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ABSTRACT: Thalia democratica blooms are a recurrent phenomenon in many coastal areas of 

the Mediterranean Sea and have significant ecological effects. To better understand the 

environmental drivers of salp blooms, we conducted 8 surveys to sample T. democratica in 

contrasting seasonal, temperature and chlorophyll conditions. In each survey, short-term 

variations in the abundances of different salp stages were assessed by sampling the same 

population at 30 min intervals. Using these data, we estimated the parameters in a set of stage-

classified matrix population models representing different assumptions about the influence of 

temperature and chlorophyll on each stage. In the model that best explains our observations, only 

females are affected by changes in water temperature. Whether this is a direct influence of 

temperature or an indirect effect reflecting low food availability, female reproduction cessation 

seems to slow population growth under unfavourable conditions. When conditions become 

favourable again, females liberate the embryo and change sex to male, allowing for mating under 

extremely low salp densities and triggering the bloom. In contrast to previous findings, our 

results suggest that females, rather than oozooids, are responsible for the sustainability of salp 

populations during latency periods. 
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Gelatinous zooplankton blooms 

INTRODUCTION 

Salps are filter-feeding pelagic tunicates present in many of the world’s seas. Salp 

blooms are common in most oceans and have important ecological consequences. They generate 

episodic but intense downward fluxes of faecal pellets and dead bodies (Lebrato et al. 2012, 

Henschke et al. 2013, Smith et al. 2014) and serve as prey and/or hosts for many pelagic and 

benthic organisms (Harbison 1998). Salp blooms can have important economic impacts as well, 

as high salp densities can (1) negatively impact fish farms (Giesecke et al. 2014), (2) clog the 

cooling systems of power plants and (3) potentially reduce tourism due to their jellyfish-like 



appearance (Boero et al. 2013). These adverse effects explain the growing interest in 

understanding the mechanisms that drive salp blooms. 

Salp populations exhibit ‘boom and bust’ cycles due to the alternation between an 

asexual solitary stage (oozooid) and a sexual aggregated stage (blastozooid) during their life 

cycle (Fig. 1). Each blastozooid in a chain starts as a female and is impregnated almost 

immediately after its release. The female becomes male after giving birth to a single, free-

swimming juvenile oozooid. Once the oozooid becomes sufficiently large, it becomes productive 

and sequentially releases up to 3 chains of blastozooids, closing the life cycle (Heron 1972a). 

The particularities of this cycle, combined with high individual growth rates (up to 28% in length 

per hour, Le Borgne & Moll 1986), allow for very short generation times (~2 d, Heron 1972b) 

and large intrinsic rates of population increase (Alldredge & Madin 1982). 

Salp blooms are population-level processes resulting from individual physiological 

responses to triggering environmental factors. Laboratory experiments have provided a wealth of 

information on how the growth, reproduction and survival rates of individual salps respond to 

environmental factors, usually temperature and food availability (e.g. Heron 1972a, Deibel 1982, 

Braconnot et al. 1988, Madin & Purcell 1992). Those studies provide forcing functions which 

can be extrapolated to field conditions, allowing first-order approximations of population 

growth. However, laboratory measurements of physiological rates are highly variable and 

usually far from those derived from field studies (Heron & Benham 1984, Madin & Deibel 1998, 

Everett et al. 2011). In addition, the typical spatial and temporal scales of laboratory experiments 

preclude manipulation of whole salp populations. For these reasons, direct observation remains 

the best tool to study population-level phenomena, such as salp blooms (e.g. Heron, 1972a,b, 

Heron & Benham 1984, 1985, Le Borgne & Moll 1986, Tsuda & Nemoto 1992, Loeb & Santora 

2012). In this regard, field observation has revealed associations between active salp population 

growth, low temperature and high food availability (Heron & Benham 1985, Andersen & Nival 



1986, Lavaniegos & Ohman 2003, Licandro 2006, Deibel & Paffenhöfer 2009, Henschke et al. 

2014). Comparatively less attention has been given to population persistence during adverse 

conditions, when temperature is relatively high and food availability is low. Based on field 

observations, Heron & Benham (1985) postulated that in latent, low-density populations of 

Thalia democratica, oozooids grow slowly, nursing chains of blastozooids that will release under 

favourable conditions. 

Henschke et al. (2015) recently built a population dynamic model for T. democratica in 

which the vital rates were considered constant and based on published laboratory or field 

estimates. Since vital rates may vary with oceanographic conditions, the stage-classified model 

should include environment-dependent transition rates. In this regard, salp population models 

built by means of differential equations lend support to a role of chlorophyll and/or temperature 

levels as drivers of salp population dynamics (Andersen & Nival 1986, Henschke et al. 2015). 

The goal of the present study was to evaluate how T. democratica population dynamics 

change under different environmental conditions. For this purpose, we conducted short time-

series surveys around different T. democratica blooms under contrasting environmental 

conditions and used these observations to fit temperature- and chlorophyll-dependent stage-

classified matrix models. Our main findings are in contrast to previous hypotheses (Heron & 

Benham 1985) that pointed to the asexual stage as being responsible for population latency: we 

propose that females limit their reproduction when conditions turn unfavourable, thus lowering 

the population growth rate. When favourable conditions resume, females liberate their embryo 

and become males, allowing for mating at low salp densities and triggering a bloom. 

 

MATERIALS AND METHODS 

Sampling area 



All sampling stations were located in the Catalan Sea, NW Mediterranean. The most 

relevant hydrographical structure in this area is the density front produced by differences in 

salinity between coastal and oceanic waters. Associated with this shelf-slope front, a current 

flowing southward is formed (Font et al. 1988). Catalan coastal waters can be considered 

oligotrophic, although substantial nutrient sources, mostly coming from river runoff, turn them 

into a more productive area than the open sea (Arin et al. 2013, Saiz et al. 2014). Primary 

production in the NW Mediterranean exhibits a strong seasonality, mainly forced by changes in 

surface temperature (Duarte et al. 1999). During autumn and winter, stronger and colder winds 

cool down the superficial waters, inducing vertical mixing of the water column, which in turn 

enriches the euphotic layer with nutrients. In late winter and early spring, water starts to warm 

and the stability of the water column increases rapidly, triggering a rise in primary production. 

The pronounced warming and stratification in summer causes a depletion of nutrients in the 

euphotic layer, which decreases phytoplankton growth. Finally, the thermocline starts to break 

again in autumn and a second, but less intense, phytoplankton bloom occurs (Ménard et al. 1994, 

Estrada 1996). 

Two locations (both approximately 1.6 km from shore) were selected for the different 

surveys. The first sampling site, Cadaqués (42° 18’ 34.5” N, 3° 19’ 19.3” E; bottom depth = 60 

m), is located in front of the Cap de Creus area, an area where the continental shelf is particularly 

narrow and oceanic waters exert a strong influence. In contrast, the second sampling site, 

Barcelona (41° 20.844' N, 2° 17.888' E; bottom depth = 40 m), is located in an area with a wider 

continental shelf, where the shelf-slope front is relatively far from shore (Fig. 2). Two main rivers 

have an influence on the nutrient concentrations: the Rhône River in the case of Cadaqués, with 

maximum flows in autumn and spring (Ulses et al. 2008), and the Besós River in the case of 

Barcelona, with discharge peaks in autumn and winter (Arin et al. 2013). Sampling positions and 

depths may have varied slightly since a drifting buoy was followed during sampling. 



Sample collection 

Monthly time series 

To determine the pattern of temporal variation of Thalia democratica populations, we 

conducted time-series surveys in both locations where monthly samples were collected during 

2013 and 2014. Temperature and salinity profiles were obtained by deploying a CTD down to 20 

m depth. Chlorophyll a (chl a) concentrations were measured in water samples collected 1 m 

below the sea surface using a 5 l Niskin bottle. Zooplankton samples were collected using a 

bongo net (40 cm diameter, 300 m mesh size), obliquely towed for 10 min from 10 m depth to 

the surface. Sampling deeper layers or at certain times of the day was unnecessary, as T. 

democratica is considered a non-migrant species and mainly occurs in surface waters (Heron 

1972b, Tsuda & Nemoto 1992, Paffenhöfer et al. 1995). Samples were preserved in 5% formalin 

immediately after being collected. 

Short time-series observations 

When salps were easily recognizable in the first zooplankton sample of each monthly 

visit, we followed a short time-series sampling methodology. From that point until the end of the 

bloom, we increased the sampling frequency, provided that weather conditions allowed. 

Following Heron (1972b), each survey comprised 6 consecutive hauls, performed at 30 min 

intervals, tracking a World Ocean Circulation Experiment (WOCE) drifting buoy (Hansen & 

Poulain 1996). Each haul started near the buoy that followed surface waters, thus tracking the 

salp population. If salp density was high enough to collapse the bongo net cod ends, towing time 

was reduced to 5 min. CTD and Niskin bottles were deployed near the drifting buoy after 

plankton samples were collected, as was also the case for the monthly surveys (i.e. 3 to 4 h after 

sampling had begun). Both samplings were conducted during daylight, avoiding dusk and dawn 

since these periods can affect salp distributions due to mating aggregations (Gibbons 1997). We 



assumed no net-avoidance by the salps given their slow swimming response (Ohman & 

Lavaniegos 2002). 

Sample analyses 

Salps efficiently retain particles above 2 to 3 m in size (Kremer & Madin 1992, but see 

Sutherland et al. 2010). To obtain an estimation of the concentration of phytoplankton available 

to salps, water samples were size-fractionated through 3 m Whatman polycarbonate filters and 

glass fibre GF/F filters (0.45 m). Chl a was extracted from those filters for 24 h at 4°C using 

90% acetone (Venrick & Hayward 1984). Fluorescence of the acetone solution was measured 

using a fluorometer (Turner Designs). We only considered total chl a concentrations, since total 

chl a rendered a better model fit and both size fractions were highly correlated (Spearman's 

coefficients >0.7). A better fit of population parameters with the smallest fraction agrees with the 

capacity of salps to retain sub-micrometre particles (Sutherland et al. 2010). 

T. democratica individuals were identified, separated from the original sample and then 

scanned using a Zooscan (Grosjean et al. 2004). Individuals were measured from the posterior 

ridge of the gut to the opening (Foxton 1966) using Image J software (Abramoff et al. 2004), 

measuring up to a maximum of 1000 individuals each of blastozooids and oozooids. The number 

of buds chain
–1

 was also counted (up to a maximum of 50 oozooids survey
–1

) only when the 

oldest chain was clearly distinguishable from the stolon (Henschke et al. 2014). These values 

were then used to determine the maximum and minimum number of buds chain
–1

 in the models. 

Individuals were classified in 4 stages depending on the blastozooid/oozooid form and 

size as described by Henschke et al. (2015), after applying a 10% shrinkage correction due to the 

effects of formalin (Heron et al. 1988). Samples from all surveys were measured during the first 

month after collection. Size ranges were adjusted to our observations, adapting previous 

partitions to actual data from the population sampled. For example, the maximum length 



measured for a blastozooid carrying an embryo was 7 mm, and oozooids containing a developed 

chain reached lengths of 8 mm. These measures are similar to those found in other studies on T. 

democratica in the Mediterranean Sea (e.g. Braconnot & Jegu 1981). Therefore, we classified 

individuals as female (F, blastozooid, size range: 1–7 mm), male (M, blastozooid, size range: >7 

mm), juvenile oozooid (J, oozooid, size range: 3–8 mm) and productive oozooid (PO, oozooid, 

size range >8 mm). The density of individuals (ind. 100 m
–3

) in each stage was calculated by 

dividing the number of individuals by the total volume of water filtered. When blastozooids or 

oozooids exceeded 1000 individuals, we multiplied their relative size frequencies by the total 

density of individuals to obtain the stage density. One individual count was added to all samples 

prior to calculation of densities to avoid logarithms of 0 in the parameter estimation procedure. 

Model construction and parameter estimation 

We modelled the population dynamics of T. democratica using a stage-classified matrix 

model based on the life cycle as represented in Fig. 1. First, we classified all individuals in the 

population at time t as either female (Ft), male (Mt), juvenile oozooid (Jt) or reproductive 

oozooid (POt), and gathered the counts of the classified individuals into a vector representing the 

population stage distribution at time t. The model projects the stage distribution from time t to 

time t + 1 via matrix multiplication: 
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]    (1) 

The entries in this matrix correspond to the rates of the transitions illustrated in Fig. 1. PM 

and PPO are the survival rates for males and productive oozooids. Females at time t either survive 

and remain female (with probability PF), or grow and become male (with probability GF), or die. 

Since a female sheds a juvenile oozooid and becomes a male simultaneously, the probability to 

release the embryo is RF = GF. PJ and GJ are the probability that an oozooid remains a juvenile 



and the probability that it grows to become a productive oozooid, respectively. RJ and RPO give 

the rate of production of new females by juvenile and productive oozooids. We assumed that 

reproduction is a birth-flow process sensu Caswell (2001). 

In general, each of these transitions, and so each of the positive elements of the transition 

matrix, may depend on temperature (T) or chlorophyll concentration (chl), or both. We 

incorporate these potential environmental effects through the parametric models listed in Table 

1. Each parametric model is a logistic or multinomial logistic function, since each element in the 

transition matrix is the probability of an event to happen among 2 or more alternatives (i.e. 

dichotomous or polytomous data). For example, PM represents the male survival probability to 

the following time step. Thus, it consists of 2 potential alternatives (to survive or not) and is 

accordingly modelled by a binomial logistic function. In contrast, PF represents the probability of 

an event—remaining female—among a set of 3 different possibilities: to die, to remain in the 

same state or to grow and become a male. Accordingly, a multinomial logistic function was 

used. Note that GF represents the probability of a different event—to grow to male—among 

exactly the same set of possibilities as in PF. Blastozooid production (RPO and RJ) includes a 

mean oozooid fecundity term ( ) and a mean newborn blastozooid survival term ( ) within the 

same time interval, since oozooids produce chains continuously. To comport with our 

observations, the minimum (fmin) and maximum (fmax) number of blastozoids per oozooid were 

constrained between 14 (1 chain with only 14 blastozooids) and 258 (3 chains with up to 68 

blastozooids each). 

The general model (Eq. 1) involves a total of 25 parameters. Different restrictions on 

these parameters correspond to different hypotheses about the role of temperature and 

chlorophyll in the population dynamics of different life stages of T. democratica (see life cycle 

illustrated in Fig. 1). To select among these hypotheses, we fit a total of 48 models. These 

models correspond to combinations of temperature-dependence only, chlorophyll-dependence 

f S



only and both temperature- and chlorophyll-dependence operating on all 16 possible 

combinations of life stages (Table 2).  

To estimate the parameters in this model, we must incorporate stochasticity to account 

for variability in the data. Dennis et al. (1995) described the statistical advantages of adding 

noise on the log scale. Doing so transforms Eq. (1) to: 
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where the vector [EF EM EJ EPO]
T
 has a multivariate normal distribution with 0 mean and 

variance-covariance matrix Ʃ. On the log scale we then have 

ln(Ft +1) = ln(PF Ft + RJ Jt + RPO POt) + EF    (3) 

ln(Mt +1) = ln(GF Ft + PM Mt) + EM     (4) 

ln(Jt +1) = ln(RF Ft + PJ Jt) + EJ      (5) 

ln(POt +1) = ln(GJ Jt + PPO POt) + EPO     (6) 

We fit the models described by Eqs. (3–6) and Table 2 by nonlinear least squares. We 

compared models using the cross-validated 1-step prediction errors of the log-transformed 

population counts. Cross-validation is commonly used in comparing models, like those in Table 

2, that differ in the number of fitted parameters (Claeskens & Hjort 2008). Otherwise, using non-

cross-validated sum of squared prediction errors would tend to favour models with more 

parameters. We then used the selected model to estimate the transition matrix, the population 

growth rate () and the elasticity matrix for selected environmental conditions. We constructed 

approximate 0.95 confidence intervals for the fitted values of the stage counts conditional on the 

initial counts by the percentile bootstrap method based on 200 bootstrap samples of the residuals 

from the fitted model (Efron & Tibshirani 1993).  was calculated as the first eigenvalue of the 



transition matrix, and reflects the long-term behaviour of the population under constant 

conditions. The population decreases exponentially when 0 < < 1 and increases when > 1. 

The elasticity of  with respect to one of the matrix elements indicates the proportional 

contribution of this matrix element to , and was computed following standard methods (Caswell 

2001). 

RESULTS 

The temperature range in Barcelona was wider than in Cadaqués (12.2–24.9°C vs. 11.6–

23.7°C), while total chl a concentrations were slightly lower in Barcelona (0.07–1.03 vs. 0.07–

1.25 g l
–1

; Fig. 3). Since environmental conditions can be considered relatively similar, both 

locations were treated as survey replicates. Thalia democratica appeared from May to June/July, 

and between September and October in 2013 and 2014 (Fig. 3). Abundances in Cadaqués during 

spring time were higher than those recorded in Barcelona or during autumn. T. democratica was 

the only salp forming blooms in all sampling events except for spring 2013, when Salpa 

fusiformis was also present at both locations (Fig. 3). When salp abundance was low (1 ind. 100 

m
–3

 or less), populations were mostly composed of blastozooids. 

Salp densities and meteorological conditions favoured the development of 8 short time-

series observations (marked with asterisks in Fig. 3; see size distributions in Fig. S1 in the 

Supplementary material) each covering 5 time transitions (0–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0 and 

2.0–2.5 h). The total number of time transitions was 40 (i.e. 5 time transitions in each of the 8 

surveys), all of which were used to fit the models. The model that best explained the variability 

observed in our data included only females affected by temperature (Table 2). This effect can be 

estimated using the model equations from Table 3. Accordingly, the probability of females 

growing to males (GF) and the concomitant probability of releasing an embryo (RF) decreased 

with increasing temperature (Fig. 4a). In contrast, the probability of remaining a female (PF) was 



higher in warmer waters. Within the temperature range of this study (14–22°C), GF varied 

between 0.1 and 7.6% for a 30 min time step. The number of buds per oozooid per 30 min time 

step was inversely correlated to temperature and ranged from 31 to 52. Population growth rate 

() smoothly decreased with temperature from 0.946 to 0.784. Elasticities (proportional 

sensitivity of  to variation in a particular matrix element) also varied with temperature. Values 

were more balanced at low temperatures, with slightly higher elasticities for PPO (Fig. 4b). In 

contrast, elasticity values for PF were clearly higher at high temperatures. 

For the sake of comparison with existing literature, it is possible to derive the stage-

dependent survival rates from our model probabilities to remain in the same stage (P) and to 

grow until the next stage (G), following the methods given by Caswell (2001). An individual will 

remain in the same stage (P) if it survives (s) and does not grow (1 − g), thus P = s × (1 − g). (G) 

if it survives and grow (g), that is, G = s × g. By using P and G estimates from the best model, 

we could calculate survival rates (s) by solving a 2-equation system. Survival values of each 

stage are shown in Table 4. Note that g is the probability of growing to the next stage and not an 

individual increase in length; thus, these values are not comparable with growth rates reported in 

previous studies. 

DISCUSSION 

We have explored the population dynamics of the salp Thalia democratica by combining 

a stage-specific matrix model with empirical modelling of the transition matrix elements. Our 

study highlights the key role of the female stage during periods of population latency, a 

conclusion that departs from previous hypotheses (Heron & Benham 1985). Our approach 

required samples of relatively dense salp populations (at least 60 ind. 100 m
–3

) to achieve 

meaningful parameter estimates. This method, however, does not need well-defined size 

distributions since it is not based on identified cohort peak displacements, which would require 

greater abundances (Heron 1972a). T. democratica populations in the NW Mediterranean reach 



abundances up to 11000 ind. 100 m
–3

 (Licandro 2006), much denser than those found in the 

present study (Fig. 3). There is the possibility that the highest salp densities may have been 

missed by the coarse, monthly sampling frequency of our study. However, maximal annual 

abundances reported by Licandro (2006) from 1974 to 1999 varied among years, mostly from 10 

to 1000 ind. 100 m
–3

, and densities greater than 1000 ind. 100 m
–3

 were only recorded in a few 

occasions. We sampled only blooms, because salp abundance during non-bloom periods ranges 

from 0 to <10 ind. 100 m
–3

 (Fig. 3) (Sardou et al. 1996), which is our approximate operational 

threshold. It can be assumed that population growth rates <1 suggest that our observed, dense 

populations might have been entering senescence. However, if population growth rates were >1, 

we would still expect a similar effect of temperature on population growth. Bearing in mind 

these experimental limitations, our 1-time-step expected densities fitted reasonably well with our 

observations (Fig. 5), and the estimated stage-dependent survival rates were in consonance with 

those obtained from previous model-derived rates (e.g. Henschke et al. 2015; Table 4). 

Effect of temperature on salp dynamics 

The range of temperatures recorded was sufficient to evaluate its effects on salp 

dynamics. The model that best explained the variability observed in the population dynamics of 

T. democratica pointed to a direct, negative effect of temperature on females. Low temperatures 

were associated with favourable conditions for salps, while high temperatures corresponded to 

periods of salp population arrest (Fig. 4). Although the effects of temperature seemed clear, these 

results can be attributed to either direct influence on salp physiology or an indirect, seasonal 

correlation with primary production. Temperatures above 20°C negatively affect feeding rates in 

Salpa fusiformis (Andersen 1986), and greater excretion rates in warmer waters could have been 

detrimental for the salp population (Ménard et al. 1994). On the other hand, temperature has 

traditionally been inversely related to primary production in the Mediterranean Sea (Bosc et al. 

2004, Saiz et al. 2014). Both spring and autumn phytoplankton peaks normally preceded a salp 



bloom (Ménard et al. 1994), but salps in autumn (high temperature) would have less food 

available than in spring (low temperature). We have not seen salp blooms in winter, coinciding 

with the lowest water temperature registered, probably because thermocline formation and the 

rise of primary production have not yet started (Fig. 3). 

Our results agree with other studies that found a negative correlation between 

temperature and salp abundance (Ménard et al. 1994, Licandro 2006). In addition to high 

temperatures, water column stability and irradiance may contribute to the termination of salp 

blooms (Ménard et al. 1994). Nevertheless, all of these factors seem to be associated with the 

annual cycle of the water column in the NW Mediterranean. Our study contrasts with others in 

which chl a, a measure of food availability, was correlated with salp population dynamics 

(Heron & Benham 1984, Andersen & Nival 1986, Deibel & Paffenhöfer 2009, Henschke et al. 

2014). The chl a range used in our study may have been too narrow, or alternatively there may 

be a lagged response of salp populations to food availability (Licandro 2006). It is possible that 

primary production would describe food availability better than chl a, but the methodology 

needed to obtain these values was logistically impossible in our study. 

Stages contributing to population growth under contrasting conditions 

Elasticity analysis has shown that the survival of oozooids stimulated population growth 

during cold, favourable periods (Fig. 4b). These results are in agreement with other studies 

pointing to oozooid survival as the most sensitive vital parameter of the population dynamics 

(Henschke et al. 2015), as well as asexual reproduction, a key parameter for exponential growth 

(Alldredge & Madin 1982, Andersen & Nival 1986). Under unfavourable conditions (high 

temperature and low food availability), females invest their low energy input into slow growth 

while arresting reproduction, leading to slow population growth (Fig. 4b). In this sense, we 

observed that low-density populations (≤1 ind. 100
–3

) were exclusively dominated by 

blastozooids, indicating the potential role of females as a switch for population growth. The 



decrease in female reproduction also fits our size distributions, where surveys with high 

temperatures (>19°C) had no males, indicating that females were not reproducing (see Fig. S1g–j 

in the Supplement). These findings are in agreement with other studies that found populations 

mostly dominated by females in autumn and winter samples (Heron & Benham 1985, Tew & Lo 

2005). Interestingly Heron & Benham (1985) also observed that blastozooids were not 

reproducing, although they concluded that, in the typical situation for population latency (what 

they called ‘overwintering’), oozooids arrested their growth while retaining their chains until the 

onset of favourable conditions. 

In our study, the probability of remaining in the same stage (P) exhibited higher 

elasticities than reproductive rates (R) (Fig. 4b). In other words, shortening or enlarging the 

residence time in a given stage has more influence on population dynamics than producing more 

or less offspring (Heron 1972b). T. democratica could control its population increase rates (r) 

through time, rather than clutch manipulation (sensu Aksnes & Giske 1990), as other pelagic 

tunicates like the appendicularian Oikopleura dioica would do (Subramaniam et al. 2014; but see 

Troedsson et al. 2002). 

Importance of females in salp dynamics 

In contrast to hypotheses centred on the role of the oozooid stages (Heron & Benham 

1985), our results suggest that T. democratica females unfold a clockwork sequence of processes 

that initiates the bloom (Fig. 1). Once conditions improve, the female liberates an oozooid when 

still physically close to its daughters and becomes a male. This situation would favour sex 

encounters in conditions of extreme population dilution. In this sense, we assume that (1) the 

embryo is nearly mature when released (i.e. carrying a primordial chain of daughter females) 

(Alldredge & Madin 1982, Miller & Cosson 1997); (2) testes develop when blastozooids are still 

nursing the embryo and become mature after giving birth (Madin & Purcell 1992); and (3) there 

is a partial overlap between the time in which oozooids start liberating chains, males release the 



sperm and females liberate the embryos (Miller & Cosson 1997). In an isolated group of closely 

related individuals, a sex ratio extremely skewed towards females (i.e. 1 male, many daughters) 

should maximize fitness (Hamilton 1967). If true, this mechanism would imply inbreeding 

during the early stages of a bloom, a process that could be detected using genetic markers. It 

should also increase fertilization success among males and daughters. These testable predictions 

may set the basis for future studies on salp dynamics. 

CONCLUSIONS 

We used an inverse method combining a stage-classified matrix population model, 

combined with empirical in situ observations, to understand how the vital rates of Thalia 

democratica vary with changing environmental conditions. Our results point to females, not the 

asexual oozooid as previously hypothesized, as the key stage to sustaining the population under 

the latency period. Productive oozooid survival accounted for high population growth under 

favourable conditions, while growth arrest in females lowered population growth under 

unfavourable conditions. In both scenarios, salps control population growth by time rather than 

by clutch manipulation. After a latency period, females tend to release the oozooids, which are 

already generating chains of females, and then become male. Therefore, we postulate that 

females may be the triggering mechanism to end the latency periods and initiate the salp bloom. 

This is the first study that has attempted to analyse how the processes inside the population vary 

in a changing environment. Understanding the latency period is essential, since it sustains the 

population under unfavourable environments, allowing the occurrence of new blooms. 
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FIGURES AND TABLES 

Fig. 1. Life cycle flows of the salp Thalia democratica under (a) high and (b) low temperature 

following the selected model. Life stages are indicated by F (females), M (males), J (juvenile 

oozooids) and PO (productive oozooids). PF, PM, PJ and PPO are probabilities of remaining in the 

corresponding stage, and GF and GJ are the probabilities of becoming male and productive 

oozooid, respectively. Dashed lines indicate reproductive flows (RJ, RPO and RF); light grey 

arrows show constant fluxes; thick and thin dark grey arrows indicate fluxes that increase and 

decrease in each scenario, respectively 

 

  



Fig. 2. Study locations in Spain: Cadaqués, located in front of the Cap de Creus area (42° 18.575' 

N, 3° 19.321' E) and Barcelona, on the central coast (41° 20.844' N, 2° 17.888' E) 

 

  



Fig. 3. Temporal evolution during 2013 and 2014 of environmental parameters and salp Thalia 

democratica populations in Cadaqués and Barcelona. Solid and dashed lines indicate 

temperature and total chlorophyll, respectively; vertical bars show T. democratica densities 

(open bars indicate densities <1 ind. 100 m
–3

). *: short time-series studies, where only the first 

measurement is represented; sf: surveys in which Salpa fusiformis were found. Discontinuities in 

total chlorophyll and temperature lines are due to missing values 

 

  



Fig. 4. (a) Female salp Thalia democratica matrix parameters under different temperatures 

resulting from the best model selected. PF: probability of remaining in the female stage, GF: 

probability of growing to the male stage, RF, probability of giving birth. (b) Population growth 

() and elasticity with respect to each matrix parameter under different temperatures. Matrix 

parameters (P, G, R) are explained in the Materials and Methods, and see Fig. 1 for definitions of 

abbreviations. Brown bars on the x-axis indicate temperatures from the samples used to fit the 

model 

 

  



Fig. 5. Observed densities of salp Thalia democratica at time t + 1 (black dashed line) and their 

1-time-step expected densities given the observed densities at previous time t corresponding to 

the selected model (blue triangles). Longest segments of each triangle define maximum and 

minimum confidence intervals for each 1-time-step expected densities. Columns indicate the 

different life stages (F: female, M: male, J: juvenile, PO: productive oozooid); rows correspond 

to each sampling day; dates are given as dd/mm/yyyy 

  



Table 1. Dependence of matrix elements (cf. Eq. 1) on temperature (T) and chlorophyll 

concentration (chl) by means of binomial or multinomial functions. f: fecundity or number of 

blastozooids of salp Thalia democratica produced by an oozooid; S0: is the survival of the 

newborn blastozooids until the start of the next time interval. .Note that , , , , , fmin and fmax 

are model parameters. Transition matrix elements are explained in Fig. 1 
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Table 2. Summary of the model selection results. Digits in the first 4 columns indicate whether 

transitions out of the female (F), male (M), juvenile (J) and productive oozooid (PO) stages of 

salp Thalia democratica have (1) or have not (0) been modelled with chlorophyll and/or 

temperature effects. The following 9 columns report the residuals of the cross-validation method 

(Cv), of the non-linear least squares optimization (Opt) and the total number of parameters to 

optimize (Ө) for models including temperature, chlorophyll and both. The selected model is 

highlighted in bold 
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Table 3. Matrix elements and their corresponding functions or fixed values resulting from the 

best model, i.e. the one with the lowest cross-validation error (Cv) in Table 2. f: fecundity term; 

S0: survival. See Fig. 1 for other definitions 

Matrix element Function or fixed value 

PF e
–2.809 + 0.193 × T

 / (1 + e
–2.803 + 0.193 × T

 + e
3.945 – 0.415 × T

) 

GF/RF e
3.945 – 0.415 × T

 / (1 + e
–2.803 + 0.193 × T

 + e
3.945 – 0.415 × T

) 

PM 0.739 

RJ 0.011 × f  

GJ 0.204 

PJ 0.615 

RPO 0.009 × f 

PPO 0.639 

f 14.001 + 222.26 / (1 + e
0.112 × T

) 

S0 1 / (1 + e
4.518

) = 0.011 

 

Table 4. Model stage-dependent survival of salp Thalia democratica calculated from our model 

P and G probabilities (see Fig. 1) and compared to survival derived from the model of Henschke 

et al. (2015) assuming their daily survivals were constant 

Stage 

Survival 

(this study) 

Survival 

(Henschke et al. 2015) 

Female (F) 0.51–0.81 0.84 

Male (M) 0.739 0.55 

Juvenile (J) 0.813 0.89 

Productive oozooid (PO) 0.639 0.55 

 

  



SUPPLEMENTARY MATERIAL 

Figure S1. Length frequencies of the 10 surveys (a, b, c, d, e, f, g, h, i, j) expressed as logarithm of the 

counts for blastozooids (left column) and oozooids (right column). Each row portraits a time series 

sample, half an hour apart from the previous one. Grey bars indicate young stages (females and juvenile 

oozooids) and black bars indicate mature stages (males and productive oozooids). Environmental 

conditions (temperature and chlorophyll a concentration), date and location are given for each survey. 

Note that surveys d and h were not used to fit the model since they have only five time transitions. 



 



 

















 


