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The linear inversion commonly used in fisheries and zooplankton acoustics assumes a constant

inversion kernel and ignores the uncertainties associated with the shape and behavior of the scatter-

ing targets, as well as other relevant animal parameters. Here, errors of the linear inversion due to

uncertainty associated with the inversion kernel are quantified. A scattering model-based nonlinear

inversion method is presented that takes into account the nonlinearity of the inverse problem and is

able to estimate simultaneously animal abundance and the parameters associated with the scattering

model inherent to the kernel. It uses sophisticated scattering models to estimate first, the abundance,

and second, the relevant shape and behavioral parameters of the target organisms. Numerical simu-

lations demonstrate that the abundance, size, and behavior (tilt angle) parameters of marine animals

(fish or zooplankton) can be accurately inferred from the inversion by using multi-frequency acous-

tic data. The influence of the singularity and uncertainty in the inversion kernel on the inversion

results can be mitigated by examining the singular values for linear inverse problems and employ-

ing a non-linear inversion involving a scattering model-based kernel.

[http://dx.doi.org/10.1121/1.4948759]

[MS] Pages: 2885–2895

I. INTRODUCTION

Quantitative information on the spatial and temporal distri-

butions of aquatic organisms is essential to the understanding

and management of marine ecosystems. Biological sampling

methods such as nets, trawls, and pumps typically have been

used to provide direct data (Wiebe and Benfield, 2003).

However, these techniques can only provide sparse discrete in-

formation and are time consuming, notwithstanding the inher-

ent biases due to sampler avoidance (Kelley, 1976; Wiebe

et al., 2013). Acoustic remote sampling techniques can continu-

ously sample a much larger portion of the water column during

a given time period than the direct methods. Since the acoustic

sampling is indirect, conversion from the measured acoustic in-

tensity and frequency response to abundance and/or biomass is

required (Greenlaw, 1979; Lavery et al., 2007; Demer, 2004).

Earlier applications using multi-frequency acoustic meas-

urements to estimate zooplankton size distributions quantita-

tively can be traced back to the work by McNaught in the late

1960s (McNaught, 1968). Their approach was primarily based

on an empirical model of zooplankton target strength obtained

by linear regressions between the measured acoustic intensities

and co-registered net sampling. A formal theoretical formula-

tion based on the linear inversion theory proposed by Holliday

(1977) established a framework for later development of acous-

tic inversion techniques in zooplankton and fisheries applica-

tions. Using the theory of generalized linear inversion, an

influential paper by Holliday et al. (1989) reported on the appli-

cation of the Multi-frequency Acoustic Profiling System to the

determination of zooplankton size distribution. The system con-

tained 21 discrete frequencies logarithmically distributed

between 100 kHz and 10 MHz and was used to estimate the

biomass distribution of zooplankton of different groups. The

decades subsequent to these initial developments have seen a

variety of applications of multi-frequency acoustic inversions

to studies of zooplankton (e.g., Lavery et al., 2007; Lawson

et al., 2008a; Lawson et al., 2008b; Holliday et al., 2009;

Korneliussen et al., 2009; Lebourges-Dhaussy et al., 2009).

The introduction of acoustic scattering models for con-

structing the inverse kernel matrix required for such inver-

sions and the associated error analysis in terms of the model

and measurement errors led to a series of advances in model-

ing the acoustic scattering by marine organisms (Holliday,

1976; Love, 1977; Foote, 1985; Stanton, 1989; Clay, 1992;

Stanton et al., 1993, 1998; Clay and Horne, 1994; Chu et al.,
1993; Ye, 1997; Horne and Jech, 1999; Stanton and Chu,

2000; Demer and Conti, 2005; Lawson et al., 2006). The

conventional linear inversion technique for estimating zoo-

plankton abundance assumes that the multi-frequency data

are independent of, or at least not perfectly dependent on,

each other and that the scattering model inherent to the

inversion kernel is perfectly known. The effect of uncer-

tainty in the scattering models and associated parameteriza-

tion on uncertainty in abundance estimates has not been

investigated adequately. Although a few publications have

studied the uncertainties in estimating acoustically the bio-

mass of marine organisms (Simmonds and MacLennan,

2005; Demer and Hewitt, 1993; Demer, 2004), these works

were concentrated on various scattering geometries, notably

animal shape and angle of orientation, associated witha)Electronic mail: dezhang.chu@noaa.gov
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particular acoustic systems under the framework of the sonar

equation rather than on the inversion algorithms. Furthermore,

deterministic inverse methods accounting for uncertainty in

the scattering model parameters and allowing the estimation

of these parameters acoustically have seldom been explored

in the zooplankton and fisheries literature, although relevant

statistical approaches based on the Bayesian method are avail-

able from outside disciplines (Tarantola, 2005; Fassler et al.,
2009; Menke, 2012; Xiang and Fackler, 2015).

Here we present a systematic approach to a more gen-

eralized inversion problem including both linear and non-

linear inversions. The corresponding uncertainty associated

with the inversion kernel is investigated, revealing the

uncertainties related to the scattering models. The nonlinear

inversion presented allows a parametric inversion to find

both scatterer abundance and the optimized scattering

model and associated parameters. Additional information,

including the upper and lower bounds of the animal distri-

bution parameters, biological and acoustic distribution sta-

tistics, and the uncertainty constraints, is also integrated

into the inversion by means of linear and/or nonlinear

programming.

II. METHODS

A. Theoretical framework

In this section, the theoretical background of linear and

nonlinear inversions is briefly described including both

inversion and the associated uncertainties. Focus is on multi-

frequency data available from a majority of the acoustic sys-

tems currently used in fisheries and zooplankton acoustics.

1. Linear and nonlinear inversion

For a multi-frequency acoustic system, the received dif-

ferential backscattering cross-section per unit volume for the

ith frequency can be expressed as (Holliday, 1977)

ri
totðfÞ ¼

XN

j¼1

njr
i
jðfÞ; i ¼ 1; 2;…M; (1)

where M is the number of frequencies, N is the total number

of animal groups used in the inversion, nj is the number of

animals per unit volume for the jth animal group, and ri
j is

the differential backscattering cross-section of jth animal

group at the ith frequency. f is a feature vector specifying

the geometrical (size, shape, and orientation) and physical

(density and sound speed contrasts, attenuation, etc.) proper-

ties of the animals. Our objective is to determine nj through

Eq. (1). The inverse problem is to minimize a cost function,

or an objective function,

Qd ¼
XM

i¼1

ri
totðfÞ �

XN

j¼1

njr
i
jðfÞ

�����

�����
2

2

; (2)

where k•k2 is the L2 norm. In matrix form, Eq. (2) can be

expressed as

Qd ¼ ðdr � d̂ÞTðdr � d̂Þ ¼ ðdr � rnÞTðdr � rnÞ ;
(3)

where the superscript “T” stands for matrix transpose. Qd

represents a measure of the prediction error, or the mismatch

between the measured data dr and the theoretical prediction

d̂ ¼ rn. Note that the kernel r is a function of the feature

vector, f. For M>N and assuming none of M equations

defined in Eq. (1) are correlated, the inversion would be a

true over-determined inverse problem and the vector n can

be uniquely determined by minimizing Qd with respect to n

(Menke, 2012; Wunsch, 1996),

n ¼ ½rTr��1rTdr ¼ r�gdr; (4)

where r�g is the generalized inverse of the over-determined

problem described by Eq. (1). In many cases, the inverse

problem is under-determined, i.e., the number of unknowns

N is greater than the number of frequencies M, and the cost

function will then be constructed based on the concept of so-
lution length

Qr ¼ nTn: (5)

The corresponding generalized inverse can be obtained

by minimizing Qr subject to the condition defined by Eq.

(1),

n ¼ rT ½rrT ��1
dr ¼ r�gdr: (6)

Hence, the solution given by Eq. (6) is also called the

minimum length solution. For the special case when M¼N,

the kernel matrix r becomes a square matrix, the inversion

becomes an even-determined problem. The generalized

inverses given by Eqs. (4) and (6) reduce to r�1. The inverse

exists and the solution, n, can be uniquely determined if the

equations for any ith and kth frequencies with i 6¼ k are line-

arly independent of each other.

Sometimes, when we are not sure whether Eq. (1) is

under-determined, even-determined, or over-determined, an

iterative weighted damped least squares solution can be used

to minimize a combination of prediction error Qd and solu-

tion length Qr (Menke, 2012; Chu et al., 2001),

nðkþ1Þ ¼ nðkÞ þ ½kWn þ rTWdr��1rTWd½dr � rnðkÞ�;
(7)

where superscript k denotes the kth iteration. The two

weighting functions Wn and Wd describe the overall smooth-

ness or flatness of the model and data structures, respec-

tively. In the inversion applications investigated here,

elements of the model and data are independent, hence these

two weighting matrices are set to the identity matrix, which

leads to the solution from the Levenberg-Marquardt algo-

rithm (Levenberg, 1944; Marquardt, 1963). The constant k is

a damping parameter and is chosen to ensure the conver-

gence of the iteration and may vary with the iteration num-

ber (Chu et al., 2001). Equation (7) is often used when the

number of unknowns is slightly larger than the length of the
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data vector dr or the inverse is close to singular such as in

the case of sediment sound speed tomography (Chu et al.,
2001).

Inverse solutions given by Eqs. (4), (6), and (7) are valid

for linear inverse problems. For a nonlinear inverse problem,

such that some components or elements of the feature vector

f are also unknown, the kernel matrix r is no longer a con-

stant. To solve a nonlinear inverse problem, we need to

determine n and f simultaneously. For cases when the non-

linear inverse problem can be transformed to a quasi-linear

problem (Chu et al., 2001), Eq. (7) can be modified by intro-

ducing a new unknown vector ~n (which includes the original

unknown vector n and the feature vector f) and a new kernel

matrix ~r that will be updated for each iteration,

~nðkþ1Þ ¼ ~nðkÞ þ ½kWn þ ~rðkÞ
T

Wd ~r��1

� ~rðkÞ
T

Wd½dr � ~rðkÞ~nðkÞ�; (8)

where ~n ¼ ½nTDfT �T and ~r ¼ ½r @d̂=@f�, with ½@d̂=@f�ij
¼ @d̂ i=@fj, where d̂ ¼ ~r~n is the theoretical prediction (Chu

et al., 2001). As for Eq. (7), the two weighting matrices, Wn

and Wd, are normally identity matrices in our applications.

Another way to solve a nonlinear inverse problem is to mini-

mize Eq. (2) directly by solving an implicit function F(n, r,

d) as described by Menke (2012, pp. 140–147) subject to a

set of constraints

FiðfjÞ � 0; for i ¼ 1; 2;…; p; (9)

through a linear or nonlinear programming approach

(Luenberger and Ye, 2008), where Fi(fj) represents the ith
constraint on the jth unknown parameter. For Nþ v>Mþ p,

where v is the number of elements in f, and p is the total

number of constraints, the inverse problem is under-

determined and the solution is nonunique. To obtain a rea-

sonable unique solution, the condition Nþ v�Mþ p should

be satisfied.

2. Inversion uncertainty

The generalized inverse solution to a linear inverse

problem given in Eqs. (4) and (6) can also be an approximate

solution to a nonlinear inverse problem for which the kernel

r is a function of the unknown parameter vector f. For small

uncertainties in d resulting from measuring error and dr
resulting from inaccurate scattering models, the variability

or uncertainty of the estimated parameter vector, Nm may be

expressed as (Wunsch, 1996)

Nm ¼ dndnT ; (10a)

where

dn¼r�gddþ dr�gd: (10b)

The first term on the right-hand side of Eq. (10b) corre-

sponds to the uncertainty for a pure linear inversion. The sec-

ond term corresponds to the variability in the kernel and is

more complicated to evaluate since it depends on the

functional relation between r and f. The second term, in gen-

eral, represents a nonlinear inverse problem and can be eval-

uated numerically. In addition, the inversion constraints or

bounds described in Eq. (9) can affect the uncertainty as well.

Equation (10a) is a N�N matrix and is conveniently

used to evaluate the uncertainties of each individual model

parameter, especially when these parameters are related to

each other, such as the sound speeds in spatially adjacent

elements used in acoustic tomography. Another way to esti-

mate the overall uncertainty of the inversion is to compute

the sum of squares of the mismatch between the data and the

predictions

NR
m ¼ dnTdn: (10c)

NR
m is a scalar and represents the squared sum of the

uncertainty contribution from each individual parameter.

For a pure linear inverse problem, i.e., when the second

term in Eq. (10b) is negligible compared with the first term,

it is obvious that dn is proportional to the square of the L2

norm of the generalized inverse r�g. To investigate how the

structure of the kernel r affects kr�gk2 analytically, we ana-

lyze the first term in Eq. (10b) for an over-determined

inverse problem. It is well known that any M�N matrix r
with M>N can be decomposed into three multiplicative

matrices (Penrose, 1955; Menke, 2012; Wunsch, 1996)

r¼UKVT ; (11)

where U is a M�M square matrix, whose columns are

orthonormal eigenvectors spanning the data space, and V is

a N�N square matrix, whose columns are also orthonormal

eigenvectors, but span the model or parameter space.

Equation (11) is called Singular Value Decomposition

(SVD) (Menke, 2012; Wunsch, 1996). The singular value

matrix K (M�N) consists of an N�N non-zero diagonal

matrix, KN � N, and a (M � N)�N zero matrix. The values

of the diagonal elements of KN�N are non-negative and

called singular values. Taking advantage of the orthonormal-

ity of the eigenvalue matrices U and V, i.e., UTU¼ I and

V
T
V¼ I, and using Eq. (4), the generalized inverse for an

over-determined linear inverse problem can be expressed as

r�g¼VK�1
N�NUM�N

T : (12)

Since KN � N is a diagonal matrix, its inverse K�1
N�N is

also a diagonal matrix with its elements being the inverse of

the corresponding singular values. For a fixed dd in Eq.

(10b), the smaller the product of the singular values, the

larger the kr�gk2, and the larger the dn. If the data are truly

independent, the KN � N will have N non-zero singular val-

ues. However, if any of the data at different frequencies are

linearly dependent or correlated, r will become rank defi-

cient and the corresponding singular values of the kernel

tend to be zero, resulting in a large kr�gk2, and hence make

the inverse result unstable. If only K singular values that are

greater than a threshold e are kept and the rest (N � K) sin-

gular values are eliminated, the generalized inverse can then

be written as
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r�g¼VKK�1
K�KUT

K; (13)

where the minimum singular value in K satisfies kmin� e.
For K�N the solution of Eq. (13) is unique and stable.

However, if K<N the inverse problem becomes under-

determined and the predicted model parameters are no lon-

ger unique. Despite the fact that we can obtain a “unique”

solution given by Eq. (6), which is based on the principle of

minimum length, the complete solution to Eq. (1) can be

proven to be (Wunsch, 1996)

~n¼VKK�1
K�KUT

Kdþ V0a; (14)

where the vector a is an arbitrary coefficient vector that can

take any value without violating the original governing equa-

tion, Eq. (1). V0 is the matrix containing eigenvectors that

span the null space of the model parameters and satisfies the

relations

V ¼ ½VKV0�
VT

KV0 ¼ 0: (15)

V0 behaves like an annihilator in model space to which the

data cannot be mapped (Menke, 2012). The uncertainty in

the predicted model parameter for a rank-deficient system is

then (Wunsch, 1996)

dn ¼ VKK�1
K�KUT

Kddþ V0a: (16)

The uncertainty matrices defined in Eqs. (10a) and (10c) are

then

Nm ¼ VKK�1
K�KUT

K < ddddT > UkK
�1
K�KVT

K

þ V0 < aaT > VT
0 ;

¼ VKK�1
K�KUT

KRddUkK
�1
K�KVT

K þ V0RaVT
0 (17a)

NR
m ¼ ddTUkUT

Kddþ aTVT
0 V0a; (17b)

where the matrices Rdd and Ra are covariance matrices of

vectors dd and a, respectively. Note that UkU
T
K is, in general,

not equal to an identity matrix. If the elements of the vector

dd are independent of each other, the covariance matrix Rdd

can be replaced by r2
dIKK, where r2

d is the variance of dd,

and Eq. (17a) reduces to

Nm ¼ r2
dVKK�1

K�KVT
K þ V0RaVT

0 : (18)

The second term in Eq. (10b) corresponds to the vari-

ability of the kernel and, in general, has a nonlinear relation-

ship with the parameter vector f described in Eq. (8). Since

in general the analytical form of this term may not be obtain-

able, we can numerically evaluate the second term.

B. Simulations

Numerical simulations can provide insight into the

inversion problem and help us illustrate how the inversion

process works. We therefore consider three examples in fish-

eries and zooplankton acoustics and investigate uncertainties

in the inversion kernel. The first example demonstrates how

to assess the validity of the inversion result for a pure linear

inverse problem, the second example examines the influence

of variability in the inversion kernel on the inversion result

for a nonlinear inverse problem, and the third example

involves a more complicated nonlinear inversion case that

demonstrates the non-uniqueness in nonlinear inversion. It

should be noted that the examples are highly hypothetical

and convenient, and are chosen to illustrate the principle of

the inversion application for fisheries and zooplankton

acoustics. Furthermore, in addition to the uncertainties

explored here, the uncertainties resulting from sampling

errors, i.e., the first term of Eq. (10b) and Eq. (16), can be

evaluated analytically or numerically with Monte Carlo sim-

ulations (Demer, 2004). All inversion programs are written

and implemented in MATLAB utilizing the Optimization

Toolbox.

1. Linear inversion example

In the first simulation example, we explore the errors

associated with a linear inversion problem assuming data

from an echosounder with two commonly used frequencies

in fisheries acoustics, 38 and 120 kHz. We further assume

that there are two fish groups mixed in the same acoustically

ensonified volume, but with different sizes; this might repre-

sent, for example, a region where two distinct size classes

of herring are present. The mean length of the first group

is 28 cm with a 10% standard deviation (s.d.), which is

assumed fixed, and the mean length of the second group is

varied between 6 and 50 cm, also with 10% s.d. at each

length bin (a constant number of lengths bins nbin¼ 30, is

used for each length distribution). The abundance or numeri-

cal density of both groups is also kept fixed. Our task is to

estimate the abundance (number of animals per unit volume)

of each of the two fish groups and to estimate the inversion

errors for varying lengths of the second size group, as well

as for varying levels of simulated noise that represents mea-

surement errors.

The size distributions or probability density functions of

both groups are assumed to be Gaussian. Since the swim-

bladders dominate the backscattering, the simulations con-

sider the scattering from swimbladders only. For simplicity,

but without loss of generality, the synthetic data are gener-

ated based on the exact modal series solution for fluid

spheres (Anderson, 1950). The target strengths of the two

fish groups from the gas-filled fluid sphere model depend

strongly on frequency (Fig. 1), with a large peak at the low

frequency due to a monopole, or breathing mode, resonance

scattering, and a relatively flat frequency response at higher

frequencies. In addition, the orientation of the swimbladder

is assumed to be horizontal, and hence its influence on the

backscatter is ignored. Compared to the theoretical target

strength of a 28-cm fish, the target strength curve for the

variable-length group will shift to the left for larger fish

(>28 cm) and to the right for smaller fish (<28 cm).

However, since the theoretical curves shown in Fig. 1 are the

reduced target strength (RTS), i.e., the target strength nor-

malized by the length of the scattering target, the curve
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associated with 6–50 cm herring is only shifted horizontally

relative to the curve labeled 28 cm herring. Random noise is

also added to the synthesized data with the signal-to-noise

(SNR) ratio varying from 6 to 60 dB, which represents the

errors in the raw acoustic data. The simulation parameters

are tabulated in Table I. Using Eq. (14), the 2-element vector

of number density can be computed. The relative error var-

iance is defined as

e ¼ DeTDe; (19)

where De ¼ ð~n � ntrueÞ=kntruek2. Note that since M¼N¼ 2,

the problem is even- determined and the null space is zero,

i.e., V0¼ 0.

The data vector, d described in Eq. (3), is the measured

volume backscattering strength (Sv) and the kernel r is the

scattering model matrix as described in Eq. (1).

2. Nonlinear inversion case A

The second example investigates the errors resulting

from a nonlinear kernel described by the second term of Eq.

(10b) and employs the nonlinear inversion (Eq. 8) to esti-

mate simultaneously animal abundance and scattering model

parameters inherent to the kernel. In this example, we

assume a mono-size fish school with a true mean length of

28 cm, a constant aspect ratio of 10 (ratio of mean length to

mean width of swimbladder), a fish numerical density of 2

(ntrue¼ 2), and a tilt angle of 0�. The synthetic data are gen-

erated assuming a 4-frequency echosounder system (18, 38,

120, 200 kHz) and Eq. (2) is used directly. In the simulation,

the swimbladder aspect ratio is varied from 6 to 13 and

swimbladder tilt angle varied from 0� to 15�. In addition,

background noise with a 20 dB SNR is added. The simula-

tion parameters are summarized in Table II. Our objective is

to investigate the relative error in estimating the fish number

density (n) due to incorrect mean tilt angle (htilt) and the

mean aspect ratio of the fish swimbladder (rasp) used in the

inversion processing. The constraints, Eq. (9), for the nonlin-

ear inversion are simply hmin� htilt� hmax for tilt angle and

rmin� rasp� rmax for aspect ratio, where (hmin, hmax) and

(rmin, rmax) were (0�, 15�) and (6, 13), respectively. These

constraints can be expressed as

F1ðhtiltÞ ¼ htilt � hmin � 0 j ¼ 1; i ¼ 1

F2ðhtiltÞ ¼ hmax � htilt � 0 j ¼ 1; i ¼ 2

F1ðraspÞ ¼ rasp � rmin � 0 j ¼ 2; i ¼ 1
F2ðraspÞ ¼ rmax � rasp � 0 j ¼ 2; i ¼ 2

F1ðnÞ ¼ n > 0 j ¼ 3; i ¼ 1

F2ðnÞ ¼ nmax � n > 0 j ¼ 3; i ¼ 2;

8>>>>>><
>>>>>>:

(20)

where we can set a realistic upper limit for fish number den-

sity nmax<1. In this example, we set nmax¼ 100.

For simplicity as in the linear inversion example (exam-

ple 1), the backscattering is again assumed to be dominated

by that from the swimbladder, i.e., the scattering from fish

flesh is ignored. Since the minimum ka (0.8) is much larger

than the resonance ka (0.0132), where k is the wavenumber

and a is the equivalent spherical radius of the swimbladder,

and the tilt angle is less than 15�, the standard method based

on the Kirchhoff approximation is used (Foote, 1985).

3. Nonlinear inversion case B

In this example, hypothetical multi-frequency acoustic

data from euphausiids, a group of weakly scattering marine

crustaceans, at 5 frequencies commonly used in fisheries and

zooplankton acoustics (18, 38, 70, 120, and 200 kHz) are

generated.

Since euphausiids are weakly scattering objects, the

Distorted Wave Born Approximation (DWBA) scattering

model is used. This model has been successfully used in

many previous acoustic studies of euphausiids (Chu et al.,
1993; Stanton et al., 1998; Lawson et al., 2006, 2008b).

Here, the shape of the animal is modeled as a uniformly bent

cylinder (Fig. 2). The “acoustic” length of the equivalent cyl-

inder used in modeling euphausiid scattering is taken as the

length from the anterior tip of eye to the end of the sixth

FIG. 1. (Color online) Backscattering form functions as a function of fre-

quency for fish of two different sizes. In simulation example 1 (linear inver-

sion), the size of one group is assumed known (28 cm), while the other is

allowed to vary, with the effect of shifting the theoretical curve left or right

for larger or smaller mean sizes, respectively. Since the theoretical curves

are the RTS, the curve associated with 6–50 cm herring is only shifted hori-

zontally relative to the curve labeled 28 cm herring. The curve on the right

(green) corresponds to a fish length of 5.2 cm. The model is based on the

fluid sphere model (Anderson, 1950).

TABLE I. Simulation parameters for example, 1, the linear inversion prob-

lem (two size classes of fish).

Parameter Value

Frequencies 38 kHz, 120 kHz

Fish body lengths

Size group 1 28 cm

Size group 2 6–50 cm

Ratio of fish body length to swimbladder length 3.5

Swimbladder aspect ratio 9.5

SNR 6–60 dB

Number densities (no./m3)

Size group 1 1

Size group 2 1.5
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abdominal segment. The parameters that we want to estimate

are abundance (n, no. m–3), the mean length ð�LÞ, the mean

tilt angle ð�hÞ, and its s.d. rh. The “true” values of these four

parameters used in the simulations are listed in Table III.

The other three geometric parameters required in the

DWBA-based scattering model are set as constants during

the inversion: rL is the ratio of the s.d. of the animal length

to its mean length, q/L is the ratio of the radius of curvature

of the euphausiid body (q) that is assumed to be uniformly

bent to the mean length of the euphausiids ð�LÞ, and the as-

pect ratio (L/W¼ 0.5 L/a, where a and W are the radius and

width of euphausiids, respectively) of the euphausiids. Since

the backscattering from euphausiids is relatively insensitive

to the parameter q/L unless the incidence is close to end-on

(Stanton et al., 1993), a value of q/L¼ 3 is thought to be rea-

sonable and thus is used in our inversion (Chu et al., 1993;

Stanton et al., 1993, 1998; Lawson et al., 2006). Although

the backscattering cross section is proportional to the square

of the aspect ratio of euphausiids, this parameter does not

vary too much between individuals for adult euphausiids

(Stanton et al., 1998) and, for simplicity, is set to a constant

value of L/a¼ 0.5 L/W¼ 18. The value is derived from

measurements of euphausiids sampled in the Gulf of Maine

reported in Wiebe et al. (2013), and is also very similar to

what we have used before in other modeling studies of elon-

gated scatterers (Chu et al., 1993; Stanton et al., 1993;

Stanton et al., 1998). For euphausiids of uni-modal distribu-

tion, the parameter rL is about 10% or less (Foote et al.,
1990; Chu and Wiebe, 2005), but could be larger for bi-

modal length distribution (Lawson et al., 2006, 2008a). In

our simulation, a uni-modal length distribution is assumed

and this parameter is assigned to 0.15 in order to account for

a potential bi-modal length distribution. Two other very im-

portant parameters are the sound speed and density contrasts

of the euphausiids relative to the surrounding seawater (g
and h, respectively). Both of them vary for euphausiids from

between 1.007 and 1.04 (Foote et al., 1990; Chu and Wiebe,

2005), and are assigned to g¼ 1.040 and h¼ 1.0350 in our

simulations. These parameters along with other parameters

that are necessary to generate the hypothetical mean back-

scattering cross section per unit volume are summarized in

Table III. A stochastic Gaussian random noise is added to

the Sv with a SNR set to 20 dB.

The nonlinear inversion, based on Eq. (8), is performed

to estimate the four unknown parameters: n, ð�hÞ, rh, and ð�LÞ.
Since the nonlinear inversion method is an iterative process,

the initial values for these four parameters are randomly

selected within the following bounds, i.e., Eq. (9): nbounds

¼ [0.01 10] (no./m3); �hbounds¼ [0� 50�]; rh_bounds¼ [0� 50�];
�Lbounds¼ [10 50] (mm). The mathematical expressions for

these constraints will have a similar form as Eq. (20).

III. RESULTS

A. Linear inversion example

The first simulation example quantified the errors asso-

ciated with a linear inversion problem assuming two size

TABLE II. Simulation parameters for the nonlinear inversion Case A (fish).

Parameter Value

Frequencies (kHz) 18, 38, 120, 200 kHz

Mean fish body length 28 cm

Swimbladder (simulation):

Shape Prolate spheroid

Length 9.3 cm

Aspect ratio 10

Tilt angle 0�

Swimbladder (inversion):

Shape Prolate spheroid

Length 9.3 cm

Aspect ratio 6–13

Tilt angle 0�–15�

SNR 20 dB

Number density (no./m3) 2

FIG. 2. (Color online) Diagram showing the euphausiid modeling geometry

and associated parameters. For the inversions performed here, the unknown

parameters of angle of orientation and length distributions are assumed to be

Gaussian, where the length distribution is normalized by the mean length.

The aspect ratio L/W is assumed to be constant based on previous measure-

ments. The backscattering is insensitive to q/L as demonstrated in Stanton

et al. (1993) and this parameter is also assumed to be invariant.

TABLE III. Simulation parameters for the nonlinear inversion Case B

(euphausiids).

Parameter Value

Frequencies (kHz) 18, 38, 70, 120, 200 kHz

Euphausiids (simulation):

Shape Uniformly bent

Number density (no./m3) 3

Mean length (mm) 30

s.d. of length/mean length 0.15

Mean tilt angle (deg) 10

s.d. of mean tilt angle (deg) 20

Aspect ratio 9

Density contrast 1.04

Sound speed contrast 1.035

Radius of curvature/length 3

Euphausiids (inversion constraints):

Number density (no./m3) 0.01–10

Mean length (mm) 10–50

Mean tilt angle (deg) 0–50

s.d. of mean tilt angle (deg) 0–50

SNR 20 dB

2890 J. Acoust. Soc. Am. 139 (5), May 2016 Chu et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.128.44.104 On: Wed, 29 Jun 2016 14:48:23



classes of fish, where the size of the second fish group, as

well as SNR, were varied. The simulation relative error var-

iance, e defined in Eq. (19), varied strongly as a function of

both the mean length of the second fish group and the SNR

(Fig. 3a). It is not surprising that in general, the relative error

e decreases as SNR increases and becomes larger when the

mean length of the second group approaches 28 cm, the

mean length of the first group. The former is expected since

uncertainty in the measurements is decreasing. The latter

point is expected since once the sizes of two groups are very

close to each other we are not able to distinguish them,

resulting in two perfectly correlated equations and producing

a singularity in inversion. There are also other spikes around

fish lengths 10, 39, and 43 cm, resulting in some ambiguity.

To investigate these interpretations quantitatively, the SVD

is applied to the kernel matrix given by Eq. (11). In this

example, there are two unknowns and two frequencies,

where r is a 2� 2 matrix. As a result, we will obtain two sin-

gular values. The ratio of the two singular values, or condi-

tion number, is plotted as a function of the length of the

second fish group in the lower plot of Fig. 3. It is clear that

the larger the ratio, the larger the relative error variance in

estimating the fish density. The largest peak of the ratio cor-

responds to the fish length of the second group being 28 cm,

which is the same length as that of fish group 1. This is

because once the sizes of the two fish groups are equal, the

governing equation Eq. (1) becomes singular, or linear de-

pendent, resulting in a zero singular value and causing the

ratio to approach infinity. The larger the ratio, the less

confident we can be in the estimated number density, and the

condition number hence provides a quantitative metric for

evaluating inversion uncertainty.

B. Nonlinear inversion case A

The second simulation example first investigated the rel-

ative error in estimating fish density due to incorrect parame-

terization of the inversion kernel. The relative inversion

errors defined in Eq. (19) increased as the swimbladder as-

pect ratio and tilt angle parameters used in the inversion ker-

nel departed from the true values (Fig. 4, Table II). These

two parameters are included in the kernel and are assumed

unknown. It can be seen that the inversion error or uncer-

tainty is much more sensitive to the tilt angle, or orientation

of the fish, than to the aspect ratio of the swimbladder. The

relative error reaches 50% for using a wrong tilt angle by

only about 5�. The minimum error occurs when the tilt angle

and aspect ratio used in the inversion match those of the true

values.

Our second objective is to estimate simultaneously scat-

tering model parameters inherent to the inversion kernel and

fish number density. Since this example is a true over-

determined problem, the kernel is a full rank matrix and the

SVD method used in the linear inversion example (example 1)

to evaluate the performance of the inversion is ineffective. The

degradation of the inversion can be compensated by incorpo-

rating the nonlinear inversion method described by Eqs. (8)

and (9). The estimated parameters from 100 realizations are

FIG. 3. Results of inversion uncertainty analysis for simulation example 1 (linear inversion) where the fluid sphere model is used to simulate scattering by

swimbladders. The upper plot is the inversion error defined by Eq. (19) in log scale (log10 e). The lower plot is the ratio of the two singular values of the inver-

sion kernel matrix (r).
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htilt¼�0.03�6 0.04�, rasp¼ 9.98 6 0.20 for tilt angle and

aspect ratio, respectively, and n¼ 2.01 6 0.004. A typical

trace of parameter searching history showing the 45 itera-

tions from one realization is illustrated in Fig. 5. The inset

shows the estimated fish number density approaching the

true pre-assigned simulation value of 2.0 (Table II), where

the position of the open square marks the final iteration and

the values in parentheses are the final estimated parameters.

The number of iterations is determined when the minimum

value of Qd defined in Eq. (2) is reached. Here, the relative

error term is expressed in a linear case. To compare with the

quantity used in Fig. 1, the minimum relative error of 0.002

in Fig. 4 can be evaluated in logarithmic domain as log10

e¼ log10 0.002¼�2.69.

C. Nonlinear inversion case B

In this example, the four unknown parameters, n, �h, rh,

and �L, are estimated simultaneously using a nonlinear inver-

sion. Three hundred simulated realizations based on the pa-

rameters listed in Table III are used to generate the synthetic

Sv at the 5 frequencies (18, 38, 70, 120, and 200 kHz) that

are commonly used in fisheries acoustics (Table IV). The

mean values and the corresponding standard deviations of

these parameters inferred from the nonlinear inversion are

provided in Table V. Since the number of parameters to be

determined from inversion is less than the number of the Sv

values, it is also an over-determined problem. Largely as a

consequence, the agreement between the synthetic data and

the theoretical predictions or re-constructed synthetic data

using the inferred parameters from inversion is excellent

(Fig. 6). The mean difference at each frequency is no more

than 0.03 dB and the overall difference of all five frequencies

is about 0.08 dB (Table IV), which represents a less than 2%

uncertainty in biomass estimate, indicating that local conver-

gence for every realization is reached. The relative error of

log10 e in this case is �2.59. The inferred number density

(3 m�3) and the mean length (30 mm) of the euphausiids

agree with the assumed true simulation values (3.00 m–3 and

29.97 mm, respectively) very well, while the inferred mean

angle of orientation differed from the simulation value by

23% and the corresponding s.d. agreed reasonably well, but

was estimated with a relatively large variance (Table V).

IV. DISCUSSION

Together, our numerical simulations for the linear and

nonlinear inversion serve to highlight the inversion kernel as

a key source of uncertainty in multi-frequency acoustic

inversions for parameters describing marine organisms and

demonstrate the capability of the nonlinear inversion method

as a means of simultaneously estimating animal abundance

as well as model parameters (e.g., animal size, orientation,

etc.) inherent to the kernel.

FIG. 5. (Color online) Parameter

search trace of the iterative nonlinear

inversion case A. The total number of

iterations is 45. The open square marks

the location where the iteration

stopped. The inferred parameters are

�0.1� for tilt angle, 10.0 for aspect ra-

tio, and 2.0 for the number density.

These parameters are basically identi-

cal to the true parameters of 0� for tilt

angle, 10 for aspect ratio, and 2 for fish

number density, respectively. The

superimposed inset shows the conver-

gence of number density as a function

of iteration number.

FIG. 4. Contours of inversion uncertainty analysis for nonlinear inversion

case A. The true aspect ratio and the tilt angle used in the simulation are

10� and 0�, respectively. Contours show relative error (e) of the estimated

numerical density normalized to true density in linear scale. To compare

with the quantity used in Fig. 1, the minimum relative error of 0.002 this

figure can be evaluated in logarithmic domain as log10 e¼ log10

0.002¼�2.69.
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The three numerical simulation examples (a linear and two

non-linear examples) illustrate the influence of uncertainties in

the synthetic data and in the kernel on the relative error in esti-

mating the abundance. Although the inversion itself for the lin-

ear inversion example (example 1) is purely a linear inversion,

this case demonstrates that the uncertainty or estimate error can

be very large even if the SNR is quite favorable (>40 dB) and

the scattering model is correct. It implies an ill-conditioned ker-

nel, i.e., implying the data at two frequencies are correlated and

the second datum provides no additional information, which

makes the inversion results extremely unstable. The ratio of

maximum to minimum singular values or the condition number

of the kernel matrix should be taken into account carefully

when interpreting the linear inversion results to obtain abun-

dance estimations. As we demonstrate here, the condition num-

ber can be used to assess the robustness and stability of the

abundance estimations from a linear inversion since it removes

the problem due to the singularity of the kernel inverse.

It should be noted that in the first example (the linear

inversion example), the two fish groups could be of different

species since our scattering model is quite generic. In this

example, the scattering model is based on the fluid sphere

model (Anderson, 1950). If we had used more sophisticated

models such as those given by Love (1977) or Clay and

Horne (1994), the specific values of length ranges associated

with larger spikes of singular-value ratio could be different,

but the general conclusions are expected to be the same.

The nature of inversion uncertainty resulting from an

ill-conditioned kernel (larger k1/k2 shown in Fig. 3) may

also be used to explain the inconsistency between the

expected and observed abundance estimates of fish within a

length-class reported by Horne and Jech (1999). In their

study, a linear inversion was used to predict fish abundance

with simulated data from three to five frequencies and the

Kirchhoff-ray mode fish backscattering model, which com-

bines the resonance scattering for swimbladder near the

resonance frequency, the Kirchoff approximation for swim-

bladder at higher frequency, and the ray tracing model for

fish flesh (Clay and Horne, 1994). Even with data from three

to five frequencies and a sophisticated scattering model, their

abundance estimates of three length classes in that study

were highly variable, indicating that the inversion was not

robust and most likely resulting from rank-deficient kernels.

Case A of the nonlinear inversion demonstrates how to

solve a nonlinear inverse problem. By combining a scatter-

ing model-based nonlinear inversion scheme and the linear

programming technique, we are able to estimate the abun-

dance as well as the unknown modeling parameters simulta-

neously. This approach is similar to a previous application

where a nonlinear inversion was applied to field acoustic

data for estimating shape and behavioral parameters of cod

with a single frequency by using the geometrical and acous-

tical characteristics of the echo traces (Chu et al., 2003). It is

worth noting that the analysis presented in this section is dif-

ferent from the techniques used both by Chu et al. (1993), in

which the model parameters were obtained by forward simu-

lations, and by Demer (2004), in which the modeling param-

eters were not directly estimated from the inversion and

were used only for evaluating the uncertainties.

For the case B of the nonlinear inversion, four model pa-

rameters are estimated: abundance (n) and mean length ðL;Þ,
which are the parameters that would be estimated from a

TABLE IV. Comparison of the simulated and predicted mean Sv values from the nonlinear inversion case B performed on simulated acoustic data at 18, 38,

70, 120, and 200 kHz.

Frequency (kHz) Synthetic mean Sv (dB) Prediction mean Sv (dB) <jDSvj >(dB)

18 �91.22 �91.24 0.02

38 �80.35 �80.38 0.03

70 �72.79 �72.81 0.02

120 �67.97 �67.98 0.01

200 �68.47 �68.47 0

Total Error (dB)¼
X5

i¼1

���� S
simulated
v ðiÞ
�Spred

v ðiÞ

���� — — 0.08

TABLE V. Comparison of the assumed model parameters and inferred

model parameters from the nonlinear inversion case B.

Parameter Assumption
Inferred

Mean s.d.

n (no./m3) 3 3.00 0.08
�L (mm) 30 29.97 0.01
�h (deg) 10 7.71 14.03

rh (deg) 20 19.54 23.64

FIG. 6. (Color online) Comparison of the simulated data and the theoretical

predictions based on the inferred parameters from the nonlinear inversion

for euphausiids (nonlinear inversion case B), i.e., number density, mean,

and s.d. of angle of orientation, and mean length.
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traditional linear inversion, and mean tilt angle ð�hÞ and its s.d.

(rh), which would be assumed to be constants in a linear

approach. The two model parameters, n and �L, which are

more important and are relatively easy to validate via compar-

ison to direct field sampling methods, are correctly inferred

from inversion with very small s.d., indicating their robust-

ness. However, the estimate for �h is 25% smaller than the true

value used in the simulations, but with much larger s.d., a

measure of its uncertainty. Although the inferred rh from

inversion is very close to its assumed value (19.54� vs 20�),
its s.d. is quite large (�24�), indicating large uncertainty. This

discrepancy in the estimated parameters concerning tilt angle

and the true values used in simulating the data are due to the

inherent non-uniqueness of a nonlinear inversion, resulting

from the ambiguous nature of the scattering model with

respect to �h and rh for a uniformly bent cylinder (Stanton

et al., 1993). In other words, sometimes, a smaller tilt angle

combined with a larger s.d. results in the same target strength

as a combination of a larger tilt angle and a smaller s.d.

The non-uniqueness of the two tilt angle related parame-

ters is further demonstrated in Fig. 7. The contours represent

the overall mismatch defined as

DR ¼
X5

i¼1

jSsimu
v ðfiÞ � Sinferred

v ðfiÞj; (21)

where fi is the ith frequency. There is a minimum region of

DR forming a curved band of [�h, rh] starting approximately

from [0�, 22.5�], passing through the true values [10�, 20�],
and then ending at [13.5�, 15.5�]. Small variation in the data

due to the 20 dB SNR used in the simulation causes the non-

linear inversion to converge to local minimum within the

curved band (i.e., 0.2 contour line). However, in reality these

two parameters are not easily determined and the exact com-

bination of their values is typically not relevant as long

as the target strength values are the same since it will not

affect the estimations of abundance and other parameters

such as the size of animals.

Although our examples are highly simplified and ideal-

ized compared with most of the inverse problems occurring

in fisheries acoustics, the general conclusions raised in the

previous paragraphs concerning the usefulness of the nonlin-

ear method should still be valid since the basic underlying

physics are the same as in more complicated real-world sit-

uations. These numerical simulations also provide stimulus

for further investigation of the nonlinear inversion method

via application to real-world data. Our findings point to the

importance of uncertainty associated with the inversion ker-

nel on inverse estimates of biological parameters, a key point

irrespective of the scattering model used.

It is obvious that better and more accurate scattering

models will make the inversion results more accurate and

the uncertainty related to the scattering model smaller. For

the purpose of the simulations presented here, the scattering

models are known a priori, and assumed to be representative

of the kinds of organisms (fish or zooplankton) being consid-

ered. In application to real-world data, however, it becomes

very important that the scattering models are correct or at

least close to correct. If the physical models are wrong, the

inversion can lead to a converged but wrong parameter esti-

mate. In those cases where the correct physical models are

not available, empirical models may be used.

V. SUMMARY

A theoretical investigation of model-based linear and

nonlinear inversion techniques based on multi-frequency

acoustic measurements is presented to infer the shape,

behavior (specifically, tilt angle), and abundance of

naturally-occurring scatterers like fish and zooplankton.

Uncertainties for both techniques are investigated with

respect to these parameters. For a pure linear inverse prob-

lem, where the kernel is perfectly known, the uncertainty of

inversion can be evaluated in terms of the singular values

or the condition number of the inversion kernel, which is

closely related to the fundamental physics of the inversion

problem. However, in reality, the parameters required by

the scattering models that make up the inversion kernel are

frequently not completely known and subsequently will

lead to inversion errors. To overcome this, a scattering

model-based nonlinear parametric inversion technique can

be used to estimate the abundance and the relevant parame-

ters of marine organisms simultaneously. Two numerical

examples of this nonlinear technique show its potential to

estimate both organism abundance and the parameters that

are included in the kernel of the inversion equation. The

corresponding uncertainty of the inferred model parameters

for a more complicated hypothetical scenario (more

unknowns) involving euphausiids is shown to be larger

than a simpler scenario involving fish even if both are over-

determined problems, demonstrating the inherent non-

uniqueness of the nonlinear inversion. Together, these

examples demonstrate the potential of the nonlinear method

in fisheries and zooplankton acoustics, and provide stimu-

lus and a basis for applying the method to real-world

situations.

FIG. 7. (Color online) Contours of the overall mismatch between the simu-

lated Sv and the predicted Sv based on the inferred parameters from nonlinear

inversion case B (euphausiids) as a function of tilt angle and its s.d.
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