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Abstract:  Temperature is a crucial factor in determining the rates of ecosystem processes, e.g. leaf 

respiration (R) − the flux of plant respired CO2 from leaves to the atmosphere.  Generally, R increases 

exponentially with temperature and formulations such as the Arrhenius equation are widely used in 

earth system models.  However, experimental observations have shown a consequential and consistent 

departure from an exponential increase in R.  What are the principles that underlie these observed 

patterns?  Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state 

theory for enzyme-catalyzed kinetics, provides a thermodynamic explanation for the observed 

departure and the convergent temperature response of R using a global database.  Three meaningful 

parameters emerge from MMRT analysis: the temperature at which the rate of respiration would 

theoretically reach a maximum (the optimum temperature, Topt), the temperature at which the 

respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the 

overall curvature of the log(rate) versus temperature plot (the change in heat capacity for the system, 

   
 
).  On average the highest potential enzyme-catalyzed rates of respiratory enzymes for R is 

predicted to occur at 67.0±1.2 °C and the maximum temperature sensitivity at 41.4±0.7 °C from 

MMRT.  The average curvature (average negative    
 
) was -1.2±0.1 kJ.mol-1K-1.  Interestingly, Topt, 

Tinf and    
 
 appear insignificantly different across biomes and plant functional types (PFTs), 

suggesting that thermal response of respiratory enzymes in leaves could be conserved.  The derived 

parameters from MMRT can serve as thermal traits for plant leaves that represents the collective 

temperature response of metabolic respiratory enzymes and could be useful to understand regulations 

of R under a warmer climate.  MMRT extends the classic transition state theory to enzyme-catalyzed 
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reactions and provides an accurate and mechanistic model for the short-term temperature response of 

R around the globe. 

 

Introduction 

Leaf respiration (R) contributes c.30 Pg (30 billion metric tons) carbon per year to the atmosphere 

(Prentice et al., 2001; Canadell et al., 2007; IPCC, 2013), about 4 times higher than the industrial CO2 

emissions (~8 Pg C yr-1) between 2002 to 2011 (IPCC the fifth assessment report Table 6.1, chapter 6 

(Ciais et al., 2013)).  Consequently, small changes in R have the potential to make a huge impact on 

the atmospheric CO2 concentrations.  It is generally predicted that R will increase with the increasing 

mean global temperature from the current earth system model projections.  Increases in R are not 

linear with temperature but rather exponential as modelled by the Arrhenius equation.  However, 

departures from Arrhenius behaviour are well known for many biologically driven reactions such as 

leaf respiration, photosynthesis and soil carbon decomposition (Lloyd & Taylor, 1994; Tjoelker et al., 

2001; Alster et al., 2016; Ma et al., 2017; Robinson et al., 2017).  

    In a recent study, Heskel et al. (2016b) reported a universal convergence in temperature response of 

R across different biomes and plant functional types (PFTs) using a global dataset of plant leaf 

respiration measurements.  They demonstrated a consistent curvature in log-transformed R vs 

temperature plots that was best fit using a second-order log-polynomial model (LP model) for a large 

number of R versus temperature datasets.  They compared the LP model to four other conventional 

models (exponential fixed-Q10, Arrhenius, Lloyd & Taylor and variable-Q10) and showed improved 

predictive power in estimating the carbon release from vegetation.  An modified Arrhenius model 

with 3 components, which describes the temperature dependence of activation energy in Arrhenius 

model as a second-order polynomial function, also provides equivalent fits as the LP model (Kruse & 

Adams, 2008; Kruse et al., 2011; Adams et al., 2016; Heskel et al., 2016a).  Since respiratory 

metabolism in a leaf involves a series of enzyme-catalyzed reactions, via the tricarboxylic acid (TCA) 

cycle or cytochrome pathways (Buchanan et al., 2015), a mechanistic underpinning of the temperature 

response of R may be found in the temperature dependence of enzyme-catalyzed reaction rates.  
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    We have recently developed macromolecular rate theory (MMRT), which extends the classic 

transition state theory for the temperature dependence of chemical reactions to those reactions 

catalyzed by enzymes (large macromolecules, hence the MMRT name) (Hobbs et al., 2013; Arcus et 

al., 2016).  We have also applied MMRT to complex biological systems such as soil processes to 

describe their temperature dependence, e.g., soil carbon decomposition, nitrification, denitrification, 

methanogenesis and soil respiration (Schipper et al., 2014; Robinson et al., 2017).  MMRT has 

recently been applied by other groups to soil enzymes and microbial processes in soil (Alster et al., 

2016) and has been used to distinguish between nitrifying archaea and bacteria (Taylor et al., 2016).  

In all of these studies, MMRT captures the curvature in the log(rate) versus temperature plots without 

invoking enzymatic denaturation.  Here, we show that MMRT also models the short-term temperature 

dependence of R with predictive power equivalent to the LP model defined by Heskel et al. (2016b).  

Indeed, we show that the two models are nearly equivalent mathematically.  Specifically, we use the 

large R dataset collected by Heskel and colleagues to compare the performance of Arrhenius, MMRT 

and LP models in describing the temperature response of R.  We argue that whilst the LP model 

provides excellent empirical predictions with respect to R, the MMRT model goes a step further in 

determining parameters that have a basis in thermodynamics and thus, meaningful interpretation when 

comparing the temperature dependence of different ecosystem processes at differing scales.  

Materials and methods 

R measurements 

We used the dataset provided by Heskel et al. (2016b), which included 673 individual temperature 

response curves of R across 231 species, 18 sites, 7 biomes and 7 plant functional types (PFTs).  

Details of the field sites, species, biomes, PFTs and protocols for measurement of CO2 exchange 

between leaf and atmosphere are provided in Heskel et al. (2016b). In the current study, for 

consistency, we used respiration data measured up to 45 °C. 
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Development of MMRT 

Chemical, biological and ecological modellers have long used the Arrhenius function to describe the 

relationship between temperature and the reaction rate: k=A exp(-Ea/RT), where the k is the rate 

constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant and T is 

temperature (K).  The central concept invoked by the Arrhenius function is the activation energy (Ea) 

for a reaction which is defined as the energy barrier between the ground state and transition state for a 

given reaction.  Eyring, Evans, Polanyi and others extended the Arrhenius function to develop 

Transition State Theory (TST) that provides a statistical thermodynamic description of the pre-

exponential factor (A) and defines Ea as the difference in Gibbs free energy between the ground state 

and transition state (∆G‡).  Further, it is generally assumed that the temperature dependence of ∆G‡ is 

described by the Gibbs equation, ∆G‡=∆H‡ − T∆S‡, where ∆H‡ is the change in enthalpy, and ∆S‡ is 

the change in entropy, between the ground state and the transition state for the reaction.  Hence, the 

Eyring equations and their equivalent log forms are: 

  
    

 
 
 
    

  
 
                

    

 
  

   

  
     (1) 

  
    

 
 
 
           

  
 
               

    

 
   

          

  
    (2) 

where κ, kB, h and R refer to the transmission coefficient (here, κ is assumed to be 1 for simplicity), 

Boltzmann and Planck’s constants, and the universal gas constant, respectively.  Similarly, it is 

generally assumed that ∆H‡ and ∆S‡ are independent of temperature and this assumption holds for the 

vast majority of chemical reactions involving small molecules in standard solvents.  However, in 

biological systems when enzymes (macromolecules) are involved in the reactions, this assumption no 

longer holds and we must consider the change in heat capacity (   
 
) for the reaction (formally, the 

temperature dependence of the enthalpy and entropy for the reaction).  The    
 
  has been shown to be 

important in enzyme catalysis (Arcus & Pudney, 2015; Arcus et al., 2016).  This leads to an 

expansion of equation (2) above to give the MMRT equation:   
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where T0 is a suitable reference temperature and    
 
 is the change in heat capacity between the 

ground state and the transition state for the enzyme-catalyzed reaction.  Although the MMRT function 

appears complicated, it is nothing more than a theoretical parameterization of the pre-exponential 

term (A) and the activation energy (Ea) from the familiar Arrhenius function.  If there is no heat 

capacity change during the reaction (i.e.,    
   ), MMRT simply collapses to the Arrhenius and 

Eyring equations (Hobbs et al., 2013; Arcus et al., 2016).  Notably, the Arrhenius function has two 

unknowns (A and Ea) and the MMRT function has three unknowns (    
 

,     
 

and    
 
).  However, 

    
 

and     
 

are tightly correlated due to the so called enthalpy-entropy compensation (Fig. S1) and 

hence, adding a third parameter does not simply improve the fit to the data ad hoc.  Indeed, the log-

polynomial function used by Heskel and colleagues has three independent unknowns (the coefficients, 

a, b, and c).  Additionally, the     

 
in MMRT captures the magnitude change of reaction rate caused 

by substrate concentrations.  

    The temperature dependence of enzyme-catalyzed rates typically shows an exponential rise with 

temperature up to an optimum temperature above which the rate declines.  The textbook explanation 

for the decline in rate at high temperatures is denaturation of the enzyme leading to its inactivation.  

However, it has been demonstrated in very many cases that this does not account for either the 

optimum temperature (Topt) or curvature in the log(rate) versus temperature plots for temperatures 

below Topt (Thomas & Scopes, 1998; Buchanan et al., 1999; Daniel & Danson, 2010; Hobbs et al., 

2013).  We have shown that enzyme-catalyzed rates proceed with a measurable    
 
 and that the 

curvature below Topt and the position of both Topt and an inflexion point Tinf  can be deduced from 

MMRT and the important parameter    
 
 (Hobbs et al., 2013; Arcus et al., 2016) (see Text S1 for 

details about the derived parameters Topt and Tinf from MMRT).  
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The mathematical connection between MMRT and the LP model  

Heskel et al. (2016b) plot the log of the rate versus temperature for leaf respiration and fit a second 

order polynomial to the data showing excellent convergence of the polynomial coefficients across 

ecosystems and plant functional types (the coefficients b & c converge, the third coefficient, a, 

determines the absolute amplitude of the rate at a reference temperature which varies between species 

and climates).  

                       (4) 

We have also fitted the MMRT function to these data and find a similar convergence of the MMRT 

parameters (see next section for details). This suggested to us that the LP function and MMRT are 

mathematically closely related (Fig. 1) and this turns out to be the case.   

    A Taylor expansion for Eq (1) around a suitable reference temperature T0 gives (see Text S2 for the 

deduction): 

          
    

 
  

    
 

   
  

 

  
 

    
 

   
          

   
 

    
        

   (5) 

The first two terms are a constant and may be combined as coefficient a in Eq (4) above.  Importantly, 

these terms define the rate at the reference temperature and encapsulate all of the variables that 

contribute to that rate (e.g., substrate availability, activation energy at T0, moisture availability, etc.). 

This is the amplitude term and in keeping with Heskel and colleagues, we will call this a(MMRT).  

The second two terms constitute the linear coefficient of T (equivalent to coefficient b in Eq (4) 

above).  The last term is the quadratic term (coefficient c in Eq (4) above).  Thus, Eq (4) used by 

Heskel et al. (2016b) can be rewritten as:  

                        
        (6) 

Hence the correspondence between MMRT and the LP function is: 
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Thus, the amplitude term, a is simply Eqs 1&5 at the reference temperature T0. The linear term (b) is a 

function of the change in enthalpy for the reaction at the reference temperature (    
 

) and the 

quadratic term (c) is a function of the change in heat capacity for the reaction (   
 
) and defines the 

“curvature” of the rate versus temperature.  

Curve fitting and statistics 

In this study, we fitted the leaf respiration rate versus temperature datasets using Arrhenius, MMRT 

and LP functions to retrieve the estimated parameters from each model.  Before fitting the data, we 

checked each individual lnR-T curve manually by plotting in Matlab (2015a (The MathWorks Inc., 

Natick, MA, USA).  In several cases we identified an unexplained upward rise in respiration rate at 

low temperatures (below ~10 °C).  This low temperature hook may be due to the measurement 

protocols in leaf respiration where the temperature adjustment period was insufficiently long to fully 

cool the leaves before temperature began to increase in the cuvette.  About 7% of the lnR-T dataset 

curves showed this phenomenon and to minimize the effects of this artefact on the fitted parameters, 

we fitted measurements to data above this low temperature using Arrhenius, LP and MMRT functions. 

    For each curve-fitting run, the parameters (Arrhenius pre-exponential factor, A, and activation 

energy Ea; MMRT,     
 

,     
 

 and    
 
; LP coefficients, a, b and c) were not constrained.  The T0 

was set to 298.15 K (25 °C) as a reference temperature.  The curve was fitted using the nlinfit function 

of MATLAB 2015a (The MathWorks Inc., Natick, MA, USA).  We conducted 1000-iteration 

bootstrapping with sample replacement to retrieve the estimated parameters from three models.  At 

each bootstrapping run, we constrained 75% of the data in each lnR-T curve since more data results in 

higher confidence in parameter estimates (Robinson et al., 2017).  We use the medians of the 1000-

iteration bootstrapped parameters to represent the best estimates.  For model comparisons among 

three models, we further calculated the corrected Akaike Information Criterion (AICc) value to assess 

the performance of the three models.  AICc provides a measure for model comparison and suggests 

that a model showing a smaller AICc value is better.  We used 3 parameters in MMRT and LP models 

and 2 parameters for the Arrhenius function to calculate the AICc.  We applied one-way ANOVA to 

test the difference of the calculated AICc among three models across 673 curves. 
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    Mean parameter values of each species for MMRT, i.e.,     
 

,     
 

 and    
 
, were calculated, 

including 231 species in 673 individual measurements across the global dataset.  We further 

calculated Topt and Tinf only when they were within the biological range (298.15-373.15K, 25-100 °C).  

The mean a(MMRT),     
 

,    
 
, Topt and Tinf were statistically compared across 7 biomes and 7 plant 

functional types (PFTs) using mixed effect model as Heskel et al. (2016b).  The Tukey's honestly 

significant difference (HSD) test was used to conduct the post hoc intra-group comparisons. 

Results 

Comparisons between fits using Arrhenius, MMRT and LP equations 

All three models, Arrhenius (Eq.1), MMRT (Eq.3) and LP (Eq.6) were able to describe the 

temperature response of R (Fig. 2a), although it is clear from the residuals that the MMRT and LP 

models outperform the Arrhenius function (Fig. 2b).  ANOVA of AICc among 3 models also showed 

that both MMRT and LP models were consistently better than the Arrhenius model in predicting the 

temperature response of R across 673 individual lnR-T curves, with statistically significant lower 

AICc (p<0.0001) values from both MMRT and LP models compared to the Arrhenius function (Fig. 

2c).  This conclusion is consistent with the results of Heskel et al. (2016b), who demonstrated that the 

LP model better characterized the temperature response of R when compared to four other Arrhenius-

based models.  MMRT provided equivalent predictive power for the temperature response of R when 

compared to the empirical LP model since there was no statistical difference among AICc values 

(p=0.99) between MMRT and LP models. This is unsurprising given the near equivalence of the 

mathematical functions for the MMRT and LP models or a modified Arrhenius model proposed by 

Adams et al.(2016).  

Bridging MMRT and polynomial models 

The parameters derived from fits between the LP and MMRT models are nearly identical (Fig. 3).  

The R value at T0 (298.15K, 25°C), i.e., parameter a in the LP model, is almost the same as that 

calculated from MMRT at T0 (Fig. 3a), with an inconsequential difference between a and R at T0 (a-

R25) of -0.0011 µmol CO2 m-2 s-1.  Parameter b in the LP model, is commensurate with that from 

MMRT (Fig. 3b), with a difference of 9.1×10-5 µmol CO2 m
-2 s-1 K-1.  The curvature term between 
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MMRT and LP is also equivalent (Fig. 3c).  The difference between c and 2

0

‡ 2/ RTCP  is -2.2×10-4 

µmol CO2 m
-2 s-1 K-2, which is equivalent to a difference of -0.3 kJ mol-1 K-1 in ‡

PC .  Thus, MMRT 

and LP functions both model R equally (Fig. 1) and provide closely comparable parameters, 

suggesting that we can either use MMRT or the LP function to characterize the temperature response 

of R.  

MMRT explains the temperature response of R 

MMRT provides three biologically meaningful parameters: the temperature at which the rate of 

respiration is predicted to reach maximum rates (the so called optimum temperature, Topt), the 

temperature at which the respiration rate is most sensitive to changes in temperature (the inflection 

temperature, Tinf) and the overall curvature of the lnR-T curve (the so called change in heat capacity 

for the system,    
 
).  The Topt and Tinf are a function of    

 
 and     

 
(See Text S1).      

 
 (    

  

    
        

 
) reflects the magnitude of R at the reference temperature.  It must be noted that many 

variables are rolled into     
 

 and it cannot be considered a true activation energy. To make this point 

clear, we will refer to the magnitude term, the first two terms from Eq.7, as a(MMRT).  The 

convergent MMRT parameters for temperature response of R are    
 

 and     
 

, which are the 

analogues of the parameters c and b from Heskel et al. (2016b), respectively.  Accordingly, there is no 

significant difference in     
 

 across biomes (p=0.72) and plant functional types (PFTs) (p=0.60) or in 

   
  (p=0.22 and p=0.24 in biomes and PFTs, respectively).  The global mean parameters, b and c in 

Heskel et al. (2016b), 0.1012 µmol m-2 s-1 C-1and -0.0005 µmol m-2 s-1 C-2 , are equivalent to 

    
 

=53.8 kJ mol-1 and    
 
=-0.7 kJ mol-1 K-1in MMRT, respectively.  The results from MMRT 

agree with the convergent temperature response of R in Heskel et al. (2016) using the LP model.  The 

consequence of consistent     
 

 and    
 
 values leads to insignificant differences of Topt and Tinf of R 

across global datasets (Table 1).  We found marginal differences in Topt and Tinf across biomes 

(p=0.07 and p=0.09) and no statistically difference across PFTs (p=0.32 and p=0.42), with mean Topt 

and Tinf of R 67.0 °C and 41.4 °C, respectively.  While we were unable to demonstrate statistically 
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significant differences in Topt, Tinf within biomes and PFTs, ranges in both were high (Table 1) and 

further work is needed to determine the reasons for these large ranges. 

    In contrast, the magnitude term, a(MMRT), was significantly different between biomes (p<0.0001) 

and PFTs (p<0.0001) (Table 1), with a decreasing trend from tundra (Tu) to tropical rainforest at low 

elevation (TrRF_lw) and from C3 herbaceous (C3H) plant to broadleaf evergreen tropical (BlEvTrp) 

plants (Table 1).  Regression analysis revealed that both mean annual temperature (MAT) (R2=0.24, 

p=0.037) and mean annual precipitation (MAP) (R2=0.74, p<0.0001) was correlated with a(MMRT) 

across 18 sites at global scales(Fig. S2).  Our results also identified a systematic variation in a(MMRT) 

with water availability(Fig 4.a), showing a clear negative relationship with aridity index (R2=0.65, 

p<0.0001).  Our result agrees with the acclimation pattern of plant respiration that shows a similar R 

rate for plants from contrasting environments (Fig. 4b) (Atkin & Tjoelker, 2003; Atkin et al., 2015; 

Vanderwel et al., 2015).   

Discussion 

We have compared the predictive power of MMRT, LP and Arrhenius models for characterizing the 

temperature response of plant leaf respiration (R) using the short-term temperature-response data 

reported by Heskel and colleagues (Heskel et al., 2016b) across different biomes and plant functional 

types (PFTs).  Our results show that both MMRT and LP functions are better than the Arrhenius 

model in characterizing the temperature response of R.  These results are consistent with our 

expectation across different biomes and PFTs from the global dataset, suggesting a convergence in 

temperature response of R as shown by Heskel et al. (2016b) using the LP model.  MMRT and LP 

models have equivalent explanatory power for predicting the temperature response of R, and we have 

shown here the mathematical equivalence between these two models.  We now explore the differences 

and utility of the MMRT and LP models. 

    The LP model is straightforward to understand and implement as it has a simple and familiar 

mathematical form.  The initial increase and then decline of R with increasing temperature is 

determined by the curvature term, i.e., c in Eq (6), and the other 2 parameters, i.e., a and b, help to 

constrain the magnitude and changing rate of R with temperature.  From a modelling perspective, this 

LP model is sufficient to describe the temperature response of R.  However, the lack of biological 
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meaning of the fitted parameters of the LP model limits its capability to reveal the regulation of 

temperature response of plant R.  As an alternative, MMRT incorporates the central concepts of 

thermodynamics (activation energies, enthalpy and heat capacity) which will allow insight into the 

determinants of respiration pathways for R and potential comparison to temperature dependence of 

other biological processes, such as photosynthesis and respiration by other groups of organisms, e.g., 

soil respiration (Robinson et al., 2017), by characterizing their thermal properties using the changed 

heat capacity, ∆Cp
‡.  This may allow a unified understanding of the temperature response of biological 

processes.  For example, the average curvature (∆Cp
‡ = -1.2±0.1 kJ.mol-1K-1) for plant respiration is 

significantly less than the average curvature seen for heterotrophic soil respiration accurately 

measured in the laboratory (∆Cp
‡ = -2.1±0.1 kJ.mol-1K-1)(Robinson et al., 2017).  

    MMRT may appear to have a more complicated form but it is simply the form used to model the 

temperature dependence of enzyme-catalyzed rates.  It has its roots in transition state theory (TST) 

which is a very robust description of chemical reaction rates.  Biologists and ecologists have observed 

decreasing activities of the leaf respiratory enzymes at higher temperatures and modified the 

Arrhenius equation to explore the mechanism by introducing a polynomial term to describe the 

temperature dependence of activation energy (Kruse & Adams, 2008; O’Sullivan et al., 2013; 

Noguchi et al., 2015; Heskel et al., 2016b).  We have shown that MMRT can be rearranged to a form 

equivalent to the LP function using a 2nd-order Taylor expansion (Eq.5).  MMRT also collapses to 

the Arrhenius (and TST) function when the ∆Cp
‡ =0.  It is well known that the activation energy that 

describes ecosystem processes is temperature dependent (Lloyd and Taylor, 1994; Davidson & 

Janssens, 2006).  MMRT accounts for this temperature dependence by introducing the concept of 

∆Cp
‡, the change in heat capacity between the ground state and transition state of enzyme-substrate 

complex (Hobbs et al., 2013; Arcus & Pudney, 2015).  Formally, ∆Cp
‡ is defined as the temperature 

dependence of the enthalpy and entropy and thus encapsulates the temperature dependence of the 

activation energy.  The molecular origins of ∆Cp
‡ have been discussed elsewhere (Arcus & Pudney, 

2015; Arcus et al., 2016).  Briefly, the chemical meaning of ∆Cp
‡ is to indicate the difficulty or the 

energy barrier needed to be crossed for enzyme-catalyzed reactions to proceed.  As a reaction gets 

more difficult, a higher absolute ∆Cp
‡ can be observed.  ∆Cp

‡ values are generally negative for 
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enzyme-catalyzed reactions and it also can be scaled up to describe enzyme-driven processes such as 

metabolism.  Here, we demonstrate that the majority of R curves have negative ∆Cp
‡ with an average 

value of -1.2±0.1 kJ.mol-1K-1 for 167 out of 231 species (70%).  The consequence of a negative ∆Cp
‡ 

is that the catalyzed rate will diverge from Arrhenius behaviour and predict an optimum temperature 

above which rates will decline (although this predicted optimum is above observed temperatures in 

nature).  Similarly improved fits by MMRT to temperature response have also been demonstrated for 

enzymes kinetics (Hobbs et al., 2013), soil microbial extracellular enzymes (Alster et al., 2016), soil 

nitrification (Taylor et al., 2016) and soil respiration (Schipper et al., 2014; Robinson et al., 2017).  

Heskel et al. (2016b) argued for a universal convergence of temperature response of R using the same 

global leaf respiration dataset and the current study shows that MMRT is also able to characterize the 

temperature response of R.  From the enzyme kinetic perspective, the constant observed ∆Cp
‡ across 

the globe for leaf respiration (Table1) suggests that the contributions from metabolic enzyme rates for 

leaf respiration across different plant species are similar, supporting the concept of a global 

convergence of the short-term temperature response of R (Heskel et al., 2016b). 

    Based on the short-term measurements of R, plants across biomes are adapted to their respective 

environments and homeostasis of respiration could result in a similar R rate for plants from 

contrasting environments (Fig. 4b) (Atkin & Tjoelker, 2003; Ow et al., 2008a, 2008b; Slot & Kitajima, 

2015).  For example, the R rates from tropical forests have values close to those of tundra plants (i.e. 

respiratory homeostasis), when each is measured at their respective growth temperature (Fig. 4b).  

This would then correspond to decreasing a(MMRT) from cool/dry to high temperature/humid 

environment (Fig. 4b).  The pattern of a(MMRT) calculated from MMRT agrees with previous 

findings (Atkin et al., 2015; Vanderwel et al., 2015) which showed a clear negative relationship 

between R at reference temperature and aridity index.  When comparisons were made of rates of 

respiration at the prevailing growth temperature of each site, we demonstrated a similar R among 

contrasting environments (Fig. 4b).  Interestingly, site-to-site variations in mean annual precipitation 

were more strongly correlated with a(MMRT) than MAT, suggesting a higher a(MMRT) in the arid 

regions than those in more humid climates (Fig. S2).  Thus, for a given growth temperature, exposure 

to dry conditions is associated with higher basal rates of respiration (i.e. higher a(MMRT)).  Similarly, 
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for a given MAP, R decreases with increasing growth temperature.  These patterns are similar to those 

reported by Atkin et al. (2015) in their analysis of global variations in leaf respiration at a common 

measuring temperature of 25C.  

    We found that the Topt derived from MMRT was generally greater than the measured Tmax (the 

actual maximum R based on measurements reported by O’Sullivan et al. (2017)) for the same plant 

species.  Tmax exhibited clear biogeographic patterns with Tmax increasing linearly from polar to 

equatorial regions (O’Sullivan et al., 2017).  Similar patterns for Topt were not found and our results 

suggested a relatively constant Topt across all the observed species from the globe (Table1).  We 

hypothesize that the difference between Topt and Tmax was due to the way these were determined and 

the underlying physiological responses these two indices represent.  Topt was mathematically 

determined from fits of MMRT using respiration measurements up to 45 oC, whereas, Tmax was 

determined experimentally with leaves exposed to temperatures often well above 50 oC (O’Sullivan et 

al., 2017).  The Topt derived from MMRT depends on thermodynamic properties of contributing 

enzymes, particularly the ∆Cp
‡ value of the enzymes involved in leaf respiration and this parameter 

was very tightly constrained across biomes.  The Topt retrieved from MMRT represents the 

temperature where enzymes reached their theoretical maximum rate of catalysis in the absence of 

other biochemical constraints.  The measured Tmax, also includes other factors that can contribute to 

reduction in the overall rate of respiration, e.g., change in cell membrane properties (Schrader et al., 

2004), respiration being uncoupled from mitochondrial electron transport (Skulachev, 1998; Hüve et 

al., 2011), or increased drought stress (Atkin & Macherel, 2009) at high temperature.  These factors 

lead to a ‘burst’ of R around 47oC (O’Sullivan et al., 2013), that varies between species and is 

presumably due to variation of other leaf traits, e.g., leaf size(Wright et al., 2017), than the enzymes 

involved in respiration.  Hence, we hypothesize that the Topt from MMRT and the measured Tmax 

describe the temperature response of R at level of the contributing metabolic enzymes and at the 

whole leaf level, respectively.  A higher Topt than Tmax suggests a higher thermal tolerance of 

respiratory enzymes than the whole leaf.  If this hypothesis is correct it argues that thermal response 

of respiratory enzymes in leaves are highly conserved while leaves adapt to different climates by 

varying leaf traits, such as leaf size, which demonstrates a clear consistent latitudinal gradient, e.g., 
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large-leaved species predominate in wet, hot, sunny environments (Wright et al., 2017).  This 

conserved temperature response of plant leaf respiration across geophysical gradient or evolutionary 

scale is worth further exploring.  Nevertheless, MMRT provides a tool to explore the thermodynamic 

properties of respiratory enzymes.  The information could be useful to understand regulations of R 

under a warmer climate and predict the short-term temperature response of R accurately. 
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Table1 The mean values and standard errors of a(MMRT), ‡

0TH and ‡

PC , optimum temperature (Topt) and inflection temperature (Tinf) from MMRT across 

Biomes and PFTs 

Biomes a(MMRT) 
‡

0TH   

(kJ mol-1) 

‡

PC  

(kJ mol-1 K-1) 

Topt (°C) Tinf (°C) N of fits 

(species/leaf) 

N of Topt/Tinf 

(species/leaf) 

Tu 0.9194±0.1033a 52.3±1.2a -1.3±0.1a 64.0±3.2a 38.4±2.0a 20/79 19/59 

BF 0.0150±0.0819cd 50.2±1.3a -0.4±0.2a 70.1±3.8a 42.6±2.3a 25/96 18/43 

TeDF 0.2806±0.0995de 56.2±2.8a 0.02±0.3a 76.0±5.5a 48.3±3.5a 10/38 4/7 

TeW 0.2931±0.0571bc 56.1±3.0a -0.3±0.3a 64.2±2.2a 40.5±1.2a 67/193 40/81 

TeRF 0.0107±0.1248cd 52.2±2.0a -0.2±0.2a 79.5±4.8a 48.6±2.8a 12/45 7/12 

TrRF_lw -0.5440±0.0716e 53.6±1.3a -0.3±0.1a 65.9±2.0a 40.9±1.2a 81/205 49/75 

TrRF_hi 0.5252±0.0854ab 56.0±3.5a -0.7±0.2a 70.7±4.5a 42.8±3.9a 16/17 10/10 

PFTs        

C3H 0.7453±0.1352a 52.3±1.2a -1.4±0.2a 67.7±3.5a 40.1±2.3a 13/50 13/43 

SEv 0.3130±0.1042ab 50.2±1.3a -0.5±0.4a 61.3±2.6a 38.7±1.3a 35/104 24/47 

NlEv 0.3745±0.1434ab 56.2±2.8a -0.6±0.2a 72.6±3.9a 45.3±2.5a 13/48 8/19 

BlDcTmp -0.0460±0.0819bc 56.1±3.0a -0.5±0.2a 67.7±3.0a 41.7±1.8a 40/150 28/66 

BlEvTmp 0.2907±0.0828bc 52.2±2.0a 0.1±0.4a 70.9±4.3a 44.2±2.5a 34/104 16/28 

BlEvTrp -0.3523±0.0744c 53.6±1.3a -0.4±0.1a 67.2±1.9a 41.4±1.3a 93/207 56/82 

BlDcTrp -0.3299±0.2802bc 56.0±3.5a -0.7±0.5a 59.8±10.0a 39.5±2.9a 3/10 2/2 

Global Mean -0.0008±0.0460 54.0±1.0 -0.4±0.1 67.0±1.2 41.4±0.7   
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Tu: Tundra, BE: Boreal Forest, TeDF: Temperature Deciduous Forest, TeW: Temperature Woodland, TeRF: Temperature Rainforest, TrRF_lw: Tropical 

Rainforest at low elevation, TrRF_hi: Tropical Rainforest at high elevation.  C3H: C3 Herbaceous, SEv: Evergreen Shrubs, NIEv: Needle-leaf evergreen, 

BlDcTmp: Broadleaf Deciduous Temperate, BlEvTmp: Broadleaf Evergreen Temperate, BlEvTrp: Broadleaf Evergreen Tropical, BlDcTrp:  Broadleaf 

Deciduous Tropical 

Within columns, values with the same letter were not significantly different for the pairwise comparison across Biomes and PFTs. N of fits (species/leaf) is 

the initial sample size of the data for fitting MMRT, species/leaf denotes the number of species or leaf samples in each biome and PFT.  N of Topt/Tinf denotes 

the number of credible fits in calculating the Topt and Tinf within biological meaningful range. 
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Fig. 1  The correspondence between MMRT and LP function in describing the temperature response 

of leaf respiration.  The black and grey squares are the predicted optimum temperature (Topt) from 

MMRT (62.32 °C) and LP ( 62.07 °C) functions respectively. The black and grey circles are the 

inflection temperature (Tinf), 34.40 and 37.25°C from MMRT and LP, respectively. Topt and Tinf in 

MMRT and LP are mainly defined by the curvature terms from MMRT and LP, i.e.,    
 
 and c, 

respectively.  The Topt and Tinf could varies between 25 and 100 ºC depending on the magnitude of 

negative curvature terms.  

 

Fig. 2  Comparisons of predictive power of MMRT, LP (Log-Polynomial) and Arrhenius models, 

showing both MMRT and LP models are equivalent and more powerful than the Arrhenius model in 

characterizing the temperature response of R.  (a) shows the capability of three models in 

characterising the temperature response of measured leaf respiration using the R-T curve of species 

Anemone narcissiflora in tundra (b) shows the corresponding residuals from MMRT (solid circles), 

LP (open circles line) and Arrhenius (open squares) models from panel (a).  (c) compares AICc values 

across the three models. 

 

Fig. 3  Comparisons between fitted parameters derived from MMRT and polynomial following Eq.7.  

All the parameters between polynomial and MMRT are very tightly correlated. 

 

Fig. 4 (a) The relationship between a(MMRT) and aridity index (the ratio between mean annual 

precipitation (MAP) and potential evapotranspiration (PET)) across 18 sites covering different 

climates. The black dash line is a linear regression fit (y=-0.64x+ 0.59).  The colour demonstrates the 

mean annual temperature (MAT) for each of the sites and the symbol size increases with the mean 

annual precipitation (MAP). (b) shows the temperature response curve from MMRT at two sites with 

contrasting environments.  The solid line indicates the temperature response of leaf respiration at 

Toolik, Alaska, US using the mean parameters of MMRT retrieved from 79 individual lnR-T curves.  

The dash line represents the mean temperature response of plant leaves at Canberra, Australia using 
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the retrieved parameters from 15 individual lnR-T curves.  The vertical dish line indicates the 

reference temperature, T0 (298.15K, 25°C). The grey bands show the R between MAT and mean 

temperature in the warmest quarter (TWQ) of the year.  The similar magnitude of R from two sites 

suggests a homeostasis of respiration in plants that maintains a comparable R under the growth 

temperature of their habitats. 
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