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 Abstract. I draw a distinction between Modeling for Numbers, which aims to address how 

much, when, and where questions, and Modeling for Understanding, which aims to address how 

and why questions.  For-numbers models are often empirical, which can be more accurate than 

their mechanistic analogues as long as they are well calibrated and predictions are made within 

the domain of the calibration data.  To extrapolate beyond the domain of available system-level 

data, for-numbers models should be mechanistic, relying on the ability to calibrate to the system 

components even if it is not possible to calibrate to the system itself.  However, development of a 

mechanistic model that is reliable depends on an adequate understanding of the system.  This 

understanding is best advanced using a for-understanding modeling approach.  To address how 

and why questions, for-understanding models have to be mechanistic.  The best of these for-

understanding models are focused on specific questions, stripped of extraneous detail, and 

elegantly simple. Once the mechanisms are well understood, one can then decide if the benefits 

of incorporating the mechanism in a for-numbers model is worth the added complexity and the 

uncertainty associated with estimating the additional model parameters. 

 

 Introduction.  I draw a distinction between two types of modeling that actually represent 

extremes on a continuum.  The first I call Modeling for Numbers.  The questions addressed using 

these models can be summarized as:  How much, where, and when?  For example, how much 

carbon will be sequestered or released, by which parts of the biosphere, on what time course over 

the next 100 years (e.g., Cramer and others 2001)?  The use of these models is clearly important; 

they address pressing environmental issues and attract a large amount of research money and 

effort.  The second type of modeling I call Modeling for Understanding.  The questions 

addressed with these models can be summarized as:  How and why?  For example, why can there 

be only one species per limiting factor (Levin 1970)? These for-understanding questions are 

more qualitative than the for-numbers questions.  The emphasis of modeling for understanding is 

to understand underlying mechanisms, often by stripping away extraneous detail and thereby 

sacrificing quantitative accuracy.  Modeling for understanding is at least as important as 

modeling for numbers (Ågren and Bosatta 1990), although the application to pressing ecological 

issues might be less direct.   

 

 Modeling for Numbers.  There is no inherent reason why a for-numbers model has to be 

mechanistic.  Answers to how much, where, and when can frequently be found based on past 

experience using purely empirical or statistical models.  Such models have been used for 

thousands of years, for example, to know when to sow crops (e.g., after the Nile flood; Janick 

2002).  Modern science relies on non-mechanistic models in many ways.  For example, to assess 

the medical risk of smoking, LaCroix and others (1991) followed 11,000 individuals, 65 years of 

age or older, for five years to quantify the relationship between mortality rates and smoking 
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(Table 1).  The resulting tabular model is purely correlative and therefore cannot address the how 

and why connecting smoking to mortality, but it has diagnostic and predictive value.  The push 

for "big data" approaches in Ecology hopes to capitalize on analogous analyses of large 

ecological data bases (e.g., Hampton and others 2013).   

 Empirical models are common in ecology.  For example, biomass allometric equations 

(Yanai and others 2010), stand self-thinning relationships (Vanclay and Sands 2009), and 

degree-day sum phenology models (Richardson and others 2006) are all empirical models.  

Although various mechanisms might be hypothesized based on an examination with these 

models (e.g., West and Brown 2005), the models themselves have no underlying mechanism and 

therefore describe, rather than explain, the relationship.   

 Empirical models like the ones listed above have obvious value.  I would further argue that 

in terms of producing quantitative predictions, empirical models in Biology are often, perhaps 

usually, more accurate than mechanistic models.  For example, I cannot conceive of a 

mechanistic model doing as well predicting increased mortality rates with smoking as the 

LaCroix and others (1991) tabular model (Table 1); there is simply too much uncertainty 

associated with any hypothesized causal mechanism.  Even if the underlying mechanism is well 

understood, error in estimating the parameters needed to implement a mechanistic model adds 

uncertainty that might overwhelm any benefit of a mechanistic approach (O'Neill 1973).  I think 

that most empirical models are more accurate than their mechanistic analogues, with two 

caveats: (1) that there are enough data available to adequately calibrate the empirical model and 

(2) that the predictions are interpolated within the domain of the data used to calibrate the 

empirical model.   

 The weakness of empirical models is in extrapolation.  Outside the domain of the calibration 

data there is just no way to know how well the empirical model will work, and in many cases the 

extrapolation is known to be poor (e.g., Richardson and others 2006).  I suspect that most 

empirically based ecological models will not do well if extrapolated to the warmer, high-CO2 

conditions of the future; the new conditions will change productivity, allometry, competition, 

phenology, and many other ecosystem characteristics and thereby alter the relationships 

underlying these models.   

 Of course, many of the most pressing environmental issues involve extrapolation into 

conditions for which there is little or no data (e.g., under future CO2 concentrations).  Because of 

the long response times of most ecosystems, experimental approaches cannot generate the data 

needed to develop empirical models quickly enough to be of practical use.  The only alternative 

is to use mechanistic models.   

 But why should mechanistic models be better for extrapolation than empirical models?  The 

Table 1.  Relative mortality rates in relation to smoking for men and women over 65.  

Numbers indicate the factor (and 95% confidence limit) by which mortality rates increase 

relative to individuals of the same sex that have never smoked.  Source: LaCroix and others 

(1991). 

 Men Women 

Current smoker 2.1 (1.7 - 2.7) 1.8 (1.4 - 2.4) 

Former smoker 1.5 (1.2 - 1.9) 1.1 (0.8 - 1.5) 
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main reason is that it is often possible to empirically constrain mathematical representations of 

the components of a system even when it is not possible to similarly constrain an empirical 

representation of the whole system.  Mechanistic models take advantage of the hierarchical 

structure of ecosystems (O'Neill and others 1986) and tie system-level behaviors to the 

characteristics of and interactions among the components of that system (Rastetter and Vallino 

2015).  Because of this hierarchical structure, the system components have to be smaller and 

respond more quickly than the system itself (O'Neill and others 1986), which makes them more 

tractable for experimental and observational study than the whole system.  For example, the 

long-term, whole-system question to be addressed might be: Will forests sequester carbon over 

the next 200 years of elevated CO2 and warming?  To address this question empirically at the 

ecosystem scale would require replicated experiments on whole forests that last 200 years.  With 

that data one might then derive empirical relationships between initial stand biomass and soil 

properties and the magnitude of carbon sequestration or loss.  However, such an approach is not 

of much use for predicting those responses for the next 200 years because the experiment takes 

too long.  The mechanistic alternative is to instead conduct short-term experiments (<10 years) 

on individual trees of different ages and different species, and on soils with different 

characteristics and then piece that information and any other available information together in a 

mechanistic model of the ecosystem to try to predict the long-term, whole-system rate of carbon 

sequestration.   

 This mechanistic approach also has its caveats (Rastetter 1996).  Although short-term 

experiments can constrain representations of system components, they do not yield information 

about feedbacks acting at a system level when those components are linked together.  Thus there 

is no way to know if the slow-responding system feedbacks that might dominate long-term 

responses are adequately represented in the model.  The model might therefore be corroborated 

with existing short-term data even though it is inadequate for making long-term projections.  

Conversely, the system-level predictions of the model might be falsified with short-term, high-

frequency data even though the long-term, slow-responding feedbacks that dominate long-term 

responses, and will eventually override the short-term, high-frequency responses, are in fact 

adequately represented in the model.  Confidence in such models should therefore be taken with 

caution (Stroeve and others 2007), but should build slowly over time with the iterative process of 

model development and testing and the accumulation of many independent sources of 

corroborating evidence. 

 A key objective of modeling for numbers is often prediction accuracy.  O'Neill (1973) 

postulated a tradeoff between model complexity and errors associated with estimating the 

parameters needed to represent that complexity in the model.  As more process detail is 

incorporated into the model, prediction of system-level dynamics should improve because more 

of the processes determining those dynamics are included in the model.  However, the added 

model complexity comes at the price of having to estimate more parameters.  Error in estimating 

those parameters will propagate through the model and, as more parameters are added, prediction 

accuracy will deteriorate.  Thus as the model becomes more complex there should be a tradeoff 

between errors associated with lack of mechanistic detail in a too-simple representation of the 

system (systematic error) versus cumulative errors associated with estimation of more and more 

parameters to account for those mechanistic details (estimation error).  This tradeoff results in an 

optimum model complexity where overall prediction error is minimized. 

 The O'Neill (1973) analysis, however, presupposes that the underlying structure of the 
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system being modeled is actually understood.  Only if that structure is understood will added 

model complexity be guaranteed to reduce systematic error.  If it is not understood, then the 

added complexity might have no relation to the real mechanism and systematic error could 

actually increase.  Thus, there is at least one more axis to be considered in the O'Neill (1973) 

analysis, an axis reflecting how well the system is understood.   

 

 Modeling for Understanding.  My ontological perspective is strictly reductionist; in 

principle, all properties of a system can be explained, and therefore understood, based on the 

properties of its component parts and their interactions.  However, what seems straightforward in 

principle is often intractable in practice.  The problem is the daunting complexity of biological 

systems.  Bedau (2013) argues that some systems have interactions that are "too complex to 

predict exactly in practice, except by crawling the causal web."  In this view, emergent system 

properties can be fully explained in terms of the properties of its component parts and their 

interactions, but that explanation might be "incompressible" in the sense that the system 

properties can only be replicated by simulation of the full complexity of the system (Bedau 

2013).   

 The issue of incompressibility is hugely problematic.  Taken to its extreme, it implies that a 

system can only be understood from the perspective of a model that is at least as complex as the 

system itself.  What possible use could such a model be, other than to demonstrate that you have 

"crawled the causal web" correctly?  Certainly the heuristic value of such a model would be very 

limited.  Indeed, the formulations of many for-understanding models in ecology are selected 

explicitly for ease of analytical or graphical analysis, that is, for compressibility (e.g., Lotka 

1925, Volterra 1926, MacArthur and Levins 1964, Tilman 1980).  Achieving this compressibility 

requires a high degree of abstraction, a focus on a specific subset of system properties, and the 

sacrifice of quantitative accuracy.  In exchange, there can be substantial heuristic return.   

 Unlike for-numbers models, which at least have accurate quantitative prediction as a 

common goal, it is difficult to generalize about for-understanding models except to say that they 

have to be mechanistic.  Otherwise, how could they address how and why questions?  However, 

a mechanistic model does not require inclusion of every process or mechanism ever described for 

the system.  As I imply above, such an approach is counterproductive; it degrades the heuristic 

value of the model and therefore impedes understanding rather than enhances it.  The key 

modeling step, and often the most difficult aspect of modeling for understanding, is identifying 

only those components and processes absolutely needed to address the question being asked.  

 The typical for-understanding model has three elements: (1) a characterization of the 

potential behaviors of each of the relevant system components, (2) a characterization of the 

interactions among these system components, and (3) a set of boundary conditions that specify, 

for example, the initial properties of the system components and the influence of any factors 

outside the system on the components of the system.  The very best for-understanding models are 

elegantly simple.   

 A classic example of an elegant for-understanding model is the Lotka-Volterra model of the 

interactions among competing species (Lotka 1925, Volterra 1926): 
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where Ni is the number of individuals of species i, ri is the intrinsic growth parameter for species 

i, Ki is the number of individuals of species i that the environment is able to support in the 

absence of competition (carrying capacity), ji is the number of individuals of species i that are 

displaced from the carrying capacity by one individual of species j, n is the number of competing 

species, and t is time.  The components of the system are the environment, characterized by the 

carrying capacities for each of the n species (Ki), and the n species of competing populations, 

characterized by their intrinsic rates of growth 

(ri Ni).  The environment interacts with each of 

the species through a density-dependent 

feedback that slows the rate of population 

growth as the population size approaches the 

environment’s carrying capacity for that species 

([Ki - Ni]/Ki; here I have assumed ii = 1; Fig. 

1).  Each species j interacts with the other 

species i by reducing the carrying capacity of 

the environment for species i in proportion to 

the abundance of species j (ji Nj).  The only 

boundary conditions needed are the initial sizes 

of each of the n populations. 

 The Lotka-Volterra model spawned lots of 

research up through the early 1980s (e.g., Gause 

1934, MacArthur and Wilson 1967, Parry 

1981).  This research sought to examine the 

nature of competition, the structuring of 

communities, and the struggle for existence.  

The model is still used today, but mostly as a 

component within larger models (e.g., Pao 

2015).  However, perhaps the most important 

legacy of this or any for-understanding model is 

that through its limitations it inspires a new 

generation of models. 

 The most influential of these next-

generation models is one developed by 

MacArthur and Levins (1964) and further 

developed and applied especially by Tilman 

(1977, 1980): 
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where Bi is the biomass of species i, gi and mi 

are the growth and turnover parameters for 

 
Figure 1: Comparison of net growth 

versus species abundance for Eqs. 1, 2, and 

5.  Upper panel- Lotka (1925) and Volterra 

(1926) model (Eq. 1) with ri = 0.01,ii = 1, 

and ji = 0 for j ≠ i. Middle panel - 

MacArthur and Levins (1964) model (Eq. 

2) with gi = 0.1, kij = 10, and mi = 0.05 and 

R = the most limiting resource is held 

constant at the specified value. Lower 

panel - Rastetter and Ågren (2002) model 

(Eq. 5) with gi = 0.125, kij = 10, and mi = 

0.05,i = 0.001, i = 0.00431, and R = the 

most limiting resource is held constant at 

the specified value. 
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species i, Rj is the abundance of resource j, kij is the half-saturation constant for uptake of 

resource j by species i, Sj is the net supply rate of resource j to the environment, qij is the amount 

of resource j needed to produce one unit of biomass for species i, n is the number of species, p is 

the number of resources, and t is time.  This model was developed to provide a more explicit 

representation of the mechanisms controlling the dynamics of the environmental resources (Eq. 

3) than the earlier Lotka-Volterra model (Tilman 1987).  It provided a much deeper 

understanding of the nature of resource limitation and competition than did a general decrease in 

the carrying capacity of the environment for species i by species j.  In addition it provided a 

quantitative interpretation for Gause’s (1934) competitive exclusion principle (n ≤ p).  From Eq. 

2, at steady state in the absence of competition, species i will draw down the abundance of its 

most-limiting resource (j) to a value  *

ijR  just able to sustain the population: 

(4)  
ii

iij
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R
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If any other species k is introduced into the environment and is able to draw down resource j 

below this level  **

ijkj RR   then species i will go extinct (Fig. 1).  Thus, the environment can 

support at most p species, each with a different most-limiting resource and none able to draw 

down other resources below the 
*

ijR  of the other species.   

 A limitation of the MacArthur and Levins (1964) model is that it provides no resolution to 

Hutchinson's (1961) paradox of the plankton; in the real world, the number of coexisting species 

in a plankton community (and many other communities) appears to exceed the number of 

potentially limiting resources.  Rastetter and Ågren (2002), in response to this limitation, showed 

that any number of species can coexist even on only one limiting resource by replacing the 

growth term in Eq. 2 with one that is concave downward with respect to biomass rather than 

proportional to biomass (Fig. 1; making turnover concave upward works equally well):  
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where i < i are parameters that make the growth term in Eq. 5 monotonically increasing and 

concave downward as biomass increases.  Rastetter and Ågren (2002) argue that this formulation 

is more realistic than Eq. 2 because the surface area through which uptake occurs increases 

proportionally more slowly than total biomass.  For example, once a vegetation canopy closes, 

there is little further increase in leaf area even though the total biomass continues to increase.  

 In addition to allowing the coexistence of any number of species regardless of the number of 

potentially limiting resources, this new formulation also made several other predictions: (1) the 

number of coexisting species increases with the net supply rate of the resource (Sj), (2) to 

displace an existing species, a new species must decrease the concentration of the limiting 

resource by a finite, rather that infinitesimal amount, (3) the magnitude of the decrease in the 

limiting resource required to displace a resident species increases as the net resource supply rate 

(Sj) increases, and (4) as the net resource supply rate (and hence community productivity) 

increases, the Shannon-Wiener diversity first increases as the number of coexisting species 
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increases, then decreases as the evenness in relative abundance of those species decreases.   

 Each step in this sequence of models from Lotka (1925) and Volterra (1926) to MacArthur 

and Levins (1964), to Rastetter and Ågren (2002) was made because of a perceived limitation in 

the previous model.  However, the way that the limitations of for-understanding models are 

assessed seems to me to be qualitatively different from the way that limitations of for-numbers 

models are assessed.  For-numbers models are assessed based on goodness of fit, precision, and 

accuracy of prediction.  With such simple elegance, stripped of extraneous detail, testing of a for-

understanding model is more nuanced.  How does one test an abstraction?  Generally these 

models are tested in very controlled environments where extraneous factors can be minimized 

(e.g., chemostats, pot studies; Gause 1934, Ayala and others 1973, Tilman 1977).   However, “in 

the field ... additional complexities are likely to occur [that] do not exist in the laboratory.  

Experimentally tested models, however, [might] help in the understanding of natural processes” 

(Ayala and others 1973).  Thus, “the more general models of theoretical biology are used to 

deduce the form of possible solutions, rather than to predict future states of the system” 

(Wangersky 1978).   

 The importance of for-understanding models is much more qualitative and much deeper than 

simply to predict how much, when and where.  Because the extraneous detail has been stripped 

from these models, it is easy to impose conditions where these models fail.  However, is such a 

test relevant?  At some level, “all models are wrong but some are [nevertheless] useful” (Box 

1979).  In my mind, the real value of these models is heuristic (Oreskes and others 1994).  Each 

step in the progression along the series of models presented above represents a whole new way 

of thinking about the problem. Thus, the progression seems to me to be more analogous to 

Kuhn’s (1996) paradigm shifts than to the incremental corrective steps, driven by Popper’s 

(1968) falsification or Platt’s (1964) strong inference, expected in the development of a for-

numbers model.  

 

 Conclusions.  For-understanding models are well developed in community and evolutionary 

ecology and provide a strong theoretical foundation for the science (e.g., Moore and Ruiter. 

2012, or scan the titles of any volume of Theoretical Ecology).  For-understanding models are 

less well developed in ecosystem biogeochemistry (but see Ågren and Bosatta 1996), arguably 

resulting in a less well established theoretical foundation (see Menge and others 2008 and Pastor 

2016 for approaches that merge evolutionary ecology and biogeochemistry).  Conversely, for-

numbers models have made enormous strides in biogeochemistry, especially in relation to 

global-carbon budgets (e.g., Thornton and others 2009).  The interplay between for-

understanding and for-numbers model is vital.  Global carbon models are beginning to 

incorporate feedbacks associated with nutrient limitation and cycling; for-understanding 

modeling at the ecosystem scale to set a firm scientific foundation for carbon-nutrient 

interactions should help in that development.  The interactions between community and 

biogeochemical processes are not well understood or incorporated in for-numbers models; again 

a scientific foundation based on for-understanding models is needed to resolve these issues and 

to identify how to best incorporate them in larger for-numbers models. 

 “Observation and theory get on best when they are mixed together, both helping one another 

in the pursuit of truth” (Eddington 1935).  Students should therefore develop a broad enough 

understanding of theoretical modeling to be able to communicate effectively with modelers even 

if they do not model themselves.  Modeling is a vital part of any science.  In Ecology, it provides 
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a way to synthesize knowledge across a diverse array of sub-disciplines and to extrapolate that 

knowledge to make predictions.  However, the ability to predict is not the same as understanding.  

Understanding requires the theoretical foundation provided by for-understanding models.  In 

general, more theoretical work characterized by modeling for understanding is needed in 

ecology, especially in biogeochemistry.  First we need to understand our planet; then we might 

be able to predict the consequences of what we are doing to it and devise ways of avoiding the 

worst of those consequences. 
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