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Abstract 

North Su is a double-peaked active andesite submarine volcano located in the eastern 

Manus Basin of the Bismarck Sea that reaches a depth of 1154 m. It hosts a vigorous 

and varied hydrothermal system with black and white smoker vents along with several 

areas of diffuse venting and deposits of native sulfur. Geologic mapping based on ROV 

observations from 2006 and 2011 combined with morphologic features identified from 

repeated bathymetric surveys in 2002 and 2011 document the emplacement of a 

volcanic cryptodome between 2006 and 2011. We use our observations and rock 

analyses to interpret an eruption scenario where highly viscous, crystal-rich andesitic 

magma erupted slowly into the water-saturated, gravel-dominated slope of North Su. An 

intense fragmentation process produced abundant blocky clasts of a heterogeneous 

magma (olivine crystals within a rhyolitic groundmass) that only rarely breached through 

the clastic cover onto the seafloor. Phreatic and phreatomagmatic explosions beneath 

the seafloor cause mixing of juvenile and pre-existing lithic clasts and produce a 

volcaniclastic deposit. This volcaniclastic deposit consists of blocky, non-altered clasts 

next, variably (1-100 %) altered clasts, hydrothermal precipitates and crystal fragments. 

The usually applied parameters to identify juvenile subaqueous lava fragments, i.e. 

fluidal shape or chilled margin, were not applicable to distinguish between pre-existing 

non-altered clasts and juvenile clasts. This deposit is updomed during further injection of 

magma and mechanical disruption. Gas-propelled turbulent clast-recycling causes clasts 

to develop variably rounded shapes. An abundance of blocky clasts and the lack of 

clasts typical for the contact of liquid lava with water is interpreted to be the result of a 

cooled, high-viscosity, crystal-rich magma that failed as a brittle solid upon stress. The 

high viscosity allows the lava to form blocky and short lobes. The pervasive 
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volcaniclastic cover on North Su is partly cemented by hydrothermal precipitates. These 

hydrothermally-cemented breccias, crusts and single pillars show that hydrothermal 

circulation through a thick layer of volcaniclastic deposits can temporarily increase slope 

stability through precipitation and cementation.  

 

1. Introduction 

More than 32,000 seamounts worldwide rise >750 meters above the regional seafloor 

that have been identified by satellite altimetry and ship-based bathymetry. Most of which 

are believed to be of volcanic origin (Wessel, 2001; Hillier and Watts, 2007). Despite the 

enormous number of seamounts, only a few have been studied in detail and little is 

known about their formation. Over the past decade, technological advances in seafloor 

imaging and in situ observations, in concert with a number of dedicated research 

cruises, have increased our knowledge of, and perspective on, submarine volcanism 

and the architecture of submarine volcanoes (e.g. Wright et al., 2003; Embley et al., 

2006; Carey and Sigurdsson, 2007; Chadwick Jr. et al., 2008; Allen and McPhie, 2009; 

Leat et al., 2010; Schipper et al., 2010; Clague et al., 2011; Deardorff et al., 2011; 

Resing et al., 2011). Seafloor exploration, particularly, by remotely operated vehicles 

(ROV) and repeated bathymetric surveys has allowed detailed documentation of the 

temporal changes in seafloor morphology and associated volcanic activity (e.g. Wright et 

al., 2003; Embley et al., 2006; Carey and Sigurdsson, 2007; Chadwick Jr. et al., 2008; 

Clague et al., 2011; Watts et al., 2012).  

 

In contrast to mid ocean ridges, volcanic activity in arc settings is clearly highly diverse 

in space, time and composition and featuring variable eruption styles from explosive to 
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effusive dome emplacement (e.g. Embley et al., 2006; Carey and Sigurdsson, 2007; 

Allen et al., 2010; Resing et al., 2011). As an example, volcanoes along the Tonga-

Kermadec-arc have been important in understanding the eruption products of arc-related 

submarine volcanism and the architecture of such volcanoes (de Ronde et al., 2006; 

Chadwick et al., 2008; Clague et al., 2011; Watts et al., 2012). In particular, Brothers 

volcano in the Kermadec arc has been studied in detail and provides an especially 

important example of the surface expressions formed by volcanic eruptions, along with 

processes associated with extensive hydrothermal activity and slope collapse (de Ronde 

et al., 2011).  

 

This paper presents a broad systematic analysis of seafloor structures of the active 

andesite North Su submarine volcano, the central edifice of the SuSu Knolls, based on 

two geologic mapping campaigns and sets the stage for future in-depth volcanology 

studies. The SuSu knolls formed in a back-arc-volcanic system in the eastern Manus 

Basin of the Bismarck Sea. The associated hydrothermal setting is the submarine 

equivalent of terrestrial high-sulfidation Cu-Au mineralization deposits (Binns et al., 

1997; Moss and Scott, 2001; Yeats et al., 2008). The North Su volcano hosts an active 

multi-component hydrothermal system which is a potential analog for the highly 

prospective volcanic hosted massive sulfide deposits (Hedenquist and Lowenstern, 

1994; de Ronde et al., 2003, 2011; Hannington et al., 2005). The host rock composition 

combined with the entrainment of volatile species from the magmatic system facilitates 

the enrichment of economically important metals such as copper, gold and zinc (e.g. 

Sangster, 1980; Herzig, 1999; Iizasa, 1999; Hannington et al., 2005, 2011; Mosier et al., 

2009). The bathymetry and geological observations of North Su volcano collected from 
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three cruises in 2002, 2006 and 2011, combined with a Geographical Information 

Systems (GIS) database of AUV-based micro-bathymetry as well as video recordings, 

rock analyses and temperature measurements are used to understand the recent 

volcanic and hydrothermal activity of North Su volcano. 

 

2. Regional Geology 

The Manus Basin is a rapidly opening back-arc basin in the southeastern Bismarck Sea 

that is associated with the northward subduction of the Solomon Sea plate at the New 

Britain Trench (Taylor, 1979; Taylor et al., 1994; Martinez and Taylor, 1996, 2003) (Fig. 

1). A band of active seismicity called the Bismarck Sea Seismic Lineation (BSSL) 

effectively divides the basin into the North and South Bismarck Plates (Tregoning et al., 

1998). The BSSL is defined by left-lateral transform faults and small spreading 

segments including the Manus Spreading Center (Fig. 1). Rapid clockwise rotation (~ 8° 

Ma-1) of the South Bismarck Plate (Tregoning et al., 1999) results in an asymmetric 

spreading of the North and South Bismarck Plate, which causes an eastward 

propagation of the BSSL.  

 

In the central Manus Basin, MORB-like lava at the Manus Spreading Center (MSC, 

Fig.1) indicates true seafloor spreading (Martinez and Taylor, 1996; Sinton et al., 2003). 

In contrast, remnant mid-Cenozoic island arc crust (Coleman and Packham, 1976; 

Falvey and Pritchard, 1982; Kroenke and Rodda, 1984) is rifted in the eastern part of the 

basin creating a series of sigmoidal neovolcanic ridges (the South East Ridges; SER) 

and solitary volcanoes with lava compositions ranging from basalt to rhyodacite (Binns 

and Scott, 1993; Sinton et al., 2003). The ~70 km long SER volcanic zone is situated at 
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the easternmost tip of the BSSL and, due to the asymmetric spreading, exhibit the 

highest spreading rates in the Manus Basin (up to 137.5 mm a-1; (Tregoning et al., 1998, 

1999; Tregoning, 2002)).  

 

Two left-lateral transform faults (the Djaul and Weitin transforms, Fig. 1 and 2) border 

the SER (Martinez and Taylor, 1996) and create an intra-transform configuration that 

produces a stepwise en-echelon alignment of volcanic ridges and seamounts. Several 

hydrothermal vent areas, including PACManus, Desmos and SuSu Knolls have been 

discovered at the SER (Binns and Scott, 1993; Auzende et al., 1996, 2000; Gamo et al., 

1997; Hashimoto et al., 1999; Tivey et al., 2006; Bach et al., 2011; Thal et al., 2014). 

The accumulation of polymetallic sulfides in these areas has been considered a modern 

analog of ancient Volcanic Massive Sulfide (VMS) deposits mined on land (e.g. Binns 

and Scott, 1993; Petersen et al., 2003; Yeats et al., 2014). 

 

The SuSu Knolls area comprises three volcanic edifices (South Su, North Su and 

Suzette, Fig. 3 and 4) situated on the NNW striking Tumai Ridge (Moss and Scott, 

2001). In 1993, the PACMANUS II cruise detected a strong water column plume 

anomaly over the SuSu Knolls area (Binns and Parr, 1993) and several subsequent 

cruises including the 1996 PACMANUS III, 1997 PACMANUS IV, and 2000 Binatang 

cruises went on to document the SuSu Knolls hydrothermal district using video sled and 

dredge surveys (Binns et al., 1997; Yeats et al., 2014). More recently, the area has been 

visited by several expeditions for commercial economic exploration (e.g. Crowhurst and 

Lowe, 2011) as well as by international research cruises that focused on the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

7 
 

hydrothermal fluid chemistry, mineral deposition, biology and geology (Auzende et al., 

2000; Tivey et al., 2006; Bach et al., 2011).  

 

Susu Knolls lies at the intersection of the Tumai Ridge with Bugave Ridge, a NE-

trending extensional rift structure that overshoots the Weitin transform (Fig. 3). Both 

ridges are comprised of lavas with compositions ranging from basaltic to dacitic (Binns 

and Scott, 1993; Moss, 2000). The SuSu Knolls hydrothermal area hosts three 

hydrothermal fields named equivalent to the volcanic structures: Suzette, North Su and 

South Su. Suzette is the northernmost edifice of SuSu Knolls that hosts an active 

hydrothermal field along with a deposit of sulfide mineralization that is now the subject of 

commercial interest by Nautilus Minerals Inc. (Solwara-1 prospect: Golder Associates 

Pty Ltd, 2012). North Su, the central edifice of SuSu Knolls, is a conical-shaped volcanic 

edifice rising from 1600 m to 1154 m water depth with slopes generally ranging from 25° 

to 30° (Fig. 4). The seafloor to the NE and SW of North Su appears to be a graben 

structure (Fig. 3). The North Su hydrothermal field hosts a range of hydrothermal vent 

sites ranging from high temperature black smoker chimneys at the summit to diffuse and 

distributed venting on the slopes including sulfur fields. South Su, 1 km south of North 

Su, is a more degraded conical constructional volcanic edifice that has an arcuate 

remnant of a summit region, possibly the result of sector collapse to the northeast. South 

Su summit reaches only 1320 m water depth and its hydrothermal field hosts a few high 

temperature hydrothermal vent sites, but mostly diffuse/shimmering hydrothermal 

activity along with inactive sulfides and sulfide debris from collapsed chimneys (Tivey et 

al., 2006). 
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3. Methods  

The initial surveys of North Su between 1997 and 2000 were restricted to low resolution 

photo sled surveys and dredges (Binns et al., 1997; Yeats et al., 2014). In 2006, the 

Woods Hole Oceanographic Institution (WHOI) commenced the Magellan-06 research 

expedition in collaboration with Nautilus Minerals. This provided more detailed 

information about the geologic setting and hydrothermal system of the SuSu Knolls 

region (Tivey et al., 2006). High-resolution bathymetry recorded by the autonomous 

underwater vehicle (AUV) ABE was supplemented by detailed rock and fluid sampling 

by the remotely-operated vehicle (ROV) Jason-2. The high-resolution ABE bathymetry 

from Magellan-06 combined with video recordings from three ROV Jason-2 dives (#221, 

223, 227) allow us to document the first detailed, georeferenced mapping of the volcanic 

and hydrothermal structures at North Su.  

 

In 2011, a follow-up cruise (RV Sonne cruise SO216; Bach et al., 2011) focused on 

detailed sampling of hydrothermal fluids and biota at SuSu Knolls. An additional twelve 

ROV dives, using the ROV MARUM Quest4000, were completed over the North Su 

summit area, allowing us to confirm the meter-scale reliability of the AUV ABE maps 

generated during the Magellan-06 expedition. The dense data coverage generated by 

the 12 ROV dives over an area of ~140,000 m² expanded the mapping from 2006 and 

allowed us to create a comprehensive dataset of the spatial distribution of volcanic and 

hydrothermal structures at North Su.  

Because high resolution AUV bathymetry was not conducted in 2011, a detailed, area-

wide comparison of changes in seafloor morphology was not straightforward. Only areas 

covered by ROV observation can be compared against the seafloor topography five 
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years earlier. As shown in the map of 2011 data (Fig. 5b), the areal extent of some 

lithologies are better constrained and some new structures were mapped. Slight 

differences between the contours of mapped lithologies (Fig. 5a, b) are also caused by 

small uncertainties in ROV navigation. Overall, however, ROV MARUM Quest4000 

depth values were found to be consistent with 2006 ROV Jason-2 data as well as with 

the AUV ABE bathymetry from 2006.  

Additionally, ship-based swath bathymetry from the SO-166 cruise (Herzig et al., 2002) 

was used to track morphologic changes on a regional scale. Examples of seafloor 

structures mapped in this study are shown in Figures 6 and 7. Sample SO-216-51-ROV-

10 (Fig. 6 j) from the South Peak cryptodome summit was taken with an ROV-mounted 

shovel that could be closed after sampling. The lithologic terms used in this study are 

mainly descriptive and we have tried to avoid terms with genetic connotations. The 

lithologic terms used in this study are aligned to the terminology of volcaniclastic 

deposits by McPhie et al. (1993). We describe deposits consisting of any fragmental 

volcanic material of any origin up to pebble size (4 mm) as volcaniclastic deposits or 

debris only, with size, shape and particle description where possible. Bigger clasts are 

either named according to the chosen terminology or described with a metric size. We 

mapped all intrusive or extrusive volcanic outcrops as coherent volcanic rocks (e.g. Fig. 

5 and 6).  

 

4. Results 

During the 2011 cruise (SO-216) it was clear, both from ship-based multibeam surveys 

and near bottom observations, that an eruption had taken place at North Su, which had 

significantly changed the morphology, i.e. partial updoming, of the North Su volcano. 
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Below we first discuss the detailed observations of the northern part of North Su that 

remained unchanged between 2006 and 2011 and then the subsequent observations of 

the southern part of North Su that changed dramatically. 

 

4.1 Unchanged volcanic morphology and hydrothermal activity in 2006 and 2011 

North Su volcano rises about 450 m above the surrounding seafloor reaching a summit 

at 1154 m and exhibits a conical edifice in the ship-based bathymetry (Fig. 3). The mean 

slope calculated from ship-based bathymetry is between 25° and 30° (Fig. 4 b). This 

shape is consistent with the AUV bathymetry data below 1350 m, but at shallower water 

depths the edifice is more complex with slopes exceeding 30° in many places, including 

vertical cliffs near the summit. Geologic mapping of North Su is generally limited to the 

uppermost ~140 m of the volcano where hydrothermal vents are present. 

 

The 2006 AUV bathymetry (Fig. 4 and 5a) reveal that the summit of North Su is double-

peaked with the main summit North Peak, reaching 1154 mbsl, and a South Peak to the 

south, reaching 1225 mbsl and resembling a crater in 2006. The area of South Peak has 

changed between 2006 and 2011 and is therefore described in the next chapter. North 

Peak has a crescent-shaped crest, which opens southward and hosts active black 

smoker vent sites (#1 and #2, Fig. 5a) only along the N-S trending western site of the 

crest. At vent site #1, the active chimneys reached 314°C in 2011 and are located on top 

of a broad convex shield of sulfide-cemented flange-like material that has warm fluid 

(Tmax. 68°C, 2006) leaking out from under it. Site #2 is a cluster of chimneys (up to 11 

m high with Tmax. 302°C in 2006) with beehives and multiple orifices. A few inactive 

chimneys were mapped between sites #1 and #2. Shimmering water emanating from the 
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seafloor along the crest indicated diffuse venting. . Besides the sulfide chimneys, the 

seafloor of North Peak is covered by a unconsolidated fine volcaniclastic deposit and 

scattered >10 cm volcanic clasts. The fine volcaniclastic deposit is a mixture of highly to 

non-altered volcanic rocks and fractured crystals with a dominant grain size of –<4 mm. 

In places the volcaniclastic deposit is cemented by hydrothermal barite-sphalerite 

cement that forms slabs. Pyrite and other hydrothermal precipitates occur as well (Yeats 

et al., 2014). No quenched (i.e. fresh) glass shards or pumice fragments were found. 

Vent site #3 is located just below the crest on the western slope at 1220 m water depth 

in very steep terrain consisting of volcaniclastic material that forms near-vertical cliffs 

and pillars. Black-smoker fluids discharge through these steep walls with temperatures 

up to 325°C, and show visual evidence (pulse-like fluid discharge and flashing at the 

vent orifices) of phase separation.  

 

Outcrops of coherent volcanic rocks on North Peak are limited to the northern and 

northeastern slope (Fig. 5). Northeast of the summit, a vertical volcanic spine (Fig. 6, d) 

protrudes out of the ridgeline that is covered by volcaniclastic deposits. On the ridge-line 

downslope towards vent site #4 outcrops expose strongly fissured, stubby and blocky 

plagioclase-olivine phyric andesitic lava (e.g. Fig. 6 a, b) surrounded by sharp-edged, 

blocky gravel. Vent site #4 (Tmax: 32°C) is diffuse with macro fauna and clear fluids 

seeping through the gravel and discharge through fissures in the lava.  

 

The slope between vent site #4 and site #5 is mainly covered by gravel and fine 

volcaniclastic deposits. At vent site #5, grey colored fluids with temperatures <240°C 

vent through a hydrothermally cemented ledge of altered volcanic clasts. Upslope and 
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south from vent site #5, a cliff face cut by erosional gullies shows that the slope here 

consists of volcaniclastic deposits, similar to the cliffs at vent site #3, but with native 

sulfur flanges protruding from in between the clasts. Vertical edifices, up to 16m high, 

constructed of clastic material often show signs of hydrothermal activity in the form of 

white staining, void-fills of native sulfur, and/or bacterial mats. These structures exist 

around North Peak except for the northeastern part, where coherent volcanic rocks 

outcrop (Fig. 5a; 7h, i).  

The eastern slope is dominated by steep but continuous ridges made up of angular, 

volcanic gravel (several cm to dm diameter) covered by fine volcaniclastic deposits and 

a few, small vertical outcrops. Turtle shell cracks on these outcrops and jigsaw-fit clasts 

on the ridges indicate cooling fractures.  

 

 

The western slopes of South Crater were generally covered with fine volcaniclastic 

deposits and littered with clasts up to several 10’s of cm in diameter. The south and east 

slopes of South Crater were not investigated in 2006.  

 

4.2 Changes in volcanic morphology and hydrothermal activity between 2006 and 

2011 

The repeat 2011 survey of North Peak over its northern, western and eastern slopes 

showed the same lithology and morphology as mapped in 2006. However, the area of 

South Peak changed dramatically between 2006 and 2011 that also affected the 

southern slope of North Peak. 
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The southern edge of the North Peak summit is defined by a 14-m high cliff, south of 

vent site #2 (Fig. 5), made up of cemented volcaniclastic deposits (Fig. 7 f) that 

remained the same in 2006 and 2011, although the abundance of hydrothermal staining 

and putative microbial mats had increased in 2011. In both years no black smoker vents 

were observed south of that cliff. In 2006, from the base of this cliff, a moderate slope 

(25°), covered with fine volcaniclastic debris and fewer gravel, extends downslope 

southwards into the South Peak crater (Fig. 5a). The slope was bordered to the east and 

west by cliffs, pillars or ridges, all made up of cemented volcaniclastic debris. On the 

ridge bordering the moderate slope to the east, white smoker vents were mapped in 

2006, but not sampled. In 2011, the hydrothermal activity along this ridge had ceased 

and the ridge itself resembled an en-echelon alignment of pillars (Fig. 7 h) rather than a 

continuous ridge, as observed in 2006. In 2011 further inspections of these pillars 

confirmed a robust buildup of volcaniclastic debris and the absence of coherent volcanic 

rocks. The clasts are 1 mm to several cm’s in diameter and dominantly blocky. Flanges 

of solidified native sulfur appear to have oozed between the clasts, similar to what was 

observed on the north slope of North Peak. 

In 2011, the moderate slope between North and South Peak hosts white smoker vent 

sites #7 and #8. Vent site #7 was a small site with a maximum venting temperature of 

71°C in 2006 and not further inspected. In 2011, this site has grown and was named 

Sulfur Candle (#7, Fig. 7 a; Fig. 5 b) because of copious amounts of sulfur that had 

formed small chimneys or had accumulated in meter-sized knolls. The release of 

bubbles of liquid CO2 was common and CO2-clathrate formation could be confirmed 

visually by an improvised bubble-catching device. 
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White smoker vent site #8 (Fig. 5b) extends towards the west and marks the boundary 

of North and South Peak. Very poor visibility inside the white smoker vent site limited the 

video mapping abilities, but zones of extensive altered rocks could be identified. This 

extensive white smoker vent site did not exist in 2006, although scattered white smoker 

activity was observed in this area (vent site #6) in 2006. Vent site #6 was a cluster of 

white smoker vents in 2006 where fluids discharged through the gravel-covered slope 

(Fig. 5a). The sampled fluids were exceptionally acidic, ranging from pH-values as low 

as 0.87 (Seewald et al., 2015). Fluid temperatures of up to 284°C were measured, but 

the most acidic fluid was 220°C. The temperature-probe, after sticking it into the gravel 

next to the vent site, was covered with native sulfur, indicating that the gravel-covered 

slope around the vents is saturated with liquid sulfur. In 2006, close to vent site #6, a 

massive NNE-trending volcanic outcrop featured remarkable flanges of native sulfur that 

appeared to have oozed out of the massive rock. In 2011 the area of vent site #6 was 

covered by >50 m of volcanic material. 

 

During the two weeks of survey work in 2011 white smoker hydrothermal activity was 

highly variable and shifting between vent site #8 and Sulfur Candle changing between 

being practically inactive at #8 with vigorously venting boiling sulfur at Sulfur Candle  

and vice versa 12 days later (Fig. 9). These fluctuations in activity are not expressed 

across the entire North Su hydrothermal area. Rather, they appear to reflect shifts in the 

locations of vigorous discharge.  

At the southern edge of Sulfur Candle, remnants of the South Peak crater rim still exists 

with the same morphology as observed in 2006 (Fig. 5 b). The South Peak crater in 

2006 had a diameter of ~80 m with a max. depth of 13 m and a rim that terminates into 
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the southern moderate slope of North Peak. The crater rim was visited only once in 

2006, when loose, fine volcaniclastic debris with thin, broken hydrothermal crusts and 

widespread occurrence of white bacterial mats were observed. In 2011, the rim is still 

covered by fine volcaniclastic deposits, but in some areas the rim is broken and the 

interior shows abundant blocky volcanic clasts up to several cm in size within native 

sulfur deposits (Fig. 6 f). However, no bacterial mats existed anymore along the 

remnants of the 2006 crater rim in 2011. Following the remnant crater rim to the south, 

increasing numbers of native sulfur flows appear on the outside rim and protrude out 

from the slope (Fig. 7 g). In some parts, the sulfur flow structures are still preserved. The 

eastern and southern slopes below the sulfur flows are littered with broken sulfur slab 

scree as well as gravel of fresh and altered volcanic rocks lying on top of a bed of fine 

volcaniclastic deposits (in 2011).  

Between 2006 and 2011 a major change in volcanic morphology occurred in the area of 

the 2006 South Peak crater. In 2011, a new volcanic crypto dome, hereinafter referred to 

as South Peak cryptodome (Fig. 6 c, e, g, h, i, j, and 7 c), with its crest ~50 m west of 

the 2006 South Peak crater center, covers most of the crater and its western slope with 

the white smoker vent site #6, which is buried under > 50 m of volcanic material (Fig. 5 

b).  

The slopes of recently erupted South Peak cryptodome expose predominantly 

unconsolidated, variably blocky clasts up to > 10 cm in diameter (Fig. 6 e; 7 c), similar to 

the clasts sizes at North Peak. The upper 20 m of the new cryptodome are dominated by 

volcanic sand- and granules (Fig. 6 g, h, i) with minor pebbles and cobbles. Only 

occasionally are clasts up to several tens of centimeters in diameter. On the west and 

southwest slopes, below the uppermost 20 m of South Peak cryptodome fresh volcanic 
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rocks occasionally crop out of the mainly gravel-covered slope. These outcrops are 

blocky, stubby, fissured and similar to outcrops on the northeastern slope of North Peak. 

One volcanic outcrop revealed columnar joints (Fig. 6 c). Another was a lava lobe with a 

rounded surface (Fig. 6 e). White staining occurs mainly on the southwestern slope, 

whereas the western slope is almost entirely covered by an unidentified orange coating, 

likely a Fe-oxyhydroxide. Two zones of diffuse fluid discharge, elongated in shape and 

oriented radially with the center of South Peak, were observed - the larger one is shown 

on the map in Figure 5 b (Fig. 7 c). The hydrothermal fluids deposit native sulfur and 

other unidentified phases as a matrix between the loose rocks.  

 

The South Peak cryptodome crest can be divided into two zones based on the 

morphology: a plateau (Fig. 6 g) and a crater group. A smooth plateau, which is a littered 

with clasts dominantly <1 cm in diameter (Fig. 6 j), begins north of the crater group and 

ends at the vent site #8. On the plateau, the seafloor shows surficial white staining with 

ripple textures created by bottom currents and occasional native sulfur crusts. Area-wide 

diffuse shimmering water seepage was also identified. The crater group is located at the 

southern end of South Peak crest (Fig. 5 a, red dotted circle). This group features 

several small (max. 10 m diameter) and shallow (<3 m) craters (Fig. 6 i). The seafloor 

around the craters is littered with unsorted clasts of variable sizes. The dominant clast 

size is <10 cm, but outsized blocks in the range of 10’s of cm were also observed. 

Diffuse venting of clear fluids was noticeable, with native sulfur crusts at some crater 

rims. No fluidal clasts or pyroclastic deposits were observed.  
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In the southwestern corner of the overall edifice (Figure 5a) is a NE-striking knife-like 

ridge that was visited in 2011. An ROV Quest dive observed outcrops of coherent 

volcanic rock on the ridge. The ROV-based bathymetry was identical to the AUV 

bathymetry from 2006, suggesting that the emplacement of the lava forming this ridge 

took place before 2006 and that it was not affected by the cryptodome emplacement at 

South Peak. The area north of the ridge, however, was filled with material from the 

2006-2011 South Peak cryptodome eruption. 

 

4.3 Estimating the size of the South Peak eruption 

We compared ship-based bathymetry datasets from two RV Sonne cruises in 2002 

(SO166) and 2011 (SO216) to track the volcanic evolution of North Su and to support 

our ROV observations. By using the same sonar system on the same ship (and leaving 

out the 2006 Revelle survey due to low data coverage) we seek to minimize any 

possible differences in the imaging sonar systems and resolution that could result in 

artifacts. We note here that the 2002 RV Sonne bathymetry correlates well with the 

observed bathymetry in 2006. We used the depth differences between the two RV 

Sonne datasets to measure the volume of erupted material (Figure 10). If we use +/-10 

m cut-off (Fig. 10 a), the total area of positive changes is 7.2 x 105 m2 with a total 

volume of 12.6 x 106 m3. However, this cut-off yields small negative changes on the 

northern slope of 6 x 103 m2 with a volume of -7.2 x 104 m3. We interpret these areas of 

volume loss to result from precision system uncertainties that likely includes: the grid 

interpolation process, the accuracy of navigation, and roll and pitch corrections. These 

uncertainties and the patchy distribution of values with a +/-10 m cut-off suggest that 

only changes > +/-20 m represent robust results.  
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Using this conservative +/-20 m cut-off results in a calculated volume of 5.8 x 106 m3 that 

covers an area of 2.1 x 105 m2 and no negative values. The maximum depth change due 

to the eruption is +63 m (Fig. 10). Our analyses suggest that the total erupted volume of 

South Peak is approximately 6 x 106 m3. For comparison, following the Plinian eruption 

of Mt. St. Helens in 1980, an episode of dome-growth between 1980 - 1986 produced 74 

x 106 m3 of lava (Swanson and Holcomb, 1990) and the 2004 – 2008 dome-volume 

totaled 93 x 106 m3 (Major et al., 2009).The total volume of North Su volcano is 265 x 

106 m3, assuming the geometry of an ideal cone with a radius of 750 m at its base and a 

height of 450 m. It would require on the order of 44 South Peak eruptions to build up 

North Su volcano. 

 

4.4 Rock samples 

4.4.1 Unaltered Lava 

Whole rock analyses by XRF (appendix, Table A1; sample positions in Fig. 5) from 

North Su samples from 2006 reveal that unaltered rocks plot inside the andesite field 

inside the TAS diagram (Appendix Fig. 1; TAS = Total Alkali vs. Silica, Le Bas et al., 

1986) with SiO2 contents in the range from 60 to 62.5 wt.% SiO2. The SiO2 content of 

glass varies between 68 – 73 wt.% SiO2for samples from 2006 (e.g. Beier et al., 2015). 

The texture is porphyritic with moderate vesicularity and phenocrysts of clinopyroxene, 

orthopyroxene, Ca-rich plagioclase, olivine and Fe-Ti oxides in a dacitic to rhyolitic 

matrix. Electron microprobe analyses of unaltered rock samples from the new South 

Peak cryptodome eruption (2006 - 2011) and from previous eruptions (pre 2006) 

showed the same crystal content, composition and rock texture. Glass measurements 
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were difficult to establish due to the vast abundance of plagioclase microliths within all 

samples (Fig. 8 i).  

 

4.4.2 Volcaniclastic deposit 

Sample SO-216-51-ROV-10 (Fig. 6 j) originates from the recently erupted South Peak 

cryptodome summit and contains a wide range of different clasts that have a relatively 

angular to rounded shape (Fig. 8 e). The clasts range from non-altered glassy fragments 

and non-altered crystals to completely altered clasts with advanced argillic alteration and 

including minor hydrothermal precipitates (gypsum, pyrite, sulfur). The rare glassy clasts 

host abundant plagioclase microliths (Fig. 8 i). Free crystal fragments comprise clino- 

and orthopyroxene, plagioclase, olivine, and Fe-Ti oxides. Incorporated accessory lithic 

clasts (highly altered volcanic rocks of the same volcano) inside non-altered volcanic 

clasts are rare. Sieving and weighting revealed that 87 wt. % of sample SO-216-51-

ROV-10 are clasts being <4mm.  

We refrain from applying statistical methods on the volcaniclastic deposit and transfer 

the findings onto the entire eruption as we have only one sample from the new 

cryptodome. Therefore we concentrate on qualitative information only.  

It was impossible to distinguish juvenile from non-altered accessory lithic clasts of 

previous eruptions, similar to what Pardo et al. (2014) discussed. Non-altered volcanic 

clasts are porphyritic and blocky and showed the same shape under microscope as 

manually broken pieces of the same volcanic rock. Furthermore, we couldn’t find any 

bubble wall fragments, pumices or fluidal shaped clasts that would indicate that liquid 

magma was explosively ejected into the ocean. Therefore, we distinguish between non-

altered and altered clasts only.  Samples of volcaniclastic deposits from the older North 
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Peak summit share the same characteristic (crystal fragments, dominant grain size 

<4mm, variably altered volcanic clasts) with the deposit from the new South Peak 

cryptodome but are dominated by hydrothermal precipitates and completely altered 

clasts. We conclude that such volcaniclastic deposit is typical for volcanic eruptions at 

North Su and that the different proportions of altered and non-altered volcanic clasts are 

linked to the prolonged exposure to hydrothermal fluids for deposits on the older North 

Peak compared to the relatively fresh deposit on the South Peak cryptodome. 

 

4.4.3 Hydrothermal breccias 

The summits of North and South Peak consist mainly of loose volcanic pebbles and 

sand. The recently formed South Peak cryptodome does not have any steep scarps to 

reveal the internal structure of the deposits so we can only interpret South Peak’s 

geology based on its surface structures. In contrast, the older North Peak exposes its 

interior in cliff faces and pillars where poorly sorted clastic units of clasts with a thickness 

up to 16 m are exposed. These exposures indicate that the volcaniclastic deposit at the 

summit region of North Su can be several meters thick and partly consolidated to form 

breccias. Breccias were sampled directly from cliff faces (Fig. 12 a) and picked up from 

scree at the cliff base. These breccias are poorly sorted, dominantly matrix supported, 

and show a range of angular to sub-rounded clasts that are moderately to highly altered. 

The clasts range from cobble to sand size and represent a mixture of fractured bulk rock 

and phenocryst fragments. Electron Microprobe and X-ray diffraction analyses reveal 

that the clasts are partly altered to cristobalite and pyrophyllite, with variable alunite. 

Hydrothermal precipitates comprise alunite and jarosite, as well as cristobalite, pyrite, 

sulfur, and anhydrite that fills void space in between clasts and form vein networks within 
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the breccias. Raster electron microscopy and element mapping shows compositional 

variations between the clasts and matrix (Figure 12 c-e). The element map of Si (Fig. 12 

d) clearly defines the volcanic clasts whereas the element map of S (Fig. 12 e) highlights 

the hydrothermal cement in the void space between clasts. 

In general, we distinguish three different morphologies formed by hydrothermal activity 

that appears to have increased slope stability at North Su: 1) fine volcaniclastic deposits 

cemented by various hydrothermal precipitates (Fig. 7 e and f); 2) excavated round 

pillars with a larger variety of clasts and clast-sizes (Fig. 7 h); 3) hydrothermal crusts that 

cover clastic material (Fig. 7 c and d). The first type of morphology is exhibited by 

vertical cliffs of fine volcaniclastic deposits on North Peak. Breccia samples have been 

taken out of these cliff faces. Petrographic inspection of several breccia samples in thin 

section and raster electron microscopy, and electron microprobe analyses indicates that 

volcanic clasts are commonly cemented by hydrothermal precipitates (Fig. 12). The 

bonding between the clasts can be accomplished by coalescence of these coatings, 

interstitial growth of individual crystals large enough to connect clasts, or complete infill 

of void space by polycrystalline cements, which often includes pyrite (Yeats et al., 2014). 

The occurrence of native sulfur in some of these breccias suggests that liquid sulfur 

impregnated the unconsolidated rubble and led to cementation upon cooling and 

solidification. Thin sections of breccia samples show that the clasts and crystal 

fragments reflect a similar clast composition as observed in sample SO-216-51-ROV-10, 

which originates from the summit of South Peak. Clasts of such cemented breccia 

samples are variably altered, but alteration of the breccia is never pervasive. Moreover, 

clay minerals are minor phases and never form interconnected networks in the rock, 

which would lower its shear strength. Cristobalite is perhaps the most abundant 
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secondary mineral, partially replacing clasts and filling cracks and void space. In 

summary, the non-pervasive nature of alteration, the scarcity of clay minerals, the 

abundance of cristobalite and the varied styles of cementation all contribute to increase 

the shear strength relative to the unconsolidated precursor material of the cemented 

breccias.  

 

The second morphology formed by hydrothermal cementation is presented by a 

sphalerite-barite crust (Fig. 7 d). This crust occurs on North Peak northwest slope at 

vent site #5 (Fig. 5). We hypothesize that this is a result of a prolonged discharge of 

hydrothermal fluid into the gravel covered slope and precipitation of hydrothermal 

phases. On South Peak, the formation of such crust was observed (Fig. 7 c) where 

hydrothermal precipitates start to bury volcanic gravel.  

 

The third morphology indicating that hydrothermal activity has increased slope stability is 

observed on the ridgeline next to Sulfur Candle. There, rounded pillars up to several 

meters high and >1 m in diameter (Fig. 7 h) consist of blocky volcanic clasts within a fine 

matrix. Native sulfur was pervasive and solidified tongues of sulfur were present on the 

vertical pillar surfaces with thicker sulfur deposits on the top. Similar looking structures 

have been observed at Brothers Volcano (de Ronde et al., 2011).  

 

5. Discussion 

The first discovery of North Su by video sled surveys and dredges in 1996 (Binns et al., 

1997; Yeats et al., 2014), led to the interpretation of a dacite dome with a volcanic spine 

at its summit and associated black smoker chimneys. The entire volcanic edifice was 
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interpreted to be covered by a thick ―tuffite apron‖ (Binns et al., 1997). We verify the 

existence of a volcanic spine, black smoker chimneys and the volcaniclastic deposit at 

North Peak. ―Tuffite‖ is a genetic term that includes pyroclasts and submarine pyroclast 

formation is still a topic of some debate (e.g. White et al., 2003). Hence we describe this 

lithology simply as volcaniclastic deposit.  

 

Presence of mafic phenocrysts (olivine) in North Su rock samples was also found by 

Yeats et al. (2014) and distinguishes these rocks from the nearby Suzette and South Su 

rocks. Yeats et al. (2014) classify the South and North Su samples as porphyritic dacites 

due to the amount of siliceous groundmass. Our whole rock analyses of unaltered 

volcanic rocks from the crest of North Su range from 60 to 62.5 wt. % SiO2 whereas 

samples from Yeats et al. (2014) of fresh volcanic rocks from the crest of North Su range 

from 62.5 to 62.8 wt. % SiO2. The North Su rocks are porphyritic andesites.  

 

5.1 Deep submarine eruption of porphyritic andesitic lava  

Emplacement of viscous lava in a submarine environment is typically envisioned as the 

extrusion of a thick lobe or dome that is fragmented through quenching, cooling-

contraction granulation upon contact with seawater and autobrecciation. This results in a 

massive or banded columnar jointed core that is covered by a monomictic carapace of 

breccia from quench fracturing (hyaloclastites) and mechanical disintegration during 

outflow (autobreccia) (e.g. Pichler, 1965; Yamagishi and Dimroth, 1985; McPhie et al., 

1993; Goto and McPhie, 1998; Scutter et al., 1998; Doyle and McPhie, 2000; De Rita et 

al., 2001; Nemeth et al., 2008). For example, PACManus Hydrothermal Area, 50 km 
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West of North Su, hosts several dacite domes showing these characteristics (Thal et al., 

2014). 

On North Su, we observed several eruption products and volcanic morphologies 

including different types of lavas such as short and thick flows, columnar joints, 

autobrecciated blocky flows and spines (Fig. 6 a - e). These lava morphologies indicate 

flow behavior consistent with high-viscosity lava. Craters, indicative of explosivity, are 

also present, as well as the presence of abundant volcaniclastic deposits, which 

suggests that North Su does not fit easily into common models of submarine volcanic 

lava dome/cryptodome eruptions  

 

On South Peak, no hyaloclastites or monomictic autobreccia deposits have been 

identified. To understand the eruption products of North Su, it is essential to consider 

eruption mechanisms that are related to porphyritic andesites. 

 

A subaerial analog of a porphyritic andesite dome emplacement is the 1995 - 1999 

eruption at Soufrière Hills Volcano, Montserrat (e.g. Robertson et al., 1998; Voight, 

1999; Sparks et al., 2000; Clarke et al., 2002; Druitt and Kokelaar, 2002). This episode 

of volcanic activity exhibited dome growth and collapse accompanied by short-lived 

episodic sub-Plinian and Vulcanian explosions (Druitt et al., 2002; Sparks and Young, 

2002), which are common on andesitic volcanoes (Morrissey and Mastin, 2000). The 

crystal-rich, andesitic magma contained 35-45 vol.% phenocrysts and dome growth was 

characterized by the extrusion of a hot crystalline solid that was unable to flow. Further 

injection of magma into the dome pushed out lava lobes and spines. Rheological 

stiffening of the lava also caused syn-eruptive cyclic plugging of the conduit, producing a 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

25 
 

pressure cap and leading to an over pressurized conduit that led to gas emissions, ash-

venting, dome collapse and explosions (Druitt et al., 2002). A dome collapse revealed 

that the interior of the dome was heavily fractured with single fractures up to 50 m long. 

Sparks (2000) suggests this brittle behavior indicates that the crystal-rich lava erupted in 

a solid state.  

 

The observations from Soufrière Hills Volcano are only partly transferrable to North Su 

as the eruption style and previous degassing of the magma is strongly dependent on 

atmospheric pressures and air as the coolant. However, the lava morphologies and 

abundant clastic material produced during the eruption as well as the general physical 

properties of highly crystalline andesitic magma and its behavior observed at Soufrière 

Hills Volcano are useful analogs to North Su.  

 

5.1.1 Lava fragmentation, explosions and formation of the clastic facies at North 

Su 

The volcaniclastic deposit on the new South Peak cryptodome summit is composed of 

fresh and variably altered volcanic clasts, crystal fragments and only minor glassy clasts 

and minor hydrothermal precipitates. These glassy clasts (Fig. 8 c) are not 

distinguishable through microscopy from clasts of the same volcanic rock that we 

produced through mechanical disintegration. We therefore interpret these glassy clasts 

to be pieces of spattered bulk rock produced after solidification of lava rather than 

disrupted liquid lava. This can be explained by the ability of crystal-rich magma to fail as 

a brittle solid, similar to observation made on Soufrière Hills Volcano (e.g. Sparks et al., 

2000; Melnik and Sparks, 2002). Additionally, Yamagishi & Dimroth (1985) assume that 
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a silica-rich magma with porphyritic texture would create blocky, stubby flows or domes 

that grade into breccia composed predominantly of blocky material. The fact that non-

altered clasts are blocky and no fluidal clasts are observed within volcaniclastic deposits 

on the new South Peak cryptodome, but also in no other sample from North Peak, 

implies magma fragmentation in the brittle regime is common on North Su volcano. The 

high crystal content can be explained by a strongly degassing magma while uprising or 

by magma ponding prior to the eruption. Beier et al. (2015) deduce from their 

investigations that magma genesis in the SER happens through closed system 

fractionation in several small magma lenses coupled with low rates of basaltic recharge. 

This could explain the occurrence of olivines inside the more evolved North Su lavas 

and the high crystal content. Observed strong magmatic degassing in the aftermath of 

the South Peak cryptodome eruption indicated a former gas-rich magma. Degassing 

would cause a lowering of the liquidus and cause further crystallization and thus also 

favor a brittle failure of the lava up on mechanical stress.  

 

Theories of clast formation and explosivity due to water-magma interaction include 

several thermo-hydraulic fracturing mechanisms that account for different clast sizes and 

shapes (e.g. Sheridan and Wohletz, 1983; Wohletz, 1983; Kokelaar, 1986; Zimanowski 

et al., 1991; White, 1996; Skilling et al., 2002; Head and Wilson, 2003; Thiéry and 

Mercury, 2009). For lava that fails by brittle behavior, blocky clasts are mainly produced 

through quenching (cooling-contraction granulation), mechanical stress (autobrecciation) 

and hydromagmatic explosions (bulk interaction steam explosivity) (Kokelaar, 1986; 

Skilling et al., 2002; Head and Wilson, 2003).  
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This accounts for the abundance of blocky clasts and the thick volcaniclastic deposit on 

the new South Peak cryptodome but does not explain the crater group. 

 

The crater group comprises multiple, small, shallow and intersecting craters within the 

volcaniclastic deposit at the new South Peak cryptodome summit. Bigger (>10cm) 

blocks are limited to the closer area of the craters. A morphological analog from land for 

multiple, shallow and intersecting craters is described by Thorarinsson (1953) for the 

crater group on Iceland where lava emplacement onto a wet substrate caused rootless 

explosions that created abundant small craters. We dismiss this scenario as lava at 

North Su is not capable of forming widespread lava flows that could cover a reasonable 

area of wet sediment. 

 

A perhaps more similar analog are hydrothermal eruptions (Browne and Lawless, 2001) 

that eject blocky to rounded lithic clasts from predominantly shallow and small craters. 

Browne and Lawless (2001) consider the injection of magma into a deep hydrothermal 

aquifer to cause a phreatomagmatic explosions without juvenile material reaching the 

surface besides a hydrothermal explosion caused by expansion of a low-density, phase-

separated, hydrothermal fluid or steam (Browne and Lawless, 2001). In the latter case, a 

crack taps into a subsurface reservoir of such a fluid and the related sudden pressure 

drop causes catastrophic volume expansion and leading to an explosion. This 

mechanism is unlikely to cause large explosions in the deep sea because the ambient 

seafloor pressure (i.e., 115 bar at North Su) would prevent much of the gas expansion.  
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Phreatomagmatic vent-derived explosions are also unlikely to occur at North Su given 

the water depth of >1000m (Kokelaar, 1986; Head and Wilson, 2003). Therefore, it is 

most likely that bulk-interaction steam explosivity is the only type of hydrovolcanic 

explosion that occurs at North Su. We hypothesize that, intense fracturing, 

hydrovolcanic explosions and magmatic degassing cause gas-jets that form the crater 

group on South Peak. 

 

We propose that South Peak and its observed morphology was formed by the following 

sequence of eruption mechanisms (illustrated in Figure 13), which form the primary 

eruptive style at North Su: 

 

i) Highly viscous, crystal-rich intermediate magma intrudes slowly into the water-

saturated slope of North Su and its hydrothermal system. The slope consists of coherent 

lava and abundant clastic material, which is variably altered. Additional altered and lithic 

material might be contributed by upward transportation of vent wall-rocks with the rising 

magma. The cryptodome fails with brittle behavior upon contact with cold seawater due 

to the induced dynamic stress and autobrecciation, cooling-contraction granulation and 

bulk-interaction steam explosivity. Each new crack in the cryptodome enlarges the 

contact surface to cold seawater what causes further cracking and thus creates a self-

amplifying fragmentation process. Additional rising magma occasionally pushes a 

fraction of magma through the pile of syn-eruptive and pre-existing clasts onto the 

seafloor in the form of lobes (Figure 13). These lobes, depending on their rheology 

during emplacement, either form short and rugged flows or disintegrate upon contact 

with sea water and remain as ragged outcrops without surficial signs of lava flow. 
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ii) In the course of the eruption, high pressures, caused by the degassing magma, can 

develop within the dome or inside the conduit that is plugged by the dome itself and 

cause gas-jets or relatively small explosions. We exclude a serious vent plugging and 

subsequent serious explosion in this cryptodome eruption due the absence of a major 

crater. The magmatic gas driven explosions as well as the bulk-interaction steam 

explosivity fracture the lava and the surrounding country rock. The gas released by 

these explosions and uprising gas-jets causes a turbulent mixing of blocky juvenile 

fragments (i.e., fragmented intruding magma) and variably altered lithologies. This 

mixture of clasts will also be uplifted in the course of further injection of magma. 

Mechanical as well as gas-propelled turbulent reworking cause clasts to develop 

variably rounded shapes.  

 

iii) The numerous small intersecting craters are likely caused by gas-jets that transport 

clasts of variable origin, shape, and size to the seafloor where they form a lithology that 

mimics products of hydrothermal eruptions (Browne and Lawless, 2001). Strong currents 

transport parts of the ejected material a few meters towards North Peak where they 

deposit and build up the plateau of dominantly sand-sized clasts. Larger clasts remain 

closer to the crater center or tumble further down slope and cause a fining-upward cycle 

on the upper slopes of South Peak cryptodome.  

 

These proximal volcanic lithology patterns share characteristics (i.e. rounded grains, fine 

clast size, variably altered clasts) of deposits that would traditionally be interpreted in 

facies reconstructions as distal or as reworked volcaniclastic deposits. Our results 
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indicate that heterolithic breccias with variably rounded clasts may also form during the 

course of the complex porphyritic magma-water interactions associated with a 

cryptodome eruption at the summit of an andesitic volcano. Downey and Lentz (2006) 

corroborate this hypothesis by modeling deep submarine explosive eruptions and by 

stating that volcaniclastic sediments, which are common in both the hanging and 

footwall of VMS deposits (Gibson et al., 1999), can be genetically connected to the 

formation of the VMS deposit, although these volcanic sediments are often interpreted 

as mass waste deposits. Examples are the Bald Mountain Cu-Zn deposit (Busby et al., 

2003; Foley, 2003) and the Brunswick No. 6 and No. 12 Pb-Zn deposits (Downey and 

Lentz, 2006). 

 

5.2 Evidence of violent explosive eruptions  

In 2006, South Peak crater, 80 m wide and 13 m deep, was observed (Fig. 5 a, 11) on 

the southern flank of North Su – this crater was filled by the South Peak cryptodome 

eruption. The crater shape resembled the typical type of tuff ring or tuff cone that is 

associated with phreatomagmatic eruptions. Given the hydrostatic pressure of ~115 bar 

at North Su summit, a phreatomagmatic explosion is highly unlikely to have caused the 

formation of this crater.  

Based on dredge samples and photo-sled surveys during PACMANUS-III expedition in 

1996, Binns (2004), Hrischeva et al. (2007) and Yeats et al. (2014) suggested that 

violent hydrothermal eruptions at North Su and South Su generate the abundance of 

volcaniclastic deposits and that such eruptions disperse these deposits for several km. 

The terminology ―hydrothermal eruption‖ describes a type of eruption that is defined as 

not involving magma but is fueled only by steam expansion due to a sudden pressure 
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drop (Browne and Lawless, 2001). At North Su, a large extent of steam expansion due 

to a sudden pressure drop is unlikely given the hydrostatic pressure of >115 bar and any 

additional but unknown lithostatic pressure at the hydrothermal aquifer. Although it is not 

impossible to create a gas phase in an aquifer at a high pressure regime (e.g. Thiéry 

and Mercury, 2009; Buttinelli et al., 2011), this mechanism requires particular 

circumstances (i.e. assimilation of carbonates) and has never been described or 

observed in a deep sea environment.  

 

In 2011, magmatic degassing was vigorous at North Su, which is common for evolved 

volatile-rich, arc-related magma systems (e.g. Carey and Sigurdsson, 2007). Following 

the discussion about a plugged conduit and regarding the fact that Vulcanian explosions 

are common on subaerial andesite volcanoes (Morrissey and Mastin, 2000), many 

effusive eruptions follow an explosive vent clearing phase. We hypothesize that the 

South Peak crater is a remnant of the vent clearing phase to the effusive eruption 

episode that produced South Peak cryptodome and discard the violent hydrothermal 

eruption theory.  

 

Based on our analyses and observations we hypothesize that the South Peak 

cryptodome eruption is common for eruptions at the North Su volcano. Following this 

idea, North Peak presents the seafloor structures that will be present on South Peak 

after several years of hydrothermal activity and mass wasting events.  

 

5.3 Hydrothermally increased slope stability  
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The upper slopes (shallower than ~1350 m water depth) of North Peak show a highly 

irregular topography, with steep pillars and cliffs that are exclusively composed of 

breccias. These observations suggest a vital role for cementation because any 

unconsolidated pile of volcanic clasts would have low cohesive strength and could not 

build steep walls and pillars. 

 

 

Hydrothermal alteration processes are often considered a mechanism that decreases 

slope stability (e.g. Merle and Lénat, 2003), because clay minerals and other alteration 

phases commonly have lower shear strength than the primary phases they replace. 

However, our observations of volcaniclastic cliffs, pillars and hydrothermal crusts point to 

hydrothermal processes that lead to a precipitation of a cementing matrix that can lead 

to stabilization of a weak substrate such as volcaniclastic deposits.  

 

We conclude that these pillars at North Su represent former localized fluid upflow-zones. 

Sulfur-laden fluids circulated through the volcaniclastic deposits prior to a sector 

collapse and solidified in between the clasts. This process is indicated at hydrothermal 

vent sites on South Peak where hydrothermal fluids start to bury loose rocks due to 

precipitation of native sulfur. Additionally, when we retracted the Temperature-probe 

after sticking it into the gravel next to a vent site, it was covered with native sulfur, 

indicating that the gravel-covered slope around the vents is saturated with liquid sulfur. 

Furthermore, we observed that the discharge of liquid sulfur is highly episodic (Fig. 9), 

which could account for the non-pervasive alteration of volcanic clasts inside these 

pillars as the fluid circulation is not necessarily continuous. We hypothesize this to be a 
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cyclic pattern that accompanies volcanic eruptions on North Su as abundant 

volcaniclastic deposits are produced during lava emplacement, followed by hydrothermal 

discharge through the volcaniclastic pile leading to localized cemented structures that 

protrude from the slope after sector collapse events have led to the removal of less 

stable portions of the slope.  

 

6. Summary and Conclusion 

Our analyses show that North Su is now a double-peaked (North Peak and South Peak) 

active andesite volcano with a vigorous and varied hydrothermal system. Black and 

white smoker fluids discharge less than 100 m lateral distance from each other 

indicating a complex subsurface interconnected hydrothermal plumbing system. CO2-

release is ubiquitous at ―pulsating‖ white smoker vents and these vents apparently vary 

significantly in activity over a two-week observation period. A new vent site ―Sulfur 

Candle‖ consisting of chimneys of native sulfur was documented following the 2011 

observations. The pervasive volcaniclastic cover on North Su is partly cemented by 

hydrothermal processes and strongly influences the seafloor morphology of North Su – 

North Peak. Hydrothermally-cemented breccias, crusts and single pillars show that 

hydrothermal circulation through a thick layer of volcaniclastic deposits can temporarily 

increase slope stability through precipitation and cementation. 

 

Repeated bathymetric surveys reveal that South Peak cryptodome was emplaced 

between 2006 and 2011 on the southwestern slope of North Su volcano. Volcanic 

material with an estimated volume of 5.8 x 106 m3 was deposited over an area of 2.1 x 

105 m2 with a maximum depth change between the surveys of +63 m. Comprehensive 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

34 
 

pre- and post-eruption mapping allow us to develop an eruption scenario where highly 

viscous, crystal-rich intermediate magma intrudes into the water-saturated, gravel-

dominated slope of North Su and its hydrothermal system. Intense, fragmentation of the 

magma upon contact with cold seawater produces abundant blocky juvenile clasts. At 

North Su the abundance of blocky clasts and the lack of fluidal clasts indicative for 

quenched liquid lava is interpreted as a result of a cooled, high-viscosity, crystal-rich 

magma that fails as a brittle solid upon stress. The high viscosity allowed the lava to 

form dominantly blocky and short lava lobes. Magmatic degassing and bulk-interaction 

steam explosivity cause relatively small explosions which further fracture the lava and 

the surrounding country rock. These explosions and the consequently released gas as 

well as the updoming during further injection of magma cause a mixing of juvenile and 

pre-existing lithic clasts and variably rounded shapes. Gas jets produced by the 

explosions transport such mixed volcaniclastic deposit to the seafloor where they form 

numerous small intersecting craters, mimicking the lithology and morphology of 

hydrothermal eruptions.  

 

Our observations provide further insight into the volcanologic framework of a developing 

Cu-Au ore deposit (Yeats et al., 2014) and can help geologists with facies interpretation. 

Proximal volcanic lithologies on North Su share characteristics (i.e. rounded grains, fine 

clast size, varied composition) with deposits that would traditionally be interpreted in 

facies reconstructions as distal or as redeposited lithologies. Our results indicate that 

such mixed volcaniclastic deposit with variably rounded clasts may also form in the 

course of the complex porphyritic magma-water interactions associated with a lava 

cryptodome eruption at the summit of an andesitic volcano.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

35 
 

Acknowledgments 

We thank Sharon Allen and Karoly Nemeth for very thoughtful and productive reviews. 

We thank the captains and crews of RV Sonne and RV Melville, the ROV teams of 

Jason-2 and MARUM Quest 4000, the AUV-ABE technical team and the members of the 

Science Parties for both cruises. Many thanks go to Dominik Niedermeyer for 

contributing geochemical analyses and to Timothy Schroeder for helpful discussions 

about the manuscript. We thank Adam Soule and Daniel Fornari for fruitful discussions 

on submarine volcanism and for the assistance in classifying the volcaniclastic deposit. 

Crucial help with bathymetry data processing was provided by Christian dos Santos 

Ferreira and Paul Wintersteller. The RV Melville work was funded by a combination of 

the US National Science Foundation grant OCE-0327448 and a collaborative research 

funding grant from Nautilus Minerals for the ABE surveys. The RV Sonne research 

cruise was funded through the BMBF (Grant G03216a). Additional funding, including 

salary support for JT, was provided by the German DFG Research Centre/Excellence 

Cluster ―The Ocean in the Earth System‖. WB acknowledges support from DFG 

research grant BA1605/4-1. Finally, we thank Jim Robins and Pat Pepena from Papua 

New Guinea (PNG) for their help with PNG research permitting. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

36 
 

References 

Allen, S.R., Fiske, R.S., Tamura, Y., 2010. Effects of water depth on pumice formation in 
submarine domes at Sumisu, Izu-Bonin arc, western Pacific. Geology 38, 391–394. 

Allen, S.R., McPhie, J., 2009. Products of neptunian eruptions. Geology 37, 639–642. 

Auzende, J.-M., Ishibashi, J.-I., Beaudoin, Y.C., Charlou, J.-L., Delteil, J., Donval, J.-P., 
Fouquet, Y., Ildefonse, B., Kimura, H., Nishio, Y., Radford-Knoery, J., Ruøllan, E., 
2000. Extensive magmatic and hydrothermal activity documented in Manus Basin. 
Eos, Transactions American Geophysical Union 81, 449–453. 

Auzende, J.-M., Urabe, T., Party, S., 1996. Cruise explores hydrothermal vents of the 
Manus Basin. Eos (Transactions, American Geophysical Union) 77, 244. 

Bach, W., Jöns, N., Thal, J., Breuer, C., Shu, L., Dubilier, N., Borowski, C., Meyerdierks, 
A., Pjevac, P., Brunner, B., Müller, I., Petersen, S., Hourdez, S., Schaen, A., Koloa, 
K., Jonda, L., Team, M.Q. 4000m, 2011. Report and preliminary results of RV 
SONNE Cruise SO-216, Townsville (Australia) - Makassar (Indonesia), June 14 – 
July 23, 2011. BAMBUS, Back-Arc Manus Basin Underwater Solfataras. Berichte, 
Fachbereich Geowissenschaften, Universität Bremen 280, 87. 

Beier, C., Bach, W., Turner, S., Niedermeier, D., Woodhead, J., Erzinger, J., Krumm, S., 
2015. Origin of Silicic Magmas at Spreading Centres--an Example from the South 
East Rift, Manus Basin. Journal of Petrology 56, 255–272. 

Binns, R.A., 2004. Eastern Manus basin, Papua New Guinea: Guides for volcanogenic 
massive sulphide exploration from a modern seafloor analogue, in: McConachy, T., 
McInnes, B. (Eds.), Copper-Zinc Massive Sulphide Deposits in Western Australia. 
CSIRO Explores, pp. 59–80. 

Binns, R.A., Parr, J.M., 1993. Report on the Pacmanus II cruise-RV Franklin, Eastern 
Manus Basin, Papua New Guinea. 

Binns, R.A., Scott, S., 1993. Actively forming polymetallic sulfide deposits associated 
with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. 
Economic Geology 88, 2226–2236. 

Binns, R.A., Scott, S.D., Gemmell, J.B., Crook, K.A.W., Party, S., 1997. The SuSu 
Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea. Eos 
Transactions AGU Fall Meeting Supplement 78, #V22E–02 (abstr.). 

Browne, P., Lawless, J., 2001. Characteristics of hydrothermal eruptions, with examples 
from New Zealand and elsewhere. Earth-Science Reviews 52, 299–331. 

Busby, C., Kessel, L., Schulz, K.J., Foose, M.P., Slack, J.F., 2003. Volcanic setting of 
the Ordovician Bald Mountain massive sulfide deposits, northern Maine, in: 
Goodfellow, W.D., McCutcheon, S.R., Peter, J.M. (Eds.), Massive Sulphide 
Deposits of the Bathurst Mining Camp, New Brunswick, and Northern Maine: 
Economic Geology Monograph 11. pp. 210–244. 

Buttinelli, M., De Rita, D., Cremisini, C., Cimarelli, C., 2011. Deep explosive focal depths 
during maar forming magmatic-hydrothermal eruption: Baccano Crater, Central 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

37 
 

Italy. Bulletin of Volcanology 73, 899–915. 

Carey, S., Sigurdsson, H., 2007. Exploring Submarine Arc Volcanoes. Oceanography 
20, 80–89. 

Chadwick Jr., W.W., Wright, I.C., Schwarz-Schampera, U., Hyvernaud, O., Reymond, 
D., de Ronde, C.E.J., 2008. Cyclic eruptions and sector collapses at Monowai 
submarine volcano, Kermadec arc: 1998-2007. Geochemistry, Geophysics, 
Geosystems 9, 1–17. 

Clague, D.A., Paduan, J.B., Caress, D.W., Thomas, H., Chadwick Jr., W.W., Merle, 
S.G., 2011. Volcanic morphology of West Mata Volcano, NE Lau Basin, based on 
high-resolution bathymetry and depth changes. Geochemistry, Geophysics, 
Geosystems 12, 1–21. 

Clarke,  a B., Voight, B., Neri, A., Macedonio, G., 2002. Transient dynamics of vulcanian 
explosions and column collapse. Nature 415, 897–901. 

Coleman, P.J., Packham, G.H., 1976. The Melanesian Borderlands and India — Pacific 
plates’ boundary. Earth-Science Reviews 12, 197–233. 

Crowhurst, P., Lowe, J., 2011. Exploration and resource drilling of seafloor massive 
sulfide (SMS) deposits in the Bismarck Sea, Papua New Guinea. OCEANS 2011 1–
6. 

De Rita, D., Giordano, G., Cecili, A., 2001. A model for submarine rhyolite dome growth: 
Ponza Island (central Italy). Journal of Volcanology and Geothermal Research 107, 
221–239. 

de Ronde, C.E.J., Hannington, M.D., Stoffers, P., Wright, I.C., Ditchburn, R.G., Reyes, 
A.G., Baker, E.T., Massoth, G.J., Lupton, J.E., Walker, S.L., Greene, R.R., Soong, 
C.W.R., Ishibashi, J., Lebon, G.T., Bray, C.J., Resing, J.A., 2006. Evolution of a 
Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec 
Arc, New Zealand. Economic Geology 100, 1097–1133. 

de Ronde, C.E.J., Massoth, G.J., Baker, E.T., Lupton, J.E., 2003. Submarine 
hydrothermal venting related to volcanic arcs, Giggenbach Memorial Volume, in: 
Simmons, S.F., Graham, I.J. (Eds.), Volcanic, Geothermal and Ore-Forming Fluids: 
Rulers and Witnesses of Processes within the Earth. Society of Economic 
Geologists, pp. 91–110. 

de Ronde, C.E.J., Massoth, G.J., Butterfield, D. a., Christenson, B.W., Ishibashi, J., 
Ditchburn, R.G., Hannington, M.D., Brathwaite, R.L., Lupton, J.E., Kamenetsky, 
V.S., Graham, I.J., Zellmer, G.F., Dziak, R.P., Embley, R.W., Dekov, V.M., Munnik, 
F., Lahr, J., Evans, L.J., Takai, K., 2011. Submarine hydrothermal activity and gold-
rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Mineralium 
Deposita 46, 541–584. 

Deardorff, N.D., Cashman, K. V., Chadwick Jr., W.W., 2011. Observations of eruptive 
plume dynamics and pyroclastic deposits from submarine explosive eruptions at 
NW Rota-1, Mariana arc. Journal of Volcanology and Geothermal Research 202, 
47–59. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

38 
 

Downey, W.S., Lentz, D.R., 2006. Igneous rock associations 6. Modelling of deep 
submarine pyroclastic volcanism: A review and new results. Geoscience Canada 
33, 5–19. 

Doyle, M.G., McPhie, J., 2000. Facies architecture of a silicic intrusion-dominated 
volcanic centre at Highway–Reward, Queensland, Australia. Journal of Volcanology 
and Geothermal Research 99, 79–96. 

Druitt, T.H., Kokelaar, B.P., 2002. The Eruption of Soufrière Hills Volcano, Montserrat, 
from 1995-1999, Geological Society, London, Memoirs. 

Druitt, T.H., Young, S.R., Baptie, B., Bonadonna, C., Calder, E.S., Clarke,  a. B., Cole, 
P.D., Harford, C.L., Herd, R. a., Luckett, R., Ryan, G., Voight, B., 2002. Episodes of 
cyclic Vulcanian explosive activity with fountain collapse at Soufriere Hills Volcano, 
Montserrat. Geological Society, London, Memoirs 21, 281–306. 

Embley, R.W., Chadwick Jr., W.W., Baker, E.T., Butterfield, D.A., Resing, J.A., de 
Ronde, C.E.J., Tunnicliffe, V., Lupton, J.E., Juniper, S.K., Rubin, K.H., Stern, R.J., 
Lebon, G.T., Nakamura, K., Merle, S.G., Hein, J.R., Wiens, D.A., Tamura, Y., 2006. 
Long-term eruptive activity at a submarine arc volcano. Nature 441, 494–7. 

Falvey, D.A., Pritchard, T., 1982. Preliminary Paleomagnetic Results from Northern 
Papua New Guinea : Evidence for Large Microplate Rotations, in: Watson, S.T. 
(Ed.), Transactions of the Third Circum-Pacific Energy and Mineral Resources 
Conference. American Association of Petrolium Geologists, Tulsa, Oklahoma, pp. 
593–600. 

Foley, N.K., 2003. Thermal and chemical evolution of ore fluids and massive sulfide 
mineralization at Bald Mountain, Maine, in: Goodfellow, W.D., McCutcheon, S.R., 
Peter, J.M. (Eds.), Massive Sulphide Deposits of the Bathurst Mining Camp, New 
Brunswick, and Northern Maine: Economic Geology Monograph 11. pp. 549–566. 

Gamo, T., Okamura, K., Charlou, J., Urabe, T., Auzende, J., Ishibashi, J., Shitashima, 
K., Chiba, H., Shipboard Scientific Party of the ManusFlux Cruise, 1997. Acidic and 
sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea. 
Geology 25, 139–142. 

Gibson, H.L., Morton, R.L., Hudak, G.J., 1999. Submarine volcanic processes, deposits, 
and environments favourable for the location of volcanic-associated massive sulfide 
deposits, in: Barrie, C.T., Hannington, M.D. (Eds.), Volcanic-Associated Massive 
Sulfide Deposits: Processes and Examples in Modern and Ancient Settings. 
Reviews in Economic Geology, pp. 13–51. 

Golder Associates Pty Ltd, 2012. Mineral Resource Estimate, Solwara Project, Bismarck 
Sea, PNG. 

Goto, Y., McPhie, J., 1998. Endogenous growth of a Miocene submarine dacite 
cryptodome, Rebun Island, Hokkaido, Japan. Journal of Volcanology and 
Geothermal Research 84, 273–286. 

Hannington, M.D., de Ronde, C.E.J., Petersen, S., 2005. Sea-Floor Tectonics and 
Submarine Hydrothermal Systems. Economic Geology 100th Anniversary Volume 
111–141. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

39 
 

Hannington, M.D., Jamieson, J., Monecke, T., Petersen, S., Beaulieu, S., 2011. The 
abundance of seafloor massive sulfide deposits. Geology 39, 1155–1158. 

Hashimoto, J., Ohta, S., Fiala-Médioni, A., Auzende, J., 1999. Hydrothermal vent 
communities in the Manus Basin, Papua New Guinea: Results of the BIOACCESS 
cruises’ 96 and'98. InterRidge News 8 (2), 12–18. 

Head, J.W., Wilson, L., 2003. Deep submarine pyroclastic eruptions: theory and 
predicted landforms and deposits. Journal of Volcanology and Geothermal 
Research 121, 155–193. 

Hedenquist, J., Lowenstern, J., 1994. The role of magmas in the formation of 
hydrothermal ore deposits. Nature 370, 519–527. 

Herzig, P.M., 1999. Economic potential of sea-floor massive sulphide deposits: ancient 
and modern. Philosophical Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences 357, 861–875. 

Herzig, P.M., Kuhn, T., Petersen, S., Shipboard Scientific Party, 2002. Detailed 
investigation of the magmatic-hydrothermal gold mineralization at conical seamount 
(New Ireland Basin) and of massive sulfides at PACMANUS (Eastern Manus 
Basin), Papua New Guinea by shallow drilling : Cruise report - SO-166 CONDRILL. 
Freiberg. 

Hillier, J.K., Watts, A.B., 2007. Global distribution of seamounts from ship-track 
bathymetry data. Geophysical Research Letters 34, L13304. 

Hrischeva, E., Scott, S.D., Weston, R., 2007. Metalliferous sediments associated with 
presently forming volcanogenic massive sulfides: the SuSu Knolls hydrothermal 
field, eastern Manus Basin, Papua New. Economic Geology 102, 55–73. 

Iizasa, K., 1999. Potential Marine Mineral Resources by Hydrothermal Activity. Chemical 
Industry 50, 379–384. 

Kokelaar, P., 1986. Magma-water interactions in subaqueous and emergent basaltic. 
Bulletin of Volcanology 48, 275–289. 

Kroenke, L., Rodda, P., 1984. Cenozoic tectonic development of the Southwest Pacific. 
U.N. ESCAP, CCOP/SOPAC Tech. Bull. 6. 

Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A Chemical 
Classificatron of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal 
of Petrology 27, 745–750. 

Leat, P.T., Tate, A.J., Tappin, D.R., Day, S.J., Owen, M.J., 2010. Growth and mass 
wasting of volcanic centers in the northern South Sandwich arc, South Atlantic, 
revealed by new multibeam mapping. Marine Geology 275, 110–126. 

Major, J.J., Dzurisin, D., Schilling, S.P., Poland, M.P., 2009. Monitoring lava-dome 
growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique 
terrestrial photography. Earth and Planetary Science Letters 286, 243–254. 

Martinez, F., Taylor, B., 1996. Backarc spreading, rifting, and microplate rotation, 
between transform faults in the Manus Basin. Marine Geophysical Research 18, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

40 
 

203–224. 

Martinez, F., Taylor, B., 2003. Controls on back-arc crustal accretion: insights from the 
Lau, Manus and Mariana basins. Geological Society, London, Special Publications 
219, 19–54. 

McPhie, J., Doyle, M.G., Allen, S.R., 1993. Volcanic textures: a guide to the 
interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration 
Studies - University of Tasmania. 

Melnik, O., Sparks, R.S.J., 2002. Dynamics of magma ascent and lava extrusion at 
Soufriere Hills Volcano, Montserrat. Geological Society, London, Memoirs 21, 153–
171. 

Merle, O., Lénat, J.-F., 2003. Hybrid collapse mechanism at Piton de la Fournaise 
volcano, Reunion Island, Indian Ocean. Journal of Geophysical Research 108, 
2166. 

Morrissey, M.M., Mastin, L.G., 2000. Vulcanian eruptions, in: Sigurdsson, H., Houghton, 
B., Rymer, H. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, pp. 
463–475. 

Mosier, D.L., Berger, V.I., Singer, D.A., 2009. Volcanogenic massive sulfide deposits of 
the world; database and grade and tonnage models, U.S. Geological Survey Open-
File Report. 

Moss, R., 2000. Geochemistry and mineralogy of gold in the PACMANUS and Susu 
knolls hydrothermal systems, eastern Manus basin, Papua New Guinea. University 
of Toronto. 

Moss, R., Scott, S.D., 2001. Geochemistry and Mineralogy of Gold-Rich Hydrothermal 
Precipitates From the Eastern Manus Basin, Papua New Guinea. The Canadian 
Mineralogist 39, 957–978. 

Nemeth, K., Pecskay, Z., Martin, U., Gmeling, K., Molnar, F., Cronin, S.J., 2008. 
Hyaloclastites, peperites and soft-sediment deformation textures of a shallow 
subaqueous Miocene rhyolitic dome-cryptodome complex, Palhaza, Hungary. 
Geological Society, London, Special Publications 302, 63–86. 

Pardo, N., Cronin, S.J., Németh, K., Brenna, M., Schipper, C.I., Breard, E., White, 
J.D.L., Procter, J., Stewart, B., Agustín-Flores, J., Moebis, A., Zernack, A., 
Kereszturi, G., Lube, G., Auer, A., Neall, V., Wallace, C., 2014. Perils in 
distinguishing phreatic from phreatomagmatic ash; insights into the eruption 
mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. Journal of 
Volcanology and Geothermal Research 286, 397–414. 

Petersen, S., Herzig, P., Hannington, M.D., Gemmell, J.B., 2003. Gold-rich massive 
sulfides from the interior of the felsic-hosted PACMANUS massive sulfide deposit, 
Eastern Manus Basin (PNG), in: Eliopoulos et al. (Ed.), Mineral Exploration and 
Sustainable Development. Millpress, Rotterdam, pp. 171–174. 

Pichler, H., 1965. Acid hyaloclastites. Bulletin Volcanologique 28, 293–310. 

Resing, J.A., Rubin, K.H., Embley, R.W., Lupton, J.E., Baker, E.T., Dziak, R.P., 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

41 
 

Baumberger, T., Lilley, M.D., Huber, J.A., Shank, T.M., Butterfield, D.A., Clague, 
D.A., Keller, N.S., Merle, S.G., Buck, N.J., Michael, P.J., Soule, A., Caress, D.W., 
Walker, S.L., Davis, R., Cowen, J.P., Reysenbach, A.-L., Thomas, H., 2011. Active 
submarine eruption of boninite in the northeastern Lau Basin. Nature Geoscience 4, 
799–806. 

Robertson, R., Cole, P., Sparks, R.S.J., Harford, C., Lejeune, A.M., McGuire, W.J., 
Miller, A.D., Murphy, M.D., Norton, G., Stevens, N.F., Young, S.R., 1998. The 
explosive eruption of Soufriere Hills Volcano, Montserrat, West Indies, 17 
September, 1996. Geophysical Research Letters 25, 3429–3432. 

Sangster, D.F., 1980. Quantitative characteristics of volcanogenic massive sulphide 
deposits. Bulletin of the Canadian Institute of Mining and Metallurgy 73, 74–81. 

Schipper, C.I., White, J.D.L., Houghton, B.F., Shimizu, N., Stewart, R.B., 2010. 
Explosive submarine eruptions driven by volatile-coupled degassing at Lō`ihi 
Seamount, Hawai`i. Earth and Planetary Science Letters 295, 497–510. 

Scutter, C., Cas, R.A.F., Moore, C., De Rita, D., 1998. Facies architecture and origin of 
a submarine rhyolitic lava flow-dome complex, Ponza, Italy. Journal of Geophysical 
… 103, 27,551–27,566. 

Sheridan, M.F., Wohletz, K.H., 1983. Hydrovolcanism: Basic considerations and review. 
Journal of Volcanology and Geothermal Research 17, 1–29. 

Sinton, J.M., Ford, L.L., Chapell, B., McCulloch, M.T., 2003. Magma genesis and mantle 
heterogeneity in the Manus back-arc basin, Papua New Guinea. Journal of 
Petrology 44, 159–195. 

Skilling, I.P., White, J.D.L., McPhie, J., 2002. Peperite: a review of magma–sediment 
mingling. Journal of Volcanology and Geothermal Research 114, 1–17. 

Sparks, R.S.J., Murphy, M.D., Lejeune, A.M., Watts, R.B., Barclay, J., Young, S.R., 
2000. Control on the emplacement of the andesite lava dome of the Soufriere Hills 
volcano, Montserrat by degassing-induced crystallization. Terra Nova 12, 14–20. 

Sparks, R.S.J., Young, S.R., 2002. The eruption of Soufriere Hills Volcano, Montserrat 
(1995-1999): overview of scientific results, in: Druitt, T.H., Kokelaar, B.P. (Eds.), 
The Eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. The 
Geological Society of London, London, pp. 45–69. 

Swanson, D.A., Holcomb, R.T., 1990. Regularities in Growth of the Mount St. Helens 
Dacite Dome, 1980–1986, in: Fink, J.H. (Ed.), Lava Flows and Domes. pp. 3–24. 

Taylor, B., 1979. Bismarck Sea: Evolution of a back-arc basin. Geology 7, 171–174. 

Taylor, B., Crook, K., Sinton, J., 1994. Extensional transform zones and oblique 
spreading centers. Journal of Geophysical Research 99, 19,707–19,718. 

Thal, J., Tivey, M., Yoerger, D., Jöns, N., Bach, W., 2014. Geologic setting of 
PACManus hydrothermal area — High resolution mapping and in situ observations. 
Marine Geology 355, 98–114. 

Thiéry, R., Mercury, L., 2009. Explosive properties of water in volcanic and hydrothermal 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

42 
 

systems. Journal of Geophysical Research 114, B05205. 

Tivey, M.A., Bach, W., Seewald, J., Tivey, M.K., Vanko, D.A., Party, S.S., 2006. Cruise 
Report for R/V Melville Cruise MGLN06MV—Hydrothermal Systems in the Eastern 
Manus Basin: Fluid Chemistry and Magnetic Structure as Guides to Subseafloor 
Processes. 

Tregoning, P., 2002. Plate kinematics in the western Pacific derived from geodetic 
observations. Journal of Geophysical Research 107, 1–8. 

Tregoning, P., Jackson, R.J., Mcqueen, H., Larnbeck, K., Stevens, C., Little, R.P., 
Curley, R., Rosa, R., 1999. Motion of the South Bismarck Plate, Papua New 
Guinea. Geophysical Research Letters 26, 3517–3520. 

Tregoning, P., Lambeck, K., Stolz, A., Morgan, P., McClusky, S.C., van der Beek, P., 
McQueen, H., Jackson, R.J., Little, R.P., Laing, A., Murphy, B., 1998. Estimation of 
current plate motions in Papua New Guinea from Global Positioning System 
observations. Journal of Geophysical Research 103, 12181. 

Voight, B., 1999. Magma Flow Instability and Cyclic Activity at Soufriere Hills Volcano, 
Montserrat, British West Indies. Science 283, 1138–1142. 

Watts,  a. B., Peirce, C., Grevemeyer, I., Paulatto, M., Stratford, W., Bassett, D., Hunter, 
J. a., Kalnins, L.M., de Ronde, C.E.J., 2012. Rapid rates of growth and collapse of 
Monowai submarine volcano in the Kermadec Arc. Nature Geoscience 5, 510–515. 

Wessel, P., 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 
altimetry. Journal of Geophysical Research 106, 19,431–19,441. 

White, J.D.L., 1996. Impure coolants and interaction dynamics of phreatomagmatic 
eruptions. Journal of Volcanology and Geothermal Research 74, 155–170. 

White, J.D.L., Smellie, J.L., Clague, D.A., 2003. Explosive subaqueous volcanism, 
Geophysica. ed. American Geophysical Union. 

Wohletz, K.H., 1983. Mechanisms of hydrovolcanic pyroclast formation: Grain-size, 
scanning electron microscopy, and experimental studies. Journal of Volcanology 
and Geothermal Research 17, 31–63. 

Wright, I.C., Gamble, J.A., Shane, P.A.R., 2003. Submarine silicic volcanism of the 
Healy caldera, southern Kermadec arc (SW Pacific): I-volcanology and eruption 
mechanisms. Bulletin of Volcanology 65, 15–29. 

Yamagishi, H., Dimroth, E., 1985. A comparison of Miocene and Archean rhyolite 
hyaloclastites: evidence for a hot and fluid rhyolite lava. Journal of Volcanology and 
Geothermal Research 23, 337–355. 

Yeats, C.J., Binns, R.A., Parr, J., 2008. The SuSu Knolls hydrothermal field, Eastern 
Manus Basin, Papua New Guinea: An actively forming submarine high sulfidation 
copper-gold system, in: International Geological Congress. Oslo, p. MRD–03. 

Yeats, C.J., Parr, J.M., Binns, R.A., Gemmell, J.B., Scott, S.D., 2014. The SuSu Knolls 
Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active 
Submarine High-Sulfidation Copper-Gold System. Economic Geology 109, 2207–



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

43 
 

2226. 

Zimanowski, B., Fröhlich, G., Lorenz, V., 1991. Quantitative experiments on 
phreatomagmatic explosions. Journal of Volcanology and Geothermal Research 48, 
341–358. 

 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

44 
 

1  

Fig. 1: Tectonic setting of the Bismarck Sea. Plate boundaries from (Bird, 2003). WIT: Willaumez 

Transform; MSC: Manus Spreading Center; MMP: Manus Microplate; DT: Djaul Transform; WT: Weitin 

Transform. (Thal et al., 2014) 

 

 

Fig.2: Bathymetry of the South East Ridges (SER) in the eastern Manus Basin from research cruise 

BAMBUS SO-216 (2011) with 200 m contours. Beachballs originate from the global cmt project 

(Dziewonski et al., 1981; Ekström et al., 2012) and mark the locations of earthquakes between 2006 & 
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2011 with a magnitude >5. The movement depicted by beachballs represents the stepwise intra-

transform, extensional stress regime. DT: Djaul Transform; WT: Weitin Transform. Red circle: North Su. 

(Modified after Thal et al., 2014). 

 

Fig.3: a) Ship-based bathymetry of SuSu Knolls with regional structures. Contour interval: 50 m. Estimated 

position of Weitin Transform. b) Total coverage of AUV ABE bathymetry of North Su and South Su. 5 m 

grid. Contour interval 50 m.  
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Fig. 4: SuSu Knolls morphology. a) 2006 – Slopemap of North Su with South Peak crater. It illustrates the 

cluster of cliffs on the southern slope of North Peak. AUV ABE 1 m grid; b) 2011 - Slopemap of SuSu 

Knolls revealing the mean slope on North Su to be 25-30° with steeper slope around the summit areas. 

Filtered ship-based bathymetry, 32 m grid. Black rectangle marks position of a). 
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Fig. 5: a) Geologic map from 2006 on ABE bathymetry (1 m grid spacing) with 5 m contours; dotted red 

circle indicates the location of the crater group mapped in 2011. b) Geologic map from 2011 on ROV 

Quest bathymetry (10 m grid spacing) and EM120 bathymetry in the background (32 m grid spacing) 

with 10 m contours. White bars mark the track for which a mean slope is calculated that is posted next 

to the bar.  

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

48 
 

 

Fig. 6: Observed volcanic morphologies, lithologies and features. Picture widths of structures in the 

foreground are given in brackets. a) Fissured, jig-saw-fit outcrop. The broken pieces are still in place, 

NE North Peak (~1 m); b) Downward looking perspective on a vertical lava outcrop, fissured and 

blocky, NE North Peak (~ 3 m); c) Short (< 5m), columnar, fractured lava flow, SW South Peak 

cryptodome (2-3 m); d) Lava spine, North Peak (~2 m); e) Lava lobe breaching through the scree 

covered slope, SW South Peak cryptodome (2-3 m); f) View towards NE along the crater rim of South 

Peak crater in 2011. The crater centre is to the left (~1 m); g) Plateau on South Peak with stream 

ripples (~1.5 m); h) A crater of crater group on South Peak cryptodome. The crater diameter is about 

4-5 m and <1 m deep. 
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Fig. 7: Hydrothermal features and hydrothermal cemented structures. Picture widths of structures in 

the foreground are given in brackets. a) Sulfur chimneys, white smoker with CO2 release at Sulfur 

Candle, vent #7 (~1.5 m); b) Black smoker chimneys, vent #1, North Peak (~2 m); c) Hydrothermal 

fluids discharge with abundant native sulfur that starts to bury scree, S South Peak cryptodome (~1.5 

m); d) Hydrothermal cemented crust with hybrid vents, vent#5, NW North Peak (~ 1 m); e) Cliff of 

cemented fine volcaniclastics, slope parallel view, SW North Peak (~2 m); f) Downward looking 

perspective of the southern cliff (~14 m high) on North Peak summit (~1.5 m); g) Solidified native 

sulfur flows, SE of South Peak cryptodome (~1.5 m); h) Pillar with broken top, built-up by 

volcaniclastics with native sulfur oozed out of the sites and ontop, next to Sulfur Candle (~ 2 m); i) 16 
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m high pillar structure with columnar features at the lowest fifth. The lower half of the pillar is 

connected to the slope, the top half is free standing, E North Peak. 

 

 

 

 

Fig.8 Volcaniclastic deposit from the summit of the new South Peak cryptodome, 

2011, sample SO-216-51-ROV. a) Agglomerate of volcaniclastic debris; b) Fresh, 

non-altered lava; c) Glassy clasts; d) Sieved and washed 90-180 µm fraction of the 

mixed volcaniclastic deposit. The rock-crystal proportion changes with smaller 

grainsize towards an abundance of crystals; e) Sieved and washed 600-710 µm 

fraction of the mixed volcaniclastic deposit; f) Volcanic clast with alteration halo; g) 

EPMA backscatter image of a typical glassy, non-altered clast; h) Zoom of g; i) Zoom 

of h; abundant plagioclase microliths might affect glass measurements. 
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Fig. 9: A white smoker chimney on a) 27.06.2011 and b) 12 days later on 09.07.2011 depicting the 

pulsating nature of the white smoker hydrothermal system. 

 

 

Fig. 10: Results from SO-166 (2002) and SO-216 (2011) ship-based bathymetry comparison. Contours 

are from SO-216 bathymetry with interval of 20 m. Red color indicates positive depth change and blue 

indicates negative. a) Depth differences > 10 m b) Depth differences >20 m. Dotted rectangle indicates 

extend of maps in Figure 7.  
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Fig. 11: Oblique perspectives on North Su from NE. a) AUV ABE bathymetry showing North Peak and 

South Peak crater in 2006; b) Same perspective view as a) with additional ROV Quest bathymetry (2011) 

depicting the growth of South Peak by the cryptodome emplacement.  

 

 

Figure 12: Hydrothermally cemented breccias temporarily increase the local slope stability. These 

breccias form pillars, ridgelines and cliffs when the surrounding slope collapses. a) Oblique perspective 

from South-East on the southern slope of North Peak. The red star in a indicates sample location for b. 

Black circle marks the position of Sulfur Candle site. b) Thinsection of a cemented breccia taken from a 

cliff. Single clasts are clearly visible within a greyish matrix. Picture width is 3.5 cm. Sample J2-223-6-R1. 

c - e) Raster electron microscopy images of the thinsection shown in b. Lithic clasts are highlighted with 

white outlines. c) Secondary electron image. d) Element map of Si depicting the shape of volcanic clasts. 

e) Element map of S illustrates the hydrothermal cement filling void space between clasts.  
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Fig. 13: Simplified sketch explaining the observed morphologic and volcanic features at the South Peak 

cryptodome eruption. a) High viscous magma intrudes into the water-saturated volcaniclastic governed 

slope of North Su. Non-explosive fragmentation, explosive degassing and hydrovolcanic explosions 

disrupt the pre-existend material and the erupting lava which fails as a brittle solid due to its high crystal 

content and semi-solid state, causing dominantly blocky clasts that mix with the pre-existing material of 

North Su. b) The magma erupts as single lobes that occasionally breach through that clastic cover which 

than suffer from further fragmentation resulting in blocky outcrops. Explosions accompany the eruption 

produce clast-laden steam jets that thrust through the clastic cover and emit mixed volcaniclastic material 

onto the seafloor. This process creates a group of small, randomly scattered, shallow craters. Due to 

updoming and enhanced by several explosion, clasts are reworked which is expressed by a relatively 

rounded shape. 
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Appendix 

 
Sample # 

 
J2-221- J2-223- J2-227- 

wt.% 8-R1 
15-
R1 

16-
R1 16-R2 3-R1 5-R1 9-R2 10-R1 

14-
R1 

16-
R1 13-R1 

SiO2 59.59 60.46 61.39 60.07 61.21 61.34 60.86 61.54 62.16 62.52 63.73 

TiO2 0.54 0.56 0.56 0.55 0.57 0.57 0.56 0.58 0.58 0.57 0.56 

Al2O3 13.95 14.69 14.69 14.36 14.90 14.69 14.83 14.78 14.97 14.85 14.76 

Fe2O3 6.94 6.60 5.85 7.17 7.34 6.29 7.06 7.15 6.59 6.36 4.39 

MnO 0.130 0.127 0.120 0.138 0.152 0.120 0.131 0.132 0.128 0.122 0.086 

MgO 4.09 2.81 2.61 4.20 3.08 2.25 3.08 2.60 2.75 2.32 2.16 

CaO 6.48 5.96 5.81 7.05 6.44 5.78 6.43 5.90 6.12 5.50 5.21 

Na2O 2.94 3.60 2.69 3.40 3.73 4.41 3.65 3.82 3.77 3.90 3.95 

K2O 0.78 0.98 0.80 0.87 0.98 1.12 0.97 1.03 1.01 1.08 0.88 

P2O5 0.17 0.15 0.13 0.17 0.21 0.19 0.19 0.20 0.19 0.19 0.09 

H2O 2.65 1.55 3.33 1.17 0.97 1.41 1.28 1.02 1.06 1.26 1.41 

CO2 0.02 0.03 0.04 0.02 0.03 0.04 0.06 0.06 0.03 0.03 0.03 

Total 98.35 97.60 98.10 99.17 99.62 98.20 99.10 98.80 99.35 98.70 97.33 

Table A1: Results of whole rock XRF analyses. All iron measured as Fe2O3.  

 

 Sample # 

 J2-221- J2-223- 

wt. % 8-r1 16-r1 5-R1 9-r2 10-R1 14-r1 
SiO2 66,87 68,18 74,11 72,90 74,45 73,51 
TiO2 0,61 0,62 0,56 0,49 0,49 0,56 
Al2O3 13,40 13,28 12,60 12,75 12,39 12,64 
Cr2O3 0,000 0,000 0,010 0,000 0,017 0,017 
FeO 5,67 5,54 3,48 2,76 3,48 3,09 
MnO 0,12 0,13 0,09 0,10 0,08 0,06 
MgO 1,32 1,18 0,38 0,23 0,43 0,24 
CaO 3,99 3,85 2,06 2,13 2,02 2,04 
Na2O 3,53 3,65 4,35 3,64 4,41 4,43 
K2O 1,42 1,50 1,92 1,71 1,95 1,85 
P2O5 0,29 0,30 0,13 0,10 0,21 0,12 

SO3 0,02 0,01 0,00 0,00 0,00 0,00 

BaO 0,00 0,00 0,08 0,00 0,07 0,00 

Cl 0,22 0,22 0,26 0,26 0,26 0,27 

Total 97,46 98,46 99,93 97,06 100,17 98,82 
Table A2: Glass analyses measured with EPMA. 
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Vent # Fluid type Year Water depth [m] Temperature [°C] Lat Lon 

1 Black Smoker 2006 1158 298 152.1009 -3.7999 

  
2011 1154 314 

  2 Black Smoker 2006 1157 300 152.1009 -3.8002 

3 Black Smoker 2006 1194 324 152.1004 -3.7999 

  
2011 1192 332 152.1003 -3.7998 

4 Diffuse venting 2006 1196 32 152.1014 -3.7993 

  
2011 

 
44 

  5 Hybrid vents 2006 1207 240 152.1008 -3.7991 

  
2011 1228 169 152.1005 -3.799 

6 White Smoker 2006 1263 284 152.1005 -3.8012 

7 White Smoker 2006 1217 71 152.1015 -3.8006 

  
2011 1220 104 152.1015 -3.8006 

8 White Smoker 2011 1202 79 152.1005 -3.8006 

Table A3: List of hydrothermal vents at North Su with positions of temperature measurements, year and 

water depth.   
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Fig. A1. TAS diagram of rock samples used in this study. 

 

 
Sample # 

 
J2-221- J2-223- J2-227- 

wt.% 8-R1 
15-
R1 

16-
R1 16-R2 3-R1 5-R1 9-R2 10-R1 

14-
R1 

16-
R1 13-R1 

SiO2 59.59 60.46 61.39 60.07 61.21 61.34 60.86 61.54 62.16 62.52 63.73 

TiO2 0.54 0.56 0.56 0.55 0.57 0.57 0.56 0.58 0.58 0.57 0.56 

Al2O3 13.95 14.69 14.69 14.36 14.90 14.69 14.83 14.78 14.97 14.85 14.76 

Fe2O3 6.94 6.60 5.85 7.17 7.34 6.29 7.06 7.15 6.59 6.36 4.39 

MnO 0.130 0.127 0.120 0.138 0.152 0.120 0.131 0.132 0.128 0.122 0.086 

MgO 4.09 2.81 2.61 4.20 3.08 2.25 3.08 2.60 2.75 2.32 2.16 

CaO 6.48 5.96 5.81 7.05 6.44 5.78 6.43 5.90 6.12 5.50 5.21 

Na2O 2.94 3.60 2.69 3.40 3.73 4.41 3.65 3.82 3.77 3.90 3.95 

K2O 0.78 0.98 0.80 0.87 0.98 1.12 0.97 1.03 1.01 1.08 0.88 

P2O5 0.17 0.15 0.13 0.17 0.21 0.19 0.19 0.20 0.19 0.19 0.09 

H2O 2.65 1.55 3.33 1.17 0.97 1.41 1.28 1.02 1.06 1.26 1.41 

CO2 0.02 0.03 0.04 0.02 0.03 0.04 0.06 0.06 0.03 0.03 0.03 

Total 98.35 97.60 98.10 99.17 99.62 98.20 99.10 98.80 99.35 98.70 97.33 

Table A1: Results of whole rock XRF analyses. All iron measured as Fe2O3.  
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 Sample # 

 J2-221- J2-223- 

wt. % 8-r1 16-r1 5-R1 9-r2 10-R1 14-r1 
SiO2 66,87 68,18 74,11 72,90 74,45 73,51 
TiO2 0,61 0,62 0,56 0,49 0,49 0,56 
Al2O3 13,40 13,28 12,60 12,75 12,39 12,64 
Cr2O3 0,000 0,000 0,010 0,000 0,017 0,017 
FeO 5,67 5,54 3,48 2,76 3,48 3,09 
MnO 0,12 0,13 0,09 0,10 0,08 0,06 
MgO 1,32 1,18 0,38 0,23 0,43 0,24 
CaO 3,99 3,85 2,06 2,13 2,02 2,04 
Na2O 3,53 3,65 4,35 3,64 4,41 4,43 
K2O 1,42 1,50 1,92 1,71 1,95 1,85 
P2O5 0,29 0,30 0,13 0,10 0,21 0,12 

SO3 0,02 0,01 0,00 0,00 0,00 0,00 

BaO 0,00 0,00 0,08 0,00 0,07 0,00 

Cl 0,22 0,22 0,26 0,26 0,26 0,27 

Total 97,46 98,46 99,93 97,06 100,17 98,82 
Table A2: Glass analyses measured with EPMA. 

 

Vent # Fluid type Year Water depth [m] Temperature [°C] Lat Lon 

1 Black Smoker 2006 1158 298 152.1009 -3.7999 

  
2011 1154 314 

  2 Black Smoker 2006 1157 300 152.1009 -3.8002 

3 Black Smoker 2006 1194 324 152.1004 -3.7999 

  
2011 1192 332 152.1003 -3.7998 

4 Diffuse venting 2006 1196 32 152.1014 -3.7993 

  
2011 
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  5 Hybrid vents 2006 1207 240 152.1008 -3.7991 

  
2011 1228 169 152.1005 -3.799 

6 White Smoker 2006 1263 284 152.1005 -3.8012 

7 White Smoker 2006 1217 71 152.1015 -3.8006 

  
2011 1220 104 152.1015 -3.8006 

8 White Smoker 2011 1202 79 152.1005 -3.8006 

Table A3: List of hydrothermal vents at North Su with positions of temperature measurements, year and 

water depth.   
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Highlights 

Subaqueous andesitic volcanism at the SER, Manus Basin, Papua New Guinea 

Subaqueous cryptodome eruption through a hydrothermal system 

Deep subaqueous explosivity caused by a cryptodome emplacement 

Sulfur Candles white smoker vent site with liquid CO2 discharge 

White and black smoker hydrothermal vent site within 100m lateral distance 


