Mid --- --- 7.72 --- 860 0.92 

10 Mid --- --- 7.70 --- 910 0.88 

13 Mid --- --- 7.73 --- 830 0.95 

14 Out 2166 2222 --- 7.73 830 0.95 

26 Mid --- --- 7.79 --- 710 1.09 

29 Mid --- --- 7.80 --- 710 1.09 

High 0 In 2111 2215 --- 7.88 570 1.31 

1 Mid --- --- 7.59 --- 1180 0.69 

3 Mid --- --- 7.61 --- 1110 0.73 

5 Mid --- --- 7.68 --- 940 0.86 

7 Out 2210 2220 --- 7.57 1230 0.67 

7 In 2184 2216 --- 7.65 1010 0.80 

8 Mid --- --- 7.57 --- 1240 0.67 

10 Mid --- --- 7.55 --- 1280 0.65 

13 Mid --- --- 7.58 --- 1220 0.68 

14 Out 2202 2219 --- 7.60 1150 0.72 

26 Mid --- --- 7.58 --- 1200 0.69 

29 Mid --- --- 7.60 --- 1150 0.72 

Ambient 0 In 2016 2176 --- 8.04 379 1.77 
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Aug 

‘14 

1 Mid --- --- 7.99 --- 430 1.58 

3 Mid --- --- 7.92 --- 510 1.38 

6 Mid --- --- 7.95 --- 470 1.47 

7 Out 2052 2182 --- 7.96 460 1.50 

7 In 2028 2183 --- 8.03 390 1.73 

8 Mid --- --- 7.99 --- 430 1..60 

11 Mid --- --- 7.99 --- 430 1.60 

14 Out 2039 2185 --- 8.00 414 1.65 

Medium 0 In 2103 2162 --- 7.74 790 0.95 

1 Mid --- --- 7.71 --- 840 0.90 

3 Mid --- --- 7.69 --- 890 0.85 

6 Mid --- --- 7.72 --- 840 0.92 

7 Out 2125 2194 --- 7.78 750 1.04 

7 In 2104 2180 --- 7.80 690 1.07 

8 Mid --- --- 7.70 --- 870 0.89 

11 Mid --- --- 7.69 --- 900 0.84 

14 Out 2085 2198 --- 7.91 540 1.38 

High 0 In 2082 2177 --- 7.86 590 1.22 

1 Mid --- --- 7.59 --- 1150 0.69 

3 Mid --- --- 7.55 --- 1260 0.63 

6 Mid --- --- 7.58 --- 1190 0.67 

7 Out 2160 2186 --- 7.63 1060 0.75 

7 In 2143 2186 --- 7.69 910 0.85 

8 Mid --- --- 7.60 --- 1120 0.71 

11 Mid --- --- 7.64 --- 1030 0.77 

14 Out 2150 2198 --- 7.70 880 0.89 

Nov 

‘14 

Ambient 0 In 2062 2197 --- 7.98 440 1.57 

6 Mid --- --- 8.07 --- 360 1.89 

7 Out 2118 2233 --- 7.93 520 1.42 

7 In 2066 2195 --- 7.97 460 1.52 

8 Mid --- --- 8.01 --- 410 1.65 

10 Mid --- --- 7.99 --- 430 1.58 

14 Out 2065 2198 --- 7.98 440 1.55 

Medium 0 In 2129 2197 --- 7.78 730 1.03 

6 Mid --- --- 7.79 --- 730 1.06 

7 Out 2234 2234 --- 7.55 1320 0.64 

7 In 2142 2194 --- 7.73 830 0.92 

8 Mid --- --- 7.73 --- 830 0.92 

10 Mid --- --- 7.72 --- 840 0.92 

14 Out 2154 2201 --- 7.71 870 0.89 

High 0 In 2153 2196 --- 7.70 890 0.86 

6 Mid --- --- 7.63 --- 1080 0.76 

7 Out 2241 2239 --- 7.54 1350 0.62 

7 In 2185 2191 --- 7.57 1230 0.65 

8 Mid --- --- 7.58 --- 1200 0.67 

10 Mid --- --- 7.57 --- 1240 0.64 

14 Out 2205 2206 --- 7.55 1290 0.63 

Apr 

‘15 

Ambient 0 In 2081 2218 --- 7.99 440 1.59 

7 Out 2082 2222 --- 8.00 430 1.62 

7 In 2077 2212 --- 7.98 440 1.58 

7 Mid --- --- 8.01 --- 420 1.65 

11 Mid --- --- 7.99 --- 430 1.61 

14 Out 2085 2222 --- 7.99 440 1.60 
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14 In 2108 2257 --- 8.01 420 1.72 

16 Mid --- --- 8.02 --- 410 1.73 

18 Mid --- --- 8.01 --- 420 1.70 

Medium 0 In 2153 2229 --- 7.81 700 1.10 

7 Out 2166 2222 --- 7.74 820 0.95 

7 In 2147 2211 --- 7.77 760 1.01 

7 Mid --- --- 7.79 --- 720 1.06 

11 Mid --- --- 7.82 --- 680 1.12 

14 Out 2143 2225 --- 7.83 660 1.15 

14 In 2173 2253 --- 7.82 680 1.14 

16 Mid --- --- 7.79 --- 740 1.06 

18 Mid --- --- 7.78 --- 750 1.05 

High 0 In 2191 2223 --- 7.66 1000 0.80 

7 Out 2208 2221 --- 7.59 1170 0.70 

7 In 2208 2209 --- 7.55 1300 0.62 

7 Mid --- --- 7.64 --- 1050 0.76 

11 Mid --- --- 7.63 --- 1070 0.75 

14 Out 2201 2214 --- 7.59 1190 0.70 

14 In 2198 2251 --- 7.73 850 0.94 

16 Mid --- --- 7.59 --- 1190 0.70 

18 Mid --- --- 7.59 --- 1200 0.70 

 910 
 911 


