WHOI-86-3

A Miniature Deep Sea Temperature Data Recorder: Design, Construction, and Use

by R. Koehler and R. P. von Herzen

Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543

Technical Report

Funding was provided by the National Science Foundation under grant Nos. OCE 82-14658 and OCE 83-00073. Additional support was provided by U.S. Geological Survey of Woods Hole to begin development of instrumentation; and to the Ocean Industry Program of the Woods Hole Oceanographic Institution to complete the development.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-86-3.

Approved for publication; distribution unlimited.

Approved for Distribution:

Robert C. Spindel, Chairman
Department of Ocean Engineering
Page No.
LIST OF FIGURES
ABSTRACT
I. INTRODUCTION 1
II. DESIGN CONSIDERATIONS 2
III. THE INSTRUMENT 4
A. DESCRIPTION 4
B. DESIGN 4
c. CONSTRUCTION 8
D. PRINTED CIRCUIT LAYOUT 9
E. PLOTTING 11
F. BATTERIES 14
IV. CALIBRATION 15
A. TEMPERATURE CALIBRATION 15

1. TEMPERATURE BATH TECHNIQUE 15
2. LINEARITY AND SENSITIVITY 15
B. THERMISTOR CURVE FITTING TO THERMISTOR CALIBRATIONS 17
C. THERMAL RESPONSE TESTS OF SPECIAL HPC CORING SHOE (DSDP) 17
v. PROGRAM LOADING AND DATA HANDLING 20
A. INTERFACE BOX 20
B. DESCRIPTION OF COMPUTER PROGRAMS 21
VI. PERFORMANCE 23
A. EXPERIENCE IN USING THE HPC TEMPERATURE INSTRUMENT 23
B. EXTRAPOLATION TO EQUILIBRIUM TEMPERATURES 29
C. TEMPERATURE CALIBRATION STABILITY 31
VII. FUTURE 33
VIII. ACKNOWLEDGEMENTS 35
REFERENCES 36
APPENDIX A. CAVITY STRENGTH CALCULATIONS A-1
3. KIDNEY SHAPED CAVITY (CURRENTLY USED) A-1
4. ANNULAR CAVITY A-2
APPENDIX B. DETAILED DESCRIPTION OF THE ELECTRONICS B-1
5. DESCRIPTION OF BLOCK DIAGRAM B-1
6. DETAILED DESCRIPTION OF THE SCHEMATIC (FIG. B-1) B-1
APPENDIX C. DETAILED LIST OF INPUT/OUTPUT INSTRUCTIONS C-1
APPENDIX D. BRIDGE CIRCUIT EQUATIONS D-1
APPENDIX E. CURVE FITTING TO THERMISTOR EQUATIONS E-1
APPENDIX F. PROGRAM LISTINGS FOR THE TEMPERATURE RECORDER F-1
7. INSTRUCTIONS FOR TREC F-1
8. SOURCE CODE FOR TEMPERATURE RECORDER F-7
a. TREC F-7
b. PLYBK F-27
c. ADTEST F-31
d. MEMTEST2 F-32
9. MACHINE CODE FOR TEMPERATURE RECORDER F-34
(xxx.BAS FILES)
a. TREC.BAS F-34
b. AVERG.BAS F-35c. PLYBK.BASF-36
d. ADTEST.BAS F-36
e. MEMTS2.BAS F-36
APPENDIX G. PRO-350 PROGRAMS G-1
10. PROBASIC.BAS G-1
11. MENU.BAS G-1
12. LOADER.BAS G-2
13. LOADI.BAS G-3
14. LOAD2.BAS G-4
15. LOAD3.BAS G-5
16. LOAD3A.BAS G-6
17. LOAD4.BAS G-7
APPENDIX H. COMPUTER PROGRAMS TO REDUCE HPC TEMPERATURE DATA H-1

Figure 1. Schematic configuration of drill ship deploying HPC during coring operations

Figure 2. Photograph of temperature recorder and battery. The body of the recorder is 12 cm long.

Page

Figure 3. Photograph of instrumentation and battery pack outside of special hydraulic piston coring (HPC) cutting shoe (2 pieces) designed to contain them.

Figure 4. Block diagram of HPC temperature recorder.
Figure 5. Configuration of printed circuit board and components used in HPC temperature instrumentation.

Figure 6. Sectional drawing of temperature instrumentation deployed in slot in wall of HPC. Dimensions given in inches.

Figure 7. Thermistor bridge divider ratio and sensitivity vs. temperature.

Figure 8. Thermal response of the instrumentation within the HPC shoe in laboratory tests with different types of materials.

Figure 9. In-situ temperature measurement on Leg 86 , site 576 , core 6. Note small oscillations of temperature after penetration.

Figure 10. In-situ temperature measurements on Leg 86, site 578 , core 14. Note relatively smooth thermal decay after penetration. Outlined portion of record expanded in Fig. 13.

Figure 11. In-situ temperature measurements on Leg 86 , site 577A, core 6 . Note relatively disturbed record over about 2 min. after penetration then a smooth decay.

Figure 12. In-situ temperature measurements on Leg 86 , site 577, core 8. Note sequential decrease, then a gradual increase, of temperatures after penetration.

Figure 13. Thermal decay of HPC during core 14 , hole 578 , Leg 86 (see Fig. 9). Solid dots are data points fit on the theoretical curve shown.

Figure 14. Comparison of temperature calibrations of 4 instruments before and after deployment and use at sea, over dates as indicated. Differences are calculated as the later calibration subtracted from the earlier.

Figure A-1. Flat plate model used for cavity strength calculations. A-1
Figure A-2. Cross section view of the hollow annulus. A-3
Figure A-3. Buckling pressure vs. length of cylinder, for various A-5
numbers of buckling lobes.
Figure B-1. Schematic of the temperature recorder. B-2
Figure D-1. Thermistor bridge circuit.

ABSTRACT

A miniature temperature recorder has been developed to be used with the hydraulic piston sediment corer (HPC) on the Deep Sea Drilling Project (DSDP). The instrumentation fits into pressure-sealed slots in the wall of the HPC, allowing temperature measurements to be made simultaneously with coring operations. Temperatures from -2 to $70^{\circ} \mathrm{C}$ are measured to a resolution of about $0.01^{\circ} \mathrm{C}$. Up to 1300 13-bit measurements are recorded in random access memory (RAM), at a sampling rate ranging between 0.1 s to over 100 min., as specified by the operator in a program loaded into a microprocessor of the instrument. During recording the instrumentation uses about 3.5 mamp at 7.5 volts, which can be supplied for about 20 hours of operation by a custom-made pack of silver-oxide batteries. The corer is normally left motionless in the sediment for about 10 min . to allow extrapolation of the measured temperatures to equilibrium in-situ temperature. Examples of data from DSDP Leg 86 are given.

I. INTRODUCTION

Marine geothermal measurements require that the vertical temperature gradients in sediments be determined accurately. This is usually accomplished by instrumentation lowered to the sea floor from an oceanographic ship or drilling platform. Probes and cores used with oceanographic vessels are typically designed to penetrate the bottom from 1 to 10 m , with the gradient measured by 4-7 thermal probes rigidly attached along the probe. In deep-sea drilling, instrumentation has been used to measure temperatures at intervals during drilling frequently to depths of 200-300 m (Erickson et al., 1975; Yokota et al., 1980), and occasionally to 600 m below the sea floor (Erickson and Von Herzen, 1978).

The much greater penetration achieved by drilling techniques provide the opportunity to investigate variability of heat flow with depth. Although many results indicate relatively constant heat flow with depth (Erickson et al., 1975; Hyndman et al., 1985), as expected for steady-state conductive thermal transfer, oceanographic studies suggest that some regions may have more complicated thermal signatures. On or near continental margins, processes such as rapid sedimentation or slumping, or bottom water temperature variations, may produce more complex or disturbed thermal profiles. Hydrothermal circulation in ocean crust is a process which dominates heat transfer over much of the youngest sea floor, and extends to sea floor as old as $80 \mathrm{~m} . \mathrm{y}$. in some ocean basins (Anderson et al., 1977). Recently it has been found that this mechanism may involve slow.fluid transfer through the overlying sediments (Anderson et al., 1979; Von Herzen et al., 1982; Becker and Von Herzen, 1982). The vertical component of interstitial fluid flow will produce a distinctive temperature profile with depth different from conductive profiles, essentially a exponential curve with a depth scale which depends primarily on the rate of vertical flow. Even extremely slow rates of pore fluid flow ($\sim 10^{-8} \mathrm{~cm} \mathrm{sec}{ }^{-1}=0.3 \mathrm{~cm} / \mathrm{yr}$) have important ramifications for schemes to dispose of wastes in the sea floor, esp. radioactive wastes which must be isolated for 10^{5} yrs or more.

Successful in-situ measurements of temperature in Deep Sea Drilling Project (DSDP) holes began with Leg 5 in 1969. Over the past decade, measurements have been obtained at only a few depths downhole in a small fraction of the total number of holes drilled by DSDP, due to several factors:

1) Drilling objectives did not justify the additional time required by such measurements.
2) The harsh environment of the drilling operations, primarily large shocks and accelerations, rendered downhole instrumentation inoperative (this factor has been substantially reduced by development of all solid-state instrumentation (e.g. Yokota et al., 1980)).
3) Sediment physical properties did not allow measurement of equilibrium temperatures (either too soft to hold the measurement probe steady, or too hard to penetrate).
4) Sediments are thermally disturbed due to drilling.

The successful development of a DSDP hydraulic piston corer (HPC) has allowed retrieval of remarkably undisturbed sediment cores to depths of 200 to 300 m beneath the sea floor. The HPC is a nearly ideal vehicle for an in-situ temperature sensor because it deploys well below (up to 10 m) the drilled and thermally disturbed hole for core retrieval (Fig. 1). Furthermore, its almost continuous deployment for the upper several hundred meters of sediments on many DSDP holes provides the opportunity to obtain detailed depth profiles of temperature with little or no cost in additional ship time.

Here we describe, in detail, instrumentation developed to obtain in-situ temperature during deployments of the HPC, along with examples of data. The instrumentation was first used on DSDP Leg 86 in 1982 (Horai and Von Herzen, 1985) and extended through the drilling program carried out on D/V GLOMAR CHALLENGER. Its use presently (January 1986) continues with the Ocean Drilling Program from D/V JOIDES RESOLUTION.

II. DESIGN CONSIDERATIONS

The HPC (hydraulic piston corer) is up to 10 m long and about 9 cm diameter (Anonymous, 1984). The most useful location of the temperature sensor is in the cutting shoe (the tip of the coring tool) where it is farthest from the temperature disturbances of the drill bit. Also, the tip of the coring tool is thinner than the rest of the core barrel, which suggests that it takes less time to reach equilibrium temperature with the sediment. The temperature recorder electronics could be anywhere, as long as it did not impede the operation of the coring tool.

Initially, we considered putting the electronics in a hollow (doughnut shaped) cylinder at the top of the coring tool, and running the sensor wires down the length of the coring tool. Although the users were willing to give up 15 cm of coring length for the electronics at the top of the core barrel, we could not determine how to run the sensor wires past the threaded sections of the coring tool to the sensor in the tip.

The cutting shoe has a 1.43 cm thick wall. If a portion of that wall could be hollowed out to make room for the electronics, then the sensor wires could be connected directly to the temperature recorder. If the electronics were contained on a hybrid circuit, they could be put into a space no larger than an ordinary large integrated circuit package. The $\$ 8000$ for the hybrid circuit layout and masks plus $\$ 1800$ for each unit produced were reasonable costs.

Engineers at DSDP designed as large a cavity as possible in the coring shoe to hold a very small electronics package and withstand the $10,000 \mathrm{psi}$ pressure at the bottom of the $21,000 \mathrm{ft}$ drill string. The modified coring shoe evolved in steps. Initially, the cavity was to be covered by a lid on the outside of the coring tool, but the possibility existed for loosening of the cap and jamming inside the drill string. The second version had the top and the bottom of the coring shoe separate, exposing the cavity for the electronics. The two sections were bolted together and 0-ring seals kept the water and pressure out of the cavity. The strength of the bolts was

Figure 1. Schematic configuration of drill ship deploying HPC during coring operations
determined as insufficient to withstand the side forces the coring shoe could encounter. The third version replaced the bolted fastening with a threaded section. The strongest heat treatable steel available was used for the shoe, so that the cavity could be as wide as possible. (See Appendix A for the calculation of the strength of the cavity walls.)

The instrumentation was designed to record temperatures up to $70^{\circ} \mathrm{C}$. It also had to survive the shocks encountered during the traverses of the drill string at high speed ($200 \mathrm{~m} / \mathrm{min}$), which we estimated at approximately 5000 g (equivalent to a free-fall of 5 ft . stopped in $0.01 \mathrm{in}$.). The hybrid could withstand these shocks, and the rest of the printed circuit board was potted to keep the parts from moving and breaking off the printed circuit board.

III. THE INSTRUMENT

A. DESCRIPTION

The temperature recorder can make and store 1300 temperature measurements and occupies $16 \mathrm{~cm}^{3}$ ($1 \mathrm{in} .{ }^{3}$). The battery was designed to last from 35 to 50 hours (active, the lesser amount when cold) to 400 hours (data stored mode). It occupies only $10 \mathrm{~cm}^{3}$ ($0.6 \mathrm{in} .^{3}$) (see Fig. 2). Initially, the recorder is coupled to a small computer and its program is loaded each time before use. Up to 8 time delays and recording rates can be inserted, although only one is normally used.

After the program is loaded, and the recording parameters selected, the two halves of the coring shoe are screwed together (Fig. 3). The electronics and battery package are sealed from ocean pressures and water by 0 -ring seals. The coring shoe is taken to the drilling platform where it is attached to the bottom of the hydraulically driven piston corer. A tilt switch within the battery package activates the timing of the recorder when the shoe and coring tool are lifted to vertical (with the cutting edge pointing down).

The corer is lowered to the bottom of the drill string, driven into the sediment, and held there for about 5 to 10 minutes. The corer is pulled to the top of the drill string and the core and core shoe are removed. In the lab the coring shoe is opened, and a plug from the computer connected to the temperature recorder. The data are read into the computer over an RS-232C (teletype) line. The computer stores the 1300 temperature points on tape or a disk. The data, which are in raw form, can be converted to actual temperatures and stored or plotted. Also, an algorithm to determine the in situ bottom core temperature can be applied, by extrapolating the asymptotic behavior of the temperature measurements. A personal computer used to communicate with the temperature recorder is less expensive than constructing a special unit to store and process the data.
B. DESIGN

The temperature recorder block diagram is shown in Figure 4. A thermistor in a Wheatstone bridge provides voltage for an analog-to-digital

Figure 2. Photograph of temperature recorder and battery. The body of the recorder is 12 cm long.

[^0]
Figure 4. Block diagram of HPC temperature recorder.
(A/D) converter. An RCA 1802 microprocessor is used to couple the output of the A/D converter to random access memory (RAM). The microprocessor also controls when the A/D converter takes a measurement. There are $3 k$ bytes of memory; about 0.5 k are used for the program and the rest is used to store data. A universal asynchronous receiver transmitter (UART) is used to couple the computer to a teletype type output and input.

The input instructions are transferred through the UART to the computer. The program and answer to inquiries are transferred from the computer through the UART to the microprocessor and its memory.

A voltage regulator provides the +5 volts for the digital and analog circuitry. A voltage inverter provides -5 volts used only by the A/D converter. Five silver oxide hearing aid batteries provide 8 volts to the voltage regulator. To save energy, the voltage to the A/D converter is switched on only when it is being used. To save additional energy, when the data memory is filled, the voltage is dropped to 4 volts, and the microprocessor halts.

After the recorder is brought back to the surface, the coring shoe is opened up in the lab to gain access to the recorder electronics. The recorder is plugged into the on-deck computer, the recorder voltage is raised to 5 volts and the microprocessor on the recorder is started up again. The internal program then dumps the data out, stops the microprocessor and lowers the recorder voltage to 4 volts when completed. Because of the low standby power drain, the battery does not have to be disconnected. In operation at sea, the entire unit has to be removed each time so that the O-ring seals and the threaded opening to the electronics can be cleaned of mud, grease, and any dirt which may have accumulated during the deployment.

C. CONSTRUCTION

The circuitry had to be made quite small in order to fit into the small space available. A hybrid circuit is very small in size, and can be made relatively economically in small quantities. The first question for a hybrid circuit is determining whether it will be a thick or thin film hybrid. All hybrids are made on a ceramic substrate, typically . 025 in. thick. A thin film hybrid is a single layer of gold lines placed on the ceramic through a mask. Since such a technique does not allow for wiring crossovers, the circuit cannot be very complex. A thick film hybrid consists of alternate layers of gold lines and glass insulator on a ceramic substrate. Each layer is silk screened on and the pattern is fired before the next layer is applied. Interconnections between the wires on different layers are made through holes ("vias") in the insulating layers. Because of the multiple layers, multiple cross-overs are possible to accommodate a more complex circuit. The complexity of this circuit, which used 20 integrated circuits, required a thick film hybrid circuit.

The second problem was finding a hybrid manufacturer who was willing to manufacture only a few (5-10) units. There was a fairly large engineering effort in laying out the circuit, and sources for just a few of each type of integrated circuit had to be found. Larger hybrid companies preferred to use
their limited engineering expertise on products with a larger production. Even the smaller company we found (Transistor Specialities, Inc, Danvers, Mass.) accepted the job with reluctance, but then was determined to do the job, even though it was more complicated (5 metalization layers) than his colleagues in other companies thought prudent.

The design at first incorported two $40-$ pin packages (0.6 in . spacing between pin rows, 2 in. long) to hold the circuitry. Later the package manufacturer came out with a 3 -in.-long package with pins on 0.6 in. spacing. It was long enough to hold the whole circuit, except, for certain large parts. This simplified the printed circuit, since no connections would now be needed between two hybrid packages. We were fortunate that someone else underwrote the tooling for this larger package, as a die designed for a new package costs around $\$ 14 K$. Additional costs would be incurred for the lid die and the solder preform die.

The circuit had to be designed for integrated circuits that are available in dice form. Not only does the manufacturer need to have them available in dice form, but the dice distributer must be willing to stock the part. They are not very interested if the part is not in great enough use to allow them to sell the minimum order from the manufacturer. For RCA this minimum is one wafer of dice. For others it might be 100 pieces, even though the piece costs $\$ 100$ each. Japanese manufacturers did not seem to be interested in selling dice at all. Buying small numbers of dice is a problem. The designer must consider what is available in small numbers, or be willing to purchase more dice than needed. We even designed for one part that later was discontinued at the time of purchase. Fortunately, the hybrid had been inadvertently layed out for a larger equivalent part that was still available. Also, lead times were long, and slower moving items are not manufactured frequently.

After the hybrid is manufactured, it must be tested without physically disturbing the circuit very much. A single bond wire can be gently raised from the substrate with only a modest chance of ruining the IC; the entire IC can be replaced with a greater chance of ruining the whole hybrid. Generally only the hybrid manufacturer can electrically probe the hybrid. It was not difficult to determine if the circuit was working incorrectly. Ingenuity was required to devise tests to determine what part was at fault, without removing any of the parts.

Ultimately, we solved all the problems, but it was considerably more difficult than working with a printed circuit. The circuit should be designed so that faults can be isolated. The most difficult problem is designing a technique for determining which of the several ICs fastened to the same lead is at fault.

D. PRINTED CIRCUIT LAYOUT

We wanted to put all the components inside the hybrid in order to minimize the size of the package. However, a few parts were left out of the hybrid either because they were too large to fit, there was insufficient space in the hybrid package for them, or we wanted to be able to change them

Figure 5. Configuration of printed circuit board and components used in HPC temperature
"after the hybrid was built. Means were needed to connect the hybrid pins to these parts, to the temperature sensor and to the connectors for power and communication. The usual method for interconnecting parts, a printed circuit, was used (Fig. 5). It was unusual in that it was very thin, only 1/64 in. thick, in order to use as little space as possible.

The bridge components and the A/D integrating and zero offset capacitors were placed at one end of the printed circuit. The hybrid package was placed in the middle. A thin (. 008 in.) insulating sheet of fiberglass-epoxy board was placed between the metal hybrid package and the printed circuit. On the other end were the tantalum bypass capacitors, crystal; voltage regulator resistors, A/D frequency resistor, the data/control connector, and the battery connector.

Initially, the circuit runs were wide (0.32 in.) and the spaces between them thin (. 010 in.), with the idea that the lines could be robust and the spaces between the lines did not have to be very strong. This spacing proved to be too close. The etching was not complete in several places, and fine hairs of solder from the edges of the traces could easily bridge the gaps between the lines. After an initial run of several instruments, the circuit board was layed out again to accommodate some changes, and the opportunity was used to make the traces and spaces between them equal. The board was changed to accomodate some smaller packaged bridge resistors (two to a package instead of one), an external voltage regulator for the bridge, and centering of both the large integrating capacitor and the communication connector. The centering made use of the larger clearance available in the center of the kidney-shaped hole into which the package was placed (Fig. 6). Initially, it was supposed that the thin board would bend, and the mold would force the taller components at the edge of the board inside the confines of the space available. The narrow board was quite stiff, and would not bend much. This stiffness was actually a blessing, because this board was all that really provided any stiffness to the package. This stiff board made an especially good method to secure the connector to the rest of the circuitry without flexing its soldered connections.

All parts leads were bent over parallel to the board to maximize packing efficiency. Even so, some of the leads were .025 in . thick, about 10% of the available height. The bending of leads also provided for a stronger connection, since the board was so very thin.

E. POTTING

Very large shocks to the electronics package were anticipated as it travelled down the drill pipe. Similar problems had been solved by enclosing everything in a semi-rigid potting material. The rigidity of the potting material kept the parts from being ripped from place by their own inertia during shock. Some flexibility is desirable to prevent the parts from being broken or leads sheared from the slight differences in thermal expansion between the potting material and the items being potted. A reported high failure rate of hermetically sealed tantalum capacitors of the 1500 series caused us to examine more closely several of these capacitors.

Figure 6. Sectional drawing of temperature instrumentation deployed in slot in wall
of HPC. Dimensions given in inches.

They appeared fragile with a gossamer appearance, so solid tantalum capacitors potted in epoxy were used.

Several potting materials were tried. A very hard epoxy chipped and flaked off in the thin sections, although it proved satisfactory for the battery packs, where the epoxy sections were thicker. All the slightly flexible epoxies and polyurethanes became softer and much more flexible at $70^{\circ} \mathrm{C}$. A polyurethane from CONAP (Olean, N.Y.), EN-9, was selected for this service. It too became quite flexible at $70^{\circ} \mathrm{C}$, but it remained tough.

Creating a suitable mold was one of the most difficult tasks. In an attempt to save money, we tried to take an impression of the cavity into which the electronics were to fit. We got a rubber impression, but it was flexible. Eventually, we got a hard epoxy impression, from which a hard polyurethane mold was made. Several electronic packages were cast which had to be sanded and filed to enable them to fit into the cavity.

Later, we received a sample cavity made of steel from the DSDP in which our molded units could be tested for fit. This test fixture was converted into a two-piece mold by cutting it in half, and replacing all but .010 inches of the cut with a shim. This solved our molding problems. A hard mold made by a mold-making shop would have cost $\$ 1,200$, which in retrospect would have been less expensive than our mistakes.

The instrument casting was made by filling the mold from the bottom, with the mold in a vertical position, which reduced the possibility of entrapped air. Because of the thin covering and bubble-prone potting techniques, the whole circuit was thinly coated with a polyurethane material (Laminar X500; Midland Div., The Dexter Corp., Hayward, CA) designed for that purpose. This would keep the circuit dry, protecting it from condensation as the package cooled off, and from accidental sea water exposure while opening up the package to read out the data. Another problem was solvent evaporating from the circuit board coating. The drying time recommended by the manufacturer of the printed circuit board coating was long enough for the coating to harden, but not long enough for all the solvent to have evaporated. The first board coating that we used worked, but we changed in mid-stream to a second type, which had the extra solvent.

The thermistor used to measure temperatures is Part No. GB42JM63 (Fenwall Electronics, Framingham, MA) with a nominal resistance of 15 k ohms at $25^{\circ} \mathrm{C}$. It is potted within a small (0.120 in . O.D.) tube with a high thermal conductivity silicone rubber (Eccosil 4952, Emerson and Cumming, Canton, MA). This probe is then potted in proper position with the electronics package to comprise a rigid unit.

The battery potting is done with a hard epoxy, (Stycast 2651-MM, Emerson and Cumming Co., Canton, MA), as the batteries could withstand the shrinkage forces of the setting epoxy. We first used a fairly hard rubber mold, filled from the top. A short cable with a small connector on it is used to power the electronics module. The main problem is keeping the epoxy from running out along the cable, making it stiff. The cable is given an accordian fold, to accomodate slight differences in cable length. The lack
of stiffness in the mold was compensated for by making the package slightly thinner than the cavity. Thus clearance could exist where the battery protruded slightly into the rubber mold. Later, the steel mold for the electronics was plugged to a length of 3 in., and used to mold the batteries.

F. BATTERIES

A cavity for the batteries in the coring shoe was placed circumferentially, rather than axially, adjacent to the electronics cavity, to minimize the length of the coring shoe. The corer takes a 10 m long (maximum) core and we did not want to use any more space than necessary. A cavity with the same cross section as for the electronics was used for the battery, even though it could have been a little narrower. The 3 in . length accomodated the 5 button cells. The Eveready S76E silver oxide button cell for hearing aids was chosen for the largest cell that would fit into the space available. The cell is 0.455 in . dia. x 0.211 in . thick. A battery assembly company (Brentronics, Commack, NY) welded 5 of these together for us, with the cells side by side.

The cells have 190 mamp-hr capacity at $25^{\circ} \mathrm{C}$, and can operate at $70^{\circ} \mathrm{C}$ if not held at that temperature for too long. The electronics uses only 3.5 mamp maximum when the A / D converter is running, which should give 50 hours of life. This is more than sufficient for perhaps 20 each or more deployments to the bottom for coring and return (average time 2 hrs. each). The electronics package is opened up each time, and the battery pack can be easily replaced at the end of its life. Even longer life is achieved in the "computer running only" state with a current drain of 1.3 mamp for 140 hours (about 6 days), or in the standby mode (memory retained, computer idling) with a current of 0.4 mamp for a 475 hour life (20 days).

The operating time with the A/D running, based on a 190 mamp-hr battery capacity at $25^{\circ} \mathrm{C}$, is reduced to about 35 hrs (70% capacity) at $0^{\circ} \mathrm{C}$. However, the battery pack was exhausted after only 20 hours at $0^{\circ} \mathrm{C}$, with a recorder current measured at 3.5 mamp. This was verified in the laboratory by connecting a resistor to the battery pack which would draw 3.5 mamp at 7.5 volts (the nominal battery voltage, which is nearly constant during discharge). The additional reduction to 20 hours is unexplained. It could be caused by old batteries, which have reduced life, or by the heat from welding tabs to such small cells. Fortunately, 20 hours is still sufficient for 8 to 10 measurements.

The battery pack includes an inexpensive tilt sensor which commences timing when the corer is lifted to the vertical position. Originally it had been placed in the electronics package, but there was insufficient space for it, and it had to be put into the battery pack.

A small 4-pin connector was used to connect the battery pack to the electronics. The cable part was fastened to the disposable battery, to eliminate any cable fatigue in the permanent electronics.

IV. CALIBRATION

A. TEMPERATURE CALIBRATION

The temperature recorders are calibrated in a stable temperature controlled bath from 0 to $60^{\circ} \mathrm{C}$ at each $10^{\circ} \mathrm{C}$ intervals. The bath temperature is measured with a platinum resistance thermometer and bridge while the temperature recorder output is monitored with a computer. The resistance of the thermistor in the temperature recorder at each temperature point is calculated and used to fit to the thermistor equation (see below). The parameters of the thermistor equation for a particular recorder are used for calibration of the data acquired by that particular temperature recorder.

1. TEMPERATURE BATH TECHNIQUE

A stable temperature bath is used to control the temperature of the temperature recorders. We used a Tronac (Orem, Utah) bath, with a stability of about $2 \mathrm{~m}^{\circ} \mathrm{C}$ or better. Each temperature recorder is put into the finger of a waterproof surgeons glove and connected to a cable for plugging into the interface box. The glove and recorders are taped to a rigid plastic bar and inserted as far into the bath as the top of the glove will safely allow. A plastic.bar is used because of its low heat conductivity and heat capacity. A separate ground wire is placed in the bath and connected to the ground connection (black binding post) on the interface box. This shorts out the 50 volts ac that would otherwise be in the bath and couple noise into the recorder. We calibrate all the recorders that are on hand at one time, to save the time it takes to run through the temperature range with the bath. Each recorder cable is plugged into the interface box at each temperature. Although we have not used it, a switch box would be desirable.

We started at the lowest temperature $\left(0^{\circ} \mathrm{C}\right)$ and worked up, because the bath can be heated more quickly than it can be cooled. The bath temperature was measured with a laboratory standard platinum resistance thermometer and a precision resistance bridge. Calibration of the platinum resistance thermometer is maintained in the usual way with a triple point of water cell at $0.010^{\circ} \mathrm{C}$. The two 10 turn potentiometers (coarse and fine) used to set the bath temperature on the controller have been replaced with a stable resistance box, to enable return to a given temperature setting.

The interface box was connected to an HP 85 desktop computer which both down-loaded the RCA 1802 A/D Read program into the recorder and read the recorder output and listed it on the screen. The HP 85 program, which read the recorder output, also had an option to average 50 readings, to get a better estimate of the measurement, which usually jumped between 2 and occasionally 3 least significant bits. The output of the interface box is in hexadecimal numbers in ASCII on an RS232-C line, so that any computer can be used.

2. LINEARITY AND SENSITIVITY

The readings from the recorder are used to determine the resistance of the thermistor at each temperature calibration point by using the

Figure 7. Thermistor bridge divider ratio and sensitivity vs. temperature.
parameters of the . 01% accuracy resistors used in the bridge circuit for the thermistor (Fig. D-I, Appendix D). The output of a resistance bridge with a thermistor in one leg is fairly linear in temperature (see Fig. 7). This linearity keeps the sensitivity fairly uniform over the range, varying from 8 to $11 \mathrm{~m}^{\circ} \mathrm{C} / \mathrm{bit}$ for this recorder range of -2 to $70^{\circ} \mathrm{C}$. These resistance values vs. temperature are used in a least squares best fit to the Steinhart and Hart equation for thermistors. The parameters of this thermistor equation are then used to convert the raw data measured by the recorder into temperature. The thermistors used in the recorders are matched to within $0.25^{\circ} \mathrm{C}$ over the 0 to $70^{\circ} \mathrm{C}$ temperature range. To optimize temperature accuracy, the thermistor calibration coefficients for each individual recorder must be used in data conversion.

The temperature recorders should be recalibrated often enough to keep any changes from affecting the measurements. Some calibration shifts of up to $50 \mathrm{~m}^{\circ} \mathrm{C}$ were found in 2 instruments after one year (see below). The problem was that we do not know when the calibration changed, so we do not know which data were affected. Hence, a method to check the calibration at sea is desirable. In these cases, only the calibration offset changed, not the slope, so perhaps a single point calibration would be sufficient while at sea to assure the validity of the data.
B. THERMISTOR CURVE FITTING TO THERMISTOR CALIBRATIONS

We have found that the thermistor calibrations are fit very well (to better than a few millidegrees over a 60° range) by a 3 parameter equation (Steinhart and Hart, 1968)

$$
T^{-1}=A+B \ln R+C(\ln R)^{3}
$$

where T = temperature (K)

$$
R=\text { thermistor resistance (ohms) }
$$

A, B, C are constants, different for each thermistor. The constants A, B, C are determined from a least squares best fit to thermistor calibration data as explained in greater detail in Appendix E.

C. THERMAL RESPONSE TESTS OF SPECIAL HPC CORING SHOE (DSDP)

The following describe tests of the thermal response of the shoe, as made in the laboratory at WHOI (January 1982) using various materials and procedures. A calibrated thermistor was placed in a $1 / 8 \mathrm{in}$. outer-diam. steel tube, which was in turn inserted in the mating hole in the shoe designed to contain the temperature sensor. The thermistor was located about $1-1 / 2 \mathrm{in}$. from the cutting edge (we did not attempt to vary this distance during these tests). The thermistor was connected to a signal processor and data logger (actually a breadboard of the circuitry employed in the in-situ recording system).

Thermal responses were obtained in 3 different materials:

1) in a well-stirred water bath
2) in gelatin
3) in clay (potter's clay).

All of these tests were carried out in a bucket of the respective materials about 10 in . diam. x 12 in . deep. The shoe was inserted into the middle of the materials starting at time $t=0$. The results in Fig. 8 shows the fraction (F) remaining of the total temperature change for each experiment, which is calculated as $F=\frac{T_{\infty}-T(t)}{T_{\infty}-T 0}$
where To $=$ HPC shoe temperature before starting test
$\mathrm{T}_{\infty}=$ temperature of medium (or bath) in which HPC shoe is inserted
$T(t)=$ HPC shoe temperature at time t after start of test.
The curves in Fig. 8 show that the HPC shoe will decay to about $20-25 \%$ of its initial temperature anomaly 5 minutes after penetration. An exact determination of in-situ temperatures requires fitting of the thermal response curve to a theoretical (numerical) model (see Sec. VI.). The thermal response curves have some peculiarities which may be explained by the experimental conditions:

1. The thermal decay curve in the well-stirred water bath has an inflection between $20-30 \mathrm{sec}$ when plotted on a logarithmic time scale. This may represent the thermal response of the shoe geometry. On the other hand, it may be the effect of the test conditions. The water outside of the HPC cutter is well-stirred whereas the water inside the shoe was mixed only by raising and lowering the shoe a few times during the test. This was probably first done at about $20-30 \mathrm{sec}$. after beginning this test.
2. The thermal response of the HPC in gelatin appears slightly faster than in clay, whereas the thermal conductivity of the gelatin (1.48 $\mathrm{mcal}{ }^{\circ} \mathrm{C}^{-1} \mathrm{~cm}^{-1} \mathrm{sec}^{-1}$, or TCU) is less than half that of the clay (3.65 TCU). We surmise that there may have been a thin layer of air between the HPC cutter and the clay, caused by the way in which the shoe was forced into the clay. The relatively high shear strength of the clay caused the level of clay inside the shoe to be much less than the level outside (3-7/8 in. vs. $7-3 / 4$ in., respectively, from the shoe cutting edge) during the test, whereas these level differences during the tests with gelatin were observed to be much less. (This problem would not be expected during normal use of the HPC in-situ due to the high hydrostatic pressure.)

Another possibility is that T_{∞} in the gelatin ($18.8^{\circ} \mathrm{C}$) was measured incorrectly. It was significantly lower than that of the clay even though all tests were done in the same laboratory. It was noted after the tests that the gelatin rapidly disappeared as a result of dehydration (evaporation), perhaps causing the surface of the gelatin to have a lower temperature than the interior of the bucket used in the tests.

V. PROGRAM LOADING AND DATA HANDLING

The temperature recorder, contained within the wall of the coring shoe, can make up to about 1300 temperature measurements during coring operations, consisting of: 1) the descent of the coring tool to the bottom of the drill hole, 2) the insertion of the coring tool in the sediment (the temperature measurements that we want), and 3) the ascent of the coring tool to the surface. Temperature can be measured over the range from $-2^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, with an average resolution of $9 \mathrm{~m}^{\circ} \mathrm{C}$. A time delay can be set so that the temperature recorder is near the bottom of the drill string before recording begins. The sample interval is used to spread out the 1300 measurements to bracket the time that the coring tool is in the sediment. If necessary, more than one sample interval can be used, with the faster rate in the center of the expected time in the sediment and slower rates before and after, in case the center time does not coincide with the time in the sediment. However, there is no time recorded, so that the timing of data acquisition rate changes must be deduced from the programming and accurate counting of the data.

A. INTERFACE BOX

The temperature recorder communicates through its UART with a desktop computer interfaced through the computer's RS-232 communication port. However, the UART voltages from the temperature recorder and the RS-232 voltages from the computer are different. So an interface box was designed to change the voltage levels between the temperature recorder and the interface box. The box and its cables also provide a means to connect from the subminiature 9 pin connector on the temperature recorder to the larger 25 pin RS-232 connector on the computer.

The interface box also has a manually controlled RUN/RESET/LOAD function, which controls the program load operation from the computer to the temperature recorder. The RUN function is used to communicate with the temperature recorder. The RESET function resets the microprocessor in the recorder, and resets its program counter to 0 . The LOAD function enables the recorder to load successive bytes into its memory from the RS-232 line of the desktop computer. This is how the program is loaded into the temperature recorder. When the program has run and data is to be read out, the RESET function is used to set the program counter to 0 , and the data is transmitted when returned to the RUN function. This data is read by the desktop computer.

Either the PRO-350 or HP-85 computers can be selected. An HP-85 computer was used during instrument development because it was available. The HP-85 has program control of several other lines in the RS-232 connector, and these lines were programmed to control the load and reset functions that have to be operated manually with the PRO-350. Therefore, there are level changing circuits in the interface box for the reset, load, and power down/ power up lines.

The circuitry of the interface box changes the +12 volts and -12 volts signals on the RS-232 line from the computer to the +5 volts and 0 volts signals of the UART in the temperature recorder. The table below describes the signals.

INTERFACE BOX			RECORDER
RS-232	RECORDER	RECORDER	
CONNECTOR	CONNECTOR	CONNECTOR	

Data from desktop computer to temperature recorder	3	3	2
Data from temperature recorder to desktop computer	2	2	1
Signal ground			
+5 volts from temperature recorder	-	1	7
+Battery	-	6	6
Reset temp. recorder computer	5^{*}	8	5
Load temp. recorder computer	8^{*}	9	7
Power up (same signal as reset)	5^{*}	5	8
Power down	$6 *$	4	4

* Connected only when the HP-85 is selected.

The data rate is 1200 baud, determined by the temperature recorder. The RS-232 data lines use negative true logic, whereas the control lines use positive true. The recorder uses positive true logic for both data and control lines.
B. DESCRIPTION OF COMPUTER PROGRAMS.

There are two types of computer programs. One type (suffix .ASC) is run by the temperature recorder, and controls the A/D converter, sample interval, storage of data, and reading data out. These programs are written in assembly language for the RCA 1802 microprocessor in the temperature recorder.

The other type of programs (suffix .BAS) are run by the DEC PRO-350, to load the 1802 programs into the temperature recorder, provide a terminal to interact with the temperature recorder's request for data collection parameters, and read the data from the temperature recorder, and convert the raw data to temperature. These programs can be run on other small computers by making suitable changes in the programs to accomodate the pecularities of the particular computer. The programs are written in BASIC for the DEC PRO-350.

The PRO-350 must load the program into the recorder each time the recorder is used. The recorder has only RAM (no ROM), so the program disappears each time the power is disconnected from it. Also, part of the recording program is written over by data, when that part of the program is no longer needed, to make room for more data.

The PRO-350 programs are listed first, along with the corresponding menu item that selects them. All the programs are provided on a floppy disk, but are run from the hard disk because they need it to run during their "interim storage" phase, which is used to make room for storage of data from the recorder.

PRO 350 PROGRAMS

CORING TOOL TEMPERATURE

RECORDER (MENU)
PROBASIC.BAS
MENU.BAS
LOADER.BAS
LOADI.BAS

1. LOAD PROGRAM

LOAD2.BAS
2. LOAD PARAMETERS
3. DUMP DATA
4. DISPLAY DATA FILE
5. PRINT FILE DATA
6. CONVERT AND PRINT FILE DATA
7. END

PROBASIC.BAS - A short instruction program for running the MENU program.

MENU.BAS - A program to select thermal conductivity, downhole instrument operations, or exit.

LOADER.BAS - The main operating program for downhole operations. It contains the operation menu which has 7 entries (the menu is called CORING TOOL TEMPERATURE RECORDER). The load program sub-menu and program for loading the xxxx.ASC programs into the temperature recorder is the first item in the menu.

Menu items 2 through 6 call the sub-programs LOADI.BAS through LOAD4.BAS respectively and menu item 7 returns to the MENU.BAS program. The following sub-programs return to LOADER.BAS when finished.

LOADI.BAS - to load operational parameters into the temperature recorder and start it running.

LOAD2.BAS - dumps data from the temperature recorder into the computer, display it to the screen, and store data to disk.

LOAD3.BAS - displays raw data for screening.
LOAD3A.BAS - prints raw data on a printer for hard copy.

LOAD4.BAS - converts raw data files to resistance and temperature files (xxxx.TXT). This program includes all the temperature recorder calibration data. The program converts the raw data, saves results to disk, and provides a hard copy on the printer.

The temperature recorder (1802) programs are loaded into the recorder by selecting item 1, LOAD PROGRAM, from the CORING TOOL TEMPERATURE RECORDER menu. The programs that can be loaded, with their corresponding menu selection and a brief description are listed below.

RECORDER PROGRAMS	LOAD PROGRAM (MENU)
MEMTS2.ASC	1. LOAD MEMORY TEST
TREC.ASC	2. LOAD MAIN PROGRAM
ADTEST.ASC	3. LOAD A/D TEST
AVERG.ASC	4. LOAD AVERAGING PROGRAM
PLYBK.ASC	5. LOAD PLAYBACK PROGRAM

MEMTS2.ASC - Used to test memory of the temperature recorder.
TREC.ASC - The main program for data acquisition by the temperature recorder.

ADTEST.ASC - This program makes A/D readings of the temperature bridge and transmits them through the UART to the desk top computer several times a second.

AVERG.ASC - A version of TREC2.ASC which averages 8 temperature measurements by the A / D and stores the average.

PLYBK.ASC - This program is used to read out data from the recorder when the readout procedure built into TREC2.ASC fails.

The use of these programs is described in the "Temperature Recorder Operating Manual".

VI. PERFORMANCE

A. EXPERIENCE IN USING THE HPC TEMPERATURE INSTRUMENT

The first and most extensive field use of the HPC instrument to date (Jan. 1986) in the Deep Sea Drilling Project was on Leg 86 in the Western Pacific (Horai and Von Herzen, 1985). The relatively large data recovery from that leg, approximately 40 downhole measurements at six different sites, was primarily due to the dedication of K. Horai and the DSDP staff. After the first one or two sites, during which experience was being accumulated, one person (K. Horai) could maintain the instrumentation and process the data at a rate of one measurement on every other core (approximately one measurement each 3 to 4 hours). K. Horai (pers. comm., 1984) indicates that under normal operating conditions, with at least two instruments available for alternate use and preparation, one person per watch dedicated to the
program could probably obtain measurements on every core (each 1-1/2 to 2 hours) during continuous operations.

Some problems were encountered on the initial use of the instrument. The difficulties with potting materials and techniques described above led to the instruments on Leg 86 being successfully potted only immediately before they were taken to sea. These potted units did not quite fit into the slots in the core nose for which they were made, so that K. Horai spent several hours on each unit to trim (sand) them down to size. We are not certain why these potted units did not fit with the same mold which was successfully used to pot trial units in the laboratory. One possibility is that inclusion of the instrument within the potting reduces the amount of shrinkage because there was less potting material to shrink compared to the trial units.

Another problem on Leg 86 was that the programming of a delay time in the instruments before taking data never appeared to perform properly. Apparently (K. Horai, pers. comm., 1984) the setting of a time delay in the program TREC (see appendix) resulted in arbitrary start times of the instrument, different than set up in the program. All of the successful runs on Leg 86 were made with the delay time set equal to zero, a condition which always started data acquisition soon after picking up the core barrel and initiation by the tilt switch. The failure with start times other than zero may be a software faulit or operational confusion, as instruments tested in the laboratory appeared to perform properly.

During measurements at the first site of Leg 86 (site 576), it was noted that small oscillations of temperature over the period of HPC extension (approximately 5 to 10 minutes) were observed, apparently due to vertical heave oscillations of the ship (Fig. 9). It was observed that release of tension in the cable used to lower the HPC, as well as lowering the drill string l-2 m, resulted in much smoother thermal decay curves (Fig. 10). Apparently the cable tension is responsible for transmitting motion to the HPC when it is extended into the bottom. Also, some data appeared to be repeated over short intervals ($3-4$ data points), most likely a software fault in the processing of data. This problem occurred less frequently at subsequent sites.

Other characteristics of the measurements important for obtaining accurate in-situ values were observed on Leg 86 operations as well as subsequent legs. Although, in some cases, the measurement was disturbed after the initial penetration, probably as a result of drill ship motion, sometimes a good thermal decay was observed after a few minutes of disturbance (Fig. 11). It appears that the smooth thermal decay after the disturbances can be used to obtain accurate in-situ values, using numerical methods described below. Another type of measurement is illustrated in Figure 12. Here the temperature appears to decay smoothly after the initial frictional penetration pulse, but subsequently increases irregularly thereafter. This behavior typically occurred for measurements attempted in the shallower portions of holes ($\leq 100 \mathrm{~m}$), and it seems probable that the irregular temperature increases are caused by slow settling of the corer and drill string in the soft sediments. If a sufficiently long ($\geq 2 \mathrm{~min}$) undisturbed record of the thermal decay exists after penetration, reasonably accurate in-situ temperature may be obtained.

Figure 12. In-situ temperature measurements on Leg 86 , site 577 , core 8 . Note sequential decrease,
then a gradual increase, of temperatures after penetration.

The HPC temperature instrumentation was also used on several legs subsequent to Leg 86, but not as extensively. Unfortunately, three sets of instrumentation were lost on subsequent legs (87,89 and 90), which significantly limited the amount of data obtained. According to DSDP engineers (Dave Huey, pers. comm., 1984) these losses were caused by failure of the HPC hardware, and had little to do with the operation of the instrumentation itself. Although measurements had been planned for Leg 96, none were attempted because of the unstable sediments and the fear that the leaving the HPC in the bottom without circulation, even for a few minutes, might stick the drill pipe (W. Bryant, pers. comm.). Water circulation is accomplished by pumping seawater through the drill pipe from the ship, allowing it to flow out the drill bit and up around the annulus between the drill pipe and the hole walls. This cannot be accomplished with the HPC extending out the bit. A useful development would allow seawater circulation through ports in the drill string above the drill bit after extension of the HPC. This might allow the HPC to remain extended at the same time that circulation above the HPC would prevent any cave-in or packing of sediments around the drill string.

Overall, it seems that the primary factor limiting use of the HPC is the lack of interest or motivation of shipboard scientists to obtain data. Otherwise there is little reason why such measurements could not be made an almost routine part of HPC operations.

B. EXTRAPOLATION TO EQUILIBRIUM TEMPERATURES

During the time the HPC is in the bottom, the frictional heat generated by the penetration is conducted away to the surrounding sediments (Fig. 10). The two-dimensional radial conduction theory for the physical configuration of the HPC has been solved numerically by K. Horai (pers. comm., 1984). Both the theory and experimental field data show that the excess temperature of the HPC over in-situ values is reduced to about 15-20\% of its initial value after about 10 minutes in the sediment. It is not practical to leave the extended core barrel in the sediment much longer than this, so that an accurate extrapolation of the frictional heating pulse is necessary.

A comparison between the theory of Horai and an actual measurement is shown in Figure 13. The agreement between theory and practice is extremely close after the first few data points ($40-60 \mathrm{sec}$.). The lack of agreement during the first few data points occurs when the temperature distribution in the HPC wall is probably not uniform. A small remaining problem seems to be that the theoretical temperatures fall slightly below the temperatures measured near the end of the thermal decay. This may be due to the fact that the anomalous heat in the HPC is being conducted axially, as well as radially. The excess heat in the HPC is conducted preferentially toward the thin end of the wedge shaped cutting shoe, where the thermistor is located (Fig. 6). This would tend to cool the HPC more rapidly than if the HPC were infinitely extended along its axis, as assumed in the two-dimensional theory.

Therefore, in the measurements for Leg 86, Horai and Von Herzen (1985) assume that the true in-situ equilibrium temperature lies between the las.t measured point during the HPC penetration, and the theoretical

Figure 13. Thermal decay of HPC during core 14, hole 578, Leg 86 (see Fig. 9). Solid dots are data points fit on the theoretical curve shown.
extrapolated value. Probably the true in-situ temperature is much closer to the value extrapolated using the two-dimensional theory, as seems to be the case from the comparison of the curves (Fig. 13). This should be tested by attempting to leave the HPC in the bottom as long as possible so that the data may be compared with the theoretical extrapolation.

Another useful set of data is the temperature of the near-bottom water measured by the HPC during its passage through the drill pipe. The temperature of the water in the drill pipe is usually close to that of the surrounding sea water, so that a calibration of the instrumentation can be obtained for each measurement. This is particularly useful if different sets of instrumentation are used for measurements in the same hole. It provides a useful check on the accuracy of the data obtained, and also provides another temperature data point at the sea floor.
C. TEMPERATURE CALIBRATION STABILITY.

We have some limited data on the temperature stability of some units, based on accurate repeated calibrations. Altogether 10 hybrid electronic units were constructed. One was not calibrated, because it was left as a hybrid that could be adapted to fit the annular cavity of the new cutting shoe, with the possible addition of acoustic communication. Three others were lost during operations at sea shortly after they were constructed and calibrated; hence, no history of stability over time exists for these units. Of the six other units, four (units Nos. 5, 6, 7, and 8) were calibrated in the laboratory two or more times, which provides evidence of temperature stability.

Calibrations were performed with the entire unit immersed in a stable water bath, at 7 temperatures uniformily distributed at about $10^{\circ} \mathrm{C}$ intervals over the range 0 to $60^{\circ} \mathrm{C}$, as described above. The differences between calibrations in 1983, over a period of about 11 months for units Nos. 5 and 6, and about 7 months for units Nos. 7 and 8, are shown in Fig. 14a. Similarly, the differences over about 11 months in 1984 for all 4 units are illustrated in Fig. 14b.

The equivalent temperature shifts shown by the 1984 calibrations are within $.01-.02^{\circ} \mathrm{C}$ over the entire temperature range for all units, and for 2 of the units (Nos. 7, 8) in the 1983 calibrations. These are probably within the resolution of measurement for these units. The larger shifts (. $05-.07^{\circ} \mathrm{C}$) for units Nos. 5 and 6 in 1983 may correspond with their use on Leg 92 and subsequent legs. The shifts are fairly uniform over the entire temperature range, suggesting that the thermistor sensor (most likely) or a bridge resistor may have changed as a result of physical shocks associated with the measurements. (Note that units Nos. 5 and 6 shifted in the opposite sense from each other.) Unfortunately, the units used extensively on Leg 86 were lost in operations on subsequent legs before they could be recalibrated.

VII. FUTURE

The current software for the temperature recorder provides a sampling interval in the range of 0.1 to 6553.5 sec . The 0.1 sec sampling interval corresponds to an upper frequency limit of 5 Hz (the Nyquist sampling rate) or 2 Hz (if you want to preserve the waveform). This rate would fill the memory in 130 seconds. The longest sampling interval of 6553.5 sec corresponds to a minimum period of 1.82 hr (at the Nyquist rate), or 4.55 hr (for waveform preservation). This slowest rate would take 2366 hr to fill the memory, which far exceeds the battery life (approximately $20 \mathrm{hrs}$. .

Other applications are possible for the temperature recorder. The input is an A/D converter, so it could be adapted to measure any voltage or resistance bridge measurement. A possible application is to measure the output of a strain gage type pressure transducer, or the voltage output of any sensor that has a voltage output. The A/D converter can sample up to 25 times per second, if the integrating capacitor is changed and the software modified. This implies an upper frequency limit of 12 Hz (the Nyquist rate) or 5 Hz (waveform preservation). The lowest frequency is limited by the memory size and the sampling rate. At 25 samples per second, the memory would be filled in 52 seconds. At the other extreme, data rates may be as long as desired to fill the memory (currently 1300 2-byte words), limited only by battery life.

The present coring shoe cavity has been enlarged in a new design, which has the same diameter as the original cavity, but it extends completely around the coring tool to form an annulus. It is 0.28 in . thick and 5 in . long. This larger cavity, if layed out flat, would be 10 in . long, by 5 in . wide, by 0.28 in. thick. It was possible because the strength of a shell (the cylinder) is much stronger than a flat plate. Actually, the small cavity is probably stronger that we calculated (see Appendix A), but we conservatively used the formula for a flat plate. This new cavity was made by welding the outer wall to the piece containing the cutting edge and the inner wall. It was no more expensive than the previous design, because no EDM (electro discharge machining) was necessary. It was designed at the DSDP at Scripps. There is some question about the strength of the cylinder wall under impact, but that can be tested. If it would fail under severe impact, you could take your chances, and accept a loss if it does fail. However you would not want it to be damaged, then deform under pressure and get stuck in the drill string.

The whole diameter of the coring tool can be used for instrumentation where only drilling and logging is being done and the material being drilled is too hard for HPC coring. This increases the space available for additional instrumentation.

Each time data is read from the temperature recorder, the coring shoe has to be opened up to enable connection to the instrument, and cleaned and closed up for the next use. This is troublesome, as well as risky by exposing the electronics to possible damage from salt water, or the chance of losing data by inadvertently disconnecting the battery.

The temperature recorder could use acoustic communication through the wall of the cavity in the coring shoe. A small transducer about the size of a dime could transmit using a 1 MHz carrier, using frequency shift keying. It could also receive instructions. With the large annular cavity, there would be plenty of room for batteries, certainly enough to last one leg (2 months), or possibly even for a year. So the instrument would not have to be opened up during use, or possibly not at sea. It could be sent back to the lab for new batteries.

At one time flexible printed circuits were considered as an alternative to the hybrid. A flexible circuit was tried in a rolled up circuit for another instrument, and it was discovered that the traces break where they are soldered to the integrated circuit packages. The flexible board industry laminates rigid boards to the flexible circuit in the regions where there are electronic parts, and uses the flexible part only to interconnect the rigid boards. If such a structure were used in the hollow annulus, it would take up most of the space. The resistance to physical shock is problematical. However, the hybrid is difficult and somewhat expensive to produce in small quantities, which might be alleviated with a more spacious layout using small outline package IC's on boards with flexible interconnections. Another possibility is combining multiple hybrids on separate hard boards, with flexible interconnections.

There has been a desire expressed to reach higher temperatures, perhaps $200^{\circ} \mathrm{C}$. The present design has a nominal 1 imitation of $75^{\circ} \mathrm{C}$, determined by the temperature rating of the A/D converter. All other parts are rated to $125^{\circ} \mathrm{C}$. The batteries can last a short time at $70^{\circ} \mathrm{C}$. Eutectic solder (63% tin, 37% lead) melts at $183^{\circ} \mathrm{C}$, and other ratios get mushy at this temperature.

To reach $200^{\circ} \mathrm{C}$, the entire electronics circuitry and power supply would have to be redesigned with higher temperature parts. Such high temperatures would normally be encountered at depths or in regions (e.g., ridge crests) where the materials are too hard to use the HPC. If the entire diameter of the coring tool could be used for instrumentation, then existing higher temperature batteries (0.55 in. diameter) could be considered. Hybrid circuits at $200^{\circ} \mathrm{C}$ could probably be fitted into the 0.28 in thick space inside the wall of a coring tool. The thermometer would be a platinim resistance thermometer of some type of rugged construction. Absolute accuracy of $0.5^{\circ} \mathrm{C}$ seems possible at the higher temperatures.

VIII. ACKNOWLEDGEMENTS

Several persons have contributed significantly to this project. Ed Mellinger wrote the assembly language programs for the recorder and participated in the design of the electronics and construction of the breadboard. Skip Pelletier wrote the programs for the personal computers (Apple and Pro-350) for controlling the temperature recorder, and processing the recorder data. Dave Huey and Mike Storms (DSDP) designed and arranged for construction of the special coring shoe, Don Bellows (DSDP) did the same for the new annular cavity coring shoe. Charlie Yiakas and Dave Vacca (TSI) were always helpful and patient in consultation and for construction of the hybrid circuit. Ki-iti Horai gave the recorder its first extensive field tests on Leg 86 of the DSDP, and developed the theory to obtain equilibrium temperatures from transient thermal decay of the corer.

We are grateful for the financial support provided for various phases of this project:

1. USGS (Woods Hole) for the initial support to begin development of instrumentation (Project No. 17-18920.22); to the Ocean Industry Program, WHOI (Project No. 4471) to complete the development.
2. NSF, Grants OCE82-14658 and OCE83-00073 to enable construction of additional units for field measurements and for data analysis.

REFERENCES

Anonymous, Design and operation of an advanced hydraulic piston core, Tech. Rept. 21, Deep Sea Drilling Project, University of California, $269 \mathrm{pp} .$, July 1984.

Anderson, R.N., M.A. Hobart, and M.G. Langseth, Geothermal convection through oceanic crust and sediments in the Indian Ocean, Science, 204, 828, 1979.

Anderson, R.N., M.G. Langseth, and J.G. Sclater, Mechanisms of heat transfer through the floor of the Indian Ocean, J. Geoph. Res., 82, 3391-3409, 1977.

Becker, K., and R.P. Von Herzen, Heat transfer through the sediments of the mounds hydrothermal area, Galapagos spreading center at $86^{\circ} \mathrm{W}, \mathrm{J}$. Geoph. Res., 88, 995-1008, 1983.

Erickson, A.J., and R.P. Von Herzen, Downhole temperature measurements and heat flow data in the Black Sea - DSDP Leg 42B, in: Initial Reports Deep Sea Drilling Project, vol. 42, part 2, by D.A. Ross, Y.P. Neprochnov, et al. (U.S. Govt. Printing Office), 1085-1103, 1978.

Erickson, A.J., R.P. Von Herzen, J.G. Sclater, R.W. Girdler, B.V. Marshall and R. Hyndman, Geothermal measurements in deep-sea drill holes, J. Geoph., Res., 80, 2515, 1975.

Horai, K. and R.P. Von Herzen, Measurement of heat flow on Leg 86 of DSDP, in Initial Reports of DSDP, vol. 86, Washington (U.S. Government Printing Office), 759-777, 1985.

Roark, R.J. and W.C. Young, Formulas for Stress and Strain, Fifth edition, McGraw-Hill, New York, 1975.

Steinhart, J.S., and S.R. Hart, Calibration curves for thermistors, Deep Sea Research, 15, 497-503, 1968.

Von Herzen, R.P., Geothermal measurements, Leg 2l, in: Initial Reports Deep Sea Drilling Project vol. 21, by R.E. Burns, J.E. Andrews, et al. (U.S. Govt. Printing Office), 443-457, 1973.

Von Herzen, R.P., J. Crowe,.and K.E. Green, The eastern equatorial Pacific ocean heat flow low: evidence of hydrothermal circulation, ms. in preparation.

Yokota, T., H. Kinoshita, and S. Uyeda, New DSDP downhole temperature probe utilizing IC RAM elements, Bull. Earthquake Res. Inst., 55, 75, 1980.

APPENDIX A. CAVITY STRENGTH CALCULATIONS

1. Kidney shaped cavity (currently used).

The cavity had to fit into the $9 / 16 \mathrm{in}$. thick wall of the coring shoe, and operate at $21,000 \mathrm{ft}$. deep (10 kpsi) with some margin of safety. A very strong heat treatable stainless steel, Nimark 250, from Carpenter Technology, Carpenter Steel Division, Reading, PA, with a typical yield strength of 250 kpsi , was used for the portion of the coring shoe containing the cavity.

We selected a hybrid package to fit in the cavity. We made the width just large enough to accomodate the hybrid package (0.80 in .) and then made the cavity as high as possible. The actual cavity walls are curved (Fig. 6), so although the height of the cavity is $0.28 \mathrm{in} .$, the height of a rectangular hybrid package inscribed in the curved cavity is less. The length of the cavity is 5 in . to accomodate the combined package of hybrid and printed circuit board. A cylindrical hole 0.125 in. in diameter extends beyond the end of the cavity to accomodate the thermistor probe.

A flat plate approximation was used for the curved walls of the cavity. This approximation is conservative, in that the curved shape should be stronger. The width of the cavity used for the flat plate approximation is the portion of the arc of the outer wall that has uniform wall thickness, measured along the outside surface of the coring tool. The equation below is derived from formulas for flat plates with straight boundaries and constant thickness (Roark and Young, 1975, p. 386, Table 26).

The rectangular plate, shown in Figure $A-1$, has three edges fixed and one edge simply supported. The force is uniform over the entire plate. Using Table 26, Case 9 (Roark and Young, 1975, p. 394), the general form for the stress is:

$$
\begin{equation*}
s=-\frac{B q b^{2}}{t^{2}} \tag{A.1}
\end{equation*}
$$

where $a, b=$ the dimensions of the plate; $t=$ thickness of the plate; $q=$ unit force on the plate; and B is a variable which depends on the ratio a / b and the direction and location of the stress. B is taken from a table in the above reference which had to be extended to $a / b=0.16$ (vs. a minimum of 0125 in the table) by graphical extrapolation on log-log graph paper.

Figure A-1. Flat plate model used for cavity strength calculations.

For $q=10,000 \mathrm{psi}, \mathrm{a}=0.800, \mathrm{~b}=5.00, \mathrm{t}=0.145$, the maximum stress in the a direction (circumferentially) occurs at $x= \pm a / 2, \quad z=$ 0.6 b , for which $\mathrm{B}=0.0133$,

$$
S_{a}=\frac{(0.0133)\left(10^{4}\right)(5)^{2}}{(0.145)^{2}}=158,200 \mathrm{psi}
$$

The maximum stress in the b direction (axially) occurs at $x=0, z=0$, for which $B=0.0083$,

$$
s_{b}=\frac{(0.0083)\left(10^{4}\right)(5)^{2}}{(0.145)^{2}}=98,690 \mathrm{psi}
$$

The largest stress is 158 kpsi in the outer wall, which is about 70% of the minimum yield strength (230 kpsi) of the material. The curvature of the plate serves to strengthen the plate further, but is not included in the calculation. The coring shoe was tested at and survived 10 kpsi, the working pressure. It was not tested at a higher pressure for fear of collapsing the cavity. However, we infer from the calculations for the . strength of an annular cavity (see following) that the actual strength of this cavity design may be considerably stronger.

The cavity for the battery was made the same size as the electronics, except for length. It is 3 in. long, while the cavity for the electronics is 5 in . long.

An annular cavity, the same thickness as the electronics cavity and 0.25 in . deep, provides space for compression of the air when the two parts of the coring shoe are screwed together. Without this space, the air compressed in the cavity would bend the top of the lid of the hybrid package and short out the hybrid circuitry.
2. Annular Cavity.

A much larger space for the electronics can be achieved if an annulus were hollowed out of the interior of the coring shoe. A cylinder is stronger than a flat plate. A short cylinder is stronger than a long cylinder because the support from the ends has more influence on a short cylinder. The cylinder can fail either in collapse or in buckling. Different equations are used for each case, and the lowest pressure at which the cylinder fails is the one that is used. A number of lobes are formed by the tube in buckling. The buckling pressure for each lobe number is calculated and the lowest buckling pressure is the one used.

The dimensions of the original coring shoe (Fig. 6) were used, which would make the same thickness available for the electronics. First the collapse equations are used, which result in a collapse pressure of 25,350 psi for the inner cylinder and 17,925 psi for the outer cylinder. Then the pressure for buckling the cylinder for a given number of lobes is calculated versus the cylinder length. Plots were made of pressure vs. length for each
number of lobes. Then, using the minimum buckling pressure of all the curves, length or pressure can be chosen. We chose 5 in . long, which gave a buckling pressure of 18,000 psi, with 3 lobes.

Cylinder collapse strength.

The walls of the annulus are concentric cylinders, each considered as a short supported tube (Fig. A-2). The cylinders are fixed at one end and simply supported at the other.

The material used is Nimark 250, with the following characteristics:

Min. yield strength $=230 \mathrm{k}$ pounds/in ${ }^{2}$
Modulus of elasticity, $E=27.5$ $\times 10^{6}$
Poissons ratio, v. $=0.3$
The equations below are from Table 32 (Roark and Young, p. 504): Formulas for a thick walled vessel under internal and external loading. Notation: $a=$ outer radius; $b=$ the inner radius; $s_{2}=$ normal stress in the circumferential direction; $v=$ Poissons ratio.

The inner: cylinder has uniform internal pressure, $q 1 b / i n^{2}$, in all directions; ends capped. Using Table 32, Case 1b (Roark and Young, p 504),
$\max s_{2}=a \frac{a^{2}+b^{2}}{a^{2}-b^{2}}$ at $r=b$
For

$$
\begin{aligned}
& a=1.365 \\
& b=1.222
\end{aligned}
$$

$$
(1.365)^{2}+(1.222)^{2}
$$

$\max s_{2}=\left(10^{4}\right)(1.365)^{2}-(1.222)^{2}-\cdots,-\cdots \quad \mathrm{psi}$
The outer cylinder has uniform external pressure, q lb/in ${ }^{2}$, in all directions; ends capped. Using Table 32, Case 1d (Roark and Young, p. 504),

$$
\begin{equation*}
\max s_{2}=\frac{2 q a^{2}}{a^{2}+b^{2}} \quad \text { at } r=b \tag{A.3}
\end{equation*}
$$

For $\quad a=1.785$

$$
b=1.640
$$

$\max s_{2}=\frac{2\left(10^{4}\right)(1.785)^{2}}{(1.785)^{2}-(1.640)^{2}}=17,925 \mathrm{psi}$

Elastic instability calculations.

The outer cylinder is subject to elastic instability because it has external pressure. A cylinder with supported ends has a higher pressure for elastic instability, as it becomes shorter.

The equation below is from Table 35, Formulas for elastic stability of plates and shells (Roark and Young, p. 556). Notation: $E=$ modulus of elasticity; $v=$ Poisson's ratio; and $t=$ thickness for plates and shells.

The thin tube has closed ends under uniform external pressure, lateral and longitudinal (length of tube $=\ell$; radius of tube $=r$). The ends are held circular. Using Table 35, Case 20 (Roark and Young, p. 556), where $q^{\prime}=$ external pressure at which elastic buckling occurs:
$q^{\prime}=\frac{E\left(\frac{t}{r}\right)}{1+\frac{1}{2}\left(\frac{\pi r}{n \ell}\right)^{2}}\left\{\frac{1}{n^{2}\left[1+\left(\frac{n \ell}{\pi r}\right)^{2}\right]^{2}}+\frac{n^{2} t^{2}}{12 r^{2}\left(1-v^{2}\right)}\left[1+\left(\frac{\pi r}{n \ell}\right)^{2}\right]^{2}\right\}$
here $n=$ number of lobes formed by the tube in buckling. As described by Roark and Young, to determine q^{\prime} for tubes of a given t / r, a group of curves is plotted for each integral value of n of 2 or more, with l / r as ordinate and q^{\prime} as abscissa; that curve of the group which gives the least value of q^{\prime} is then used to find the q^{\prime} corresponding to a given ℓ / r.

Plots of this equation are shown in Fig. A-3, where pressure is plotted vs. length of the cylinder, for $r=1.785 \mathrm{in}$. and $t=0.145 \mathrm{in}$.

The buckling pressure is 18 kpsi , for a length of $5 \mathrm{in} .$, which is nearly the same as the collapse pressure for this shape. Thus, the walls of the 5 in. long cylindrical annulus are more than strong enough to withstand 12 kpsi at the bottom of the drill string.

APPENDIX B. DETAILED DESCRIPTION OF ELECTRONICS

1. Description of Block Diagram.

The block diagram (Fig. 4) corresponds very closely in structure to the actual schematic. The temperature recorder consists of 7 blocks plus battery: the microprocessor, RAM, UART, A/D converter, thermistor bridge, power supply, and battery. The measurement begins with the thermistor bridge, with a voltage nearly linear with temperature. The A/D converter digitizes this voltage with 13 bit resolution. The microprocessor instructs the A / D converter when to convert and stores the measurement in memory. The UART is used to send the stored data serially to an awaiting external device (a computer). The UART is also used to load the program into RAM for 2 -way communication with the computer.

A voltage regulator provides 5 volts to the electronics from an 8 volts battery. A 4 volts mode is available to reduce power consumption. The power switch controls the 5 volts to the A/D converter, so that it may be shut down when not being used, in order to save power. The voltage inverter converts some of the 5 volts to -5 volts for the A/D converter.

2. Detailed Description of the Schematic (Fig. B-1).

The 1802 microprocessor controls all the rest of the elements of the temperature recorder. A crystal of 38.4 kHz runs with the internal oscillator of the microprocessor to provide the computer clock. A low frequency was chosen to save power, since the microprocessor does not have to work very fast. The clock frequency was chosen so that a binary divider chain can provide the UART clock input, which is $16 x$ the UART baud rate.

There are 3 kbytes of RAM, controlled thru the 1866 memory selector, by the address lines of the microprocessor. The 8 address lines are multiplexed. The high order byte comes out first and the low 4 bits are stored in the 1866. Two bits drive the RAMs directly and two are decoded to select the RAMs. The low order byte comes out second and drives the address lines of the RAMs directly. The RAMs are $1 \mathrm{k} \times 4$ bits, so 2 RAMs are used simultaneously: one for the upper four bits of data, and one for the lower 4 bits of data. A write enable line from the computer is active when writing to memory. The address lines and the inhibit for the 1866 selector come outside the hybrid so it can be tested, more memory added or other memory substituted for the internal memory.

The UART runs at 1200 baud, and provides 2-way communication thru the 9 pin recorder connector. The clock for the UART is 19.2 kHz , which is 16 x the 1200 baud rate, derived from a binary divider on the computer clock. The baud rate can be changed on the printed circuit board.

The UART 8 bit data busses for transmitting and receiving are connected to the microprocessor data bus. The transmit buffer is loaded by I/O line 5, and the receiver buffer is read by I/O line 4 . These lines come from the 1853 N line decoder. When data has been transmitted, the transmit buffer

empty line raises (to inverted logic 0) the external flag 1 input (EFl-bar) of the microprocessor. When the receive buffer is full, the data ready line raises the external flag 2 input (EF2-bar) to the microprocessor. The microprocessor has to test these flags to determine the state of the UART.

A dual slope type A / D converter is used to measure the bridge output. Its integration period is set to $1 / 60$ second to average out 60 Hz pick-up while making lab measurements. The A/D converter averages out noise over the integration period, which means it is less sensitive to noise.

The run/hold line for the A / D is controlled by I/O line 3 . This line, as well as the high byte enable and low byte enable for data output are driven by buffers that get their power from the A/D power, but do not load the driving source when the A/D power is switched off.

The reading of the high byte out of the A / D is enabled by I/O line 1 , and the low byte by I/O line 2. A tri-state buffer is used between the A/D data output and the data bus so the A/D converter can be turned off without pulling the data bus down.

The bridge circuit for the thermistor is made of Vishay (Malvern, PA) resistors, which are very stable and temperature insensitive ($<1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$). The bridge runs at a low voltage so that only about $10 \mathrm{~m}^{\circ} \mathrm{C}$ self heating of the thermistor occurs. The self heating, which varies about 30% over the temperature range, is included in the temperature calibration. A zener-like voltage regulator provides 2.5 volts to the bridge to keep the small fluctuations (25 mV) in the 5 volts line from changing the voltage to the bridge during conversion.

The inactive leg of the bridge also provides the reference voltage for the A / D converter, which is set to about 200 mV . A ratiometric measurement is made from the bridge voltage, so the exact voltages are not important. A convenient feature of this A/D converter is the Input Lo terminal, a floating high impedance input, which allows us to center its operating range in the middle of the bridge output swing. Thus we can use both the positive and negative range of the 12 bit plus sign A/D converter to obtain a 13 bit conversion.

An I/O instruction has numbers 1 thru 7 , which is encoded into 3 bits on the NO, N1, and N2 lines. The 1853 N line decoder decodes these 3 bits into 8 lines for operating various $I / 0$ devices. These are:

1. IN 1 - high byte enable on A/D.
2. IN 2 - low byte enable on A / D.
3. OUT 3 - Run/Hold on A/D.
4. IN 4 - read UART receive buffer.
5. OUT 5-load UART transmit buffer.
6. OUT 6 - raise power supply voltage to 5 volts (also available as an output pin for control of an external device).
7. OUT 7 - lower power supply voltage to 4 volts.

Although these lines can be programmed to be inputs or outputs, they are wired to do only one or the other (except for the potential use of I/O line 6).

A very low power voltage regulator supplies a regulated 5 volts to the electronics, when the computer is running normally. It can be switched by I/O line 7 to regulate at 4 volts for standby to hold the data at about $1 / 2$ the current (about 0.5 mamp) as at 5 volts. Under program control the voltage is switched to 4 volts after the data has been acquired. The computer seems to run at 4 volts, but proper operation of the computer and memory is not guaranteed below 4.5 volts. The power can be raised to 5 volts with I/0 line 6 .

To further save power after the data has been acquired, an Idle instruction stops the microprocessor, while the clock continues to run. This chops the current by another factor of 2 to about 0.25 mamp when the supply voltage is 4 volts. As it is wired up (no interrupts), the microprocessor cannot get out of the idle condition by itself, but must be reset externally.

A power switch, controlled by the Q line of the microprocessor, switches the +5 volts for the A/D converter. A 7660 voltage inverter, powered by this switched +5 volts, generates the -5 volts for the A / D converter. The A/D converter consumes about 2.5 mamp when on, so considerable power is saved when it is turned off.

The 1802 has a convenient Load mode, using the DMA IN input. Data from the UART is read into the memory, starting at address 0000_{H}, when in load mode and the DMA IN line is low. The Data Ready line of the UART controls the DMA IN line (via a gate) when in the Load mode. The load mode is entered by raising the reset and the load line in that order.

APPENDIX C. DETAILED LIST OF INPUT/OUTPUT INSTRUCTIONS

Details on the Temperature Recorder Computer Instructions.

Below are instructions specific to this particular computer. See the RCA 1802 programming manual for the general programming of the 1802.

The memory is 3 kbytes (3×1024), which is addressed sequentially from 0000_{H} through 0 BFF $_{H}\left(3071_{D}\right)$. The same memory is addressed each 4 kbytes up to 64 kbytes, because the address decoder does not look at the upper 4 bits.

Input/Output Instructions
\(\left.$$
\begin{array}{ll}\text { IN } 1 & \text { read A/D high byte } \\
\text { IN } 2 & \begin{array}{l}\text { read A/D low byte } \\
\text { run/hold-bar A/D converter (it takes } 1 / 15 \mathrm{sec} \text { to make a }\end{array} \\
\text { OUT } 3 & \begin{array}{l}\text { conversion) }\end{array} \\
\text { IN } 4 & \begin{array}{l}\text { read UART receive buffer }\end{array}
$$

OUT 5 \& load UART transmit buffer\end{array}\right]\)| OUT 6 | raise power supply voltage to 5 volts |
| :--- | :--- |
| OUT 7 | lower power supply voltage to 4 volts |

Other Instructions
SET Q switch power on to A/D
RESET Q switch power off to A/D
FLAGS (note: actual flag inputs are inverted logic)
EFI UART transmit buffer empty
EF2 UART receive data buffer full
EF3 A/D status: $1=$ running; $0=$ finished, or ready to start
EF4 tilt switch vertical (start program)
Load Memory with Program
Raise reset line to 5 volts, then raise load line to 5 volts.
Now any input to the UART will go into memory. All 8 bits from the UART input go into memory.

To terminate load, lower the load line to 0 volts, then lower the reset line to 0 volts.

Now the program will start at location 0000.
UART
The UART runs at 1200 baud, 8 bits, no parity. $1=5$ volts, $0=0$ volts.

APPENDIX D. BRIDGE CIRCUIT EQUATIONS

The bridge circuit for the thermistor is shown in Fig. D-1.
E_{1} is the input voltage to the bridge.
$E_{1 N}$ is the voltage into the A/D converter. The negative input to the A/D converter is derived from the inactive leg of the bridge, and is at the center of the bridge excursion.
$E_{R \varepsilon f}$ is the reference voltage into the A / D converter. The reference voltage is $1 / 2$ the full scale input to the A / D converter. This reference voltage is derived from the inactive leg of the bridge, instead of from a separate divider.

The A/D converter is ratiometric, that is, measures $E_{1 N} / E_{\text {REF }}$. Therefore, the value of E_{1} is not important, as long as it is stable shortly before and during a measurement.

The circuit can easily be solved for R_{2}, the thermistor resistance, as follows:

$$
\begin{equation*}
R_{2}=\frac{R_{1}\left(\frac{R_{4}}{R_{5}}+1+\frac{E_{1 n}}{E_{r_{e f}}}\right)}{\left(\frac{R_{3}}{R_{5}}-\frac{E_{i n}}{E_{r_{e f}}}\right)} \tag{D.1}
\end{equation*}
$$

Figure D-l. Thermistor bridge circuit.
or $\quad R_{2}=8.715\left[\frac{\left(3.734039+\frac{\text { count }}{2048}\right)}{\left(3.023975-\frac{\text { count }}{2048}\right)}\right]$
with the following circuit values (Fig. D-1):

$$
\begin{aligned}
R_{1} & =8.715 \mathrm{~K} \\
\mathrm{R}_{2} & =\text { thermistor resistance } \\
\mathrm{R}_{3} & =2.84671 \mathrm{~K} \\
\mathrm{R}_{4} & =2.57377 \mathrm{~K} \\
\mathrm{R}_{5} & =0.94135 \mathrm{~K} \\
\frac{\mathrm{E}_{1 n}}{\mathrm{E}_{\mathrm{ref}}} & =\frac{\text { count from } \mathrm{A} / \mathrm{D}}{2048}
\end{aligned}
$$

APPENDIX E. CURVE FITTING TO THERMISTOR CALIBRATIONS

We have found that the thermistor calibrations are fit very well (to better than a few milidegrees over a 60° range) by a 3 -parameter equation (Steinhart and Hart, 1968)

$$
T^{-1}=A+B \ln R+C(\ln R)^{3}
$$

```
where T = temperature (K)
```

 \(R=\) thermistor resistance (ohms)
 A, B, C are constants to be determined for each thermistor. Obviously, at least 3 calibration values are needed to determine the 3 constants in the equation, but usually we have an overdetermined problem of finding the best solution for more than 3 values. This solution is found by the usual leastsquares method. Notice that the squared term of the power series is absent, so the usual curve fitting routines for a power series are not used. The least-squares method for this equation, assuming equal weighting of calibration values, is derived as follows:

We simplify the notation by solving for the equation

$$
x=A+B y+C y^{3}
$$

where we have substituted x for T^{-1}, and y for $\ln R$. Then we want to determine the constants A, B, and C such that $\sum\left(A+B y+C y^{3}-X\right)^{2}=$ minimum for n calibration values. This condition is met by differentiating this expression with respect to each of the constants and setting equal to zero:

$$
\begin{aligned}
& \frac{\partial}{\partial A}=2 \sum\left(A+B y+C y^{3}-x\right)=0 \\
& \frac{\partial}{\partial B}=2 \sum\left(A+B y+C y^{3}-x\right) y=0 \\
& \frac{\partial}{\partial C}=2 \sum\left(A+B y+C y^{3}-x\right) y^{3}=0
\end{aligned}
$$

where the summation over n is assumed
or:

$$
\begin{aligned}
& \sum\left(A+B y+C y^{3}-x\right)=0 \\
& \sum\left(A y+B y^{2}+C y^{4}-y x\right)=0 \\
& \sum\left(A y^{3}+B y^{4}+C y^{6}-y^{3} x\right)=0
\end{aligned}
$$

Re-arranging terms:

$$
\begin{aligned}
& A n+B \sum y+C \sum y^{3}-\sum x=0 \\
& A \sum y+B \sum y^{2}+C \sum y^{4}-\sum y x=0 \\
& A \sum y^{3}+B \sum y^{4}+C \sum y^{6}-\sum y^{3} x=0
\end{aligned}
$$

Rewriting in matrix format:

$$
\left[\begin{array}{lll}
n & \Sigma y & \Sigma y^{3} \\
\Sigma y & \Sigma y^{2} & \Sigma y^{4} \\
\Sigma y^{3} & \Sigma y^{4} & \Sigma y^{6}
\end{array}\right] \cdot\left[\begin{array}{c}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{l}
\Sigma x \\
\sum y x \\
\sum y^{3} x
\end{array}\right]
$$

or:

$$
\left[D_{i j}\right] \cdot\left[B_{i}\right]=\left[E_{i}\right]
$$

The desired solution is therefore:

$$
\left[B_{1}\right]=\left[D_{i j}\right]^{-1} \cdot\left[E_{1}\right]
$$

APPENDTX F. PROGRAM LISTINGS FOR THE TEMPERATURE RECORDER

1. INSTRUCTIONS FOR TREC

NAME: TREC/AVRG
PURPOSE: To control operation of DSDP Coring Tool Temperature Recorder
MACHINE: 1802 COSMAC
SOURCE LANGUAGE: RCA CSDP Assembler

DESCRIPTION:

The Coring Tool Temperature Recorder is a miniature data aquisition system packaged in a custom hybrid integrated circuit. It was developed at WHOI for the purpose of measuring in situ temperature of deep ocean sediments, from the cutting shoe (tip) of a Hydraulic Piston Coring (HPC) tool. The recorder contains an 1802 microprocessor, $3 k$ bytes of static RAM, a serial I/O port, and an A/D converter on a substrate approximately $0.55^{\prime \prime} \times 2.7^{\prime \prime}$. An external sensor (nominally a thermistor bridge) and battery pack complete the recorder, which has the capability to aquire 1200 to 1500 fourteen bit data points at intervals of 0.2 seconds to several hours.

TREC is an operating program designed to drive this recorder. During initialization it allows the user to interactively specify one to eight sets of data samples to be aquired by the recorder, with independent turn on delay, sample interval, and sample count for each sample set. After initialization the sample parameters are echoed back to the user for verification, and the recorder's program memory is checksummed. Upon user command TREC enters aquisition mode, and each sample set is aquired using the specified delay, sample count, and sample interval parameters. TREC terminates aquisition and places the recorder in a low power idle mode after all specified sample sets have been aquired, or when the available data memory becomes full. After recovery of the recorder, the recorder CPU is reset and TREC outputs the stored data values to an external data storage device.

OPERATION:

LOADING

1. Place the recorder in Load mode and load the TREC binary code file into the recorder from the support computer. Detailed instructions for this proceedure will be provided for each type of support computer which is used.
2. Reset the recorder CPU to begin execution of TREC. Again, instructions will vary depending upon the support computer provided.

INITIALIZATION

3. TREC will prompt the user for three parameters for each sample set: the number of samples, the sample interval, and the delay period prior to sampling. Each parameter is input as a 0-4 digit hex number followed by a carriage return, as further specified in the "Input" section below. These sample parameters are stored in the recorder memory and later used to control operation of the recorder during data aquisition. The sample parameter prompts are:
\＃SAMPLES ？Input the desired hex number of samples for this sample set．The sum of samples for all sample sets should be less than 1380 decimal（ 564 hex）．Entering a value of zero samples terminates the initialization proceedure and causes verification to begin．

INTERVAL ？Input the desired hex sample interval for this sample set，in tenths of seconds，from a minimum of 2 up to a maximum of 65535 decimal（2－FFFF hex）．Note：a specified interval of 1 （ 0.1 sec ）will result in an actual value of 65536 （ 6553.6 sec ）．

DELAY ？Input the desired hex value of turn on delay prior to this sample set，in seconds，from 0 to 65536．Turn on delay is the delay before aquiring the samples specified by $⿰ ⿰ 三 丨 ⿰ 丨 三 ⿻ ⿻ 一 𠃋 十 一 ~ S A M P L E S ~$ and INTERVAL．

VERIFICATION：

When a value of zero samples is input during initialization， input stops and verification begins．Each of the sets of sample parameters is read from memory and output for inspection by the user． A simple checksum is computed over program memory and output also．The user is then prompted for further action．A typical verification output would be：

$$
\begin{array}{lll}
\text { \#SAMPLES }=0080 & \text { INTERVAL }=0064 & \text { DELAY }=1 C 02 \\
\text { \#SAMPLES }=0400 & \text { INTERVAL }=000 \mathrm{~A} & \text { DELAY }=0000 \\
\text { \#SAMPLES }=00 E 4 & \text { INTERVAL }=0032 & \text { DELAY }=0000 \\
& &
\end{array}
$$

（This would specify an inital delay of 120 minutes followed by 128 samples at 10 second intervals， 1024 samples at 1 second intervals，and 228 samples at 5 second intervals，followed by power down．）

Examine each displayed parameter to be sure it is correct，and compare the checksum to the correct value for the TREC version in use． If all information is correct，typing a capital＂G＂in response to the ＂ACTION ？＂prompt will cause TREC to enter aquisition mode and begin the first delay period．Typing＂G＂may be delayed for as long as necessary，to synchronize the pending aquisition cycle with external events such as HPC operation．

If any of the displayed sample parameters are incorrect or must be changed，TREC may be re－initialized by typing a carriage return in response to the＂ACTION＂prompt，and returning to step 3 above．

If the checksum does not match the correct value given for the TREC version in use，a data error has occurred during or after program load．Do not use a program with a checksum error．Reload TREC from the support computer and start over．

AQUISITION:

During the delay period prior to sampling, TREC outputs an "@" symbol every second to verify correct program operation. Once the "@" is observed the instrument may be sealed and deployed using appropriate proceedures. The tilt switch is active during the delay periods, as follows: If the recorder is horizontal continuously for more than 1 minute, the delay timing stops ("@" stops also). Delay timing restarts from the initially specified delay value for the current sample set, after the recorder has been restored to vertical continuously for 5 minutes.

After the specified delay period has elapsed the A/D converter is powered up and the number of samples specified for the current sample set is aquired, at the interval specified. After sampling, the number of samples in the next sample set is read from memory. If it is zero, the recorder is powered down and the CPU executes an "Idle" instruction until instrument recovery. If the number is not zero, the remaining sample parameters for the next sample set are read from memory and the next delay period begins. The A/D converter is powered down during delay unless the delay is zero seconds. If data memory becomes full during sampling further sampling is inhibited and the recorder is powered down as usual.

PLAYBACK:

Upon recovery the recorder will normally have exited Aquisition mode and be powered down with the CPU reset. After power up and release from reset TREC will dump the stored data as a sequence of 4 hex digit records, one for each sample aquired. When all samples have been dumped the message "STOP" is output and the recorder is powered down. The data playback sequence may be restarted after power down by again resetting the recorder, using the playback routine on the support computer.

INPUT FORMATS:

All input is serial asynchronous ASCII at 1200 baud; 8 data bits, one stop bit, no parity bit.

SAMPLE PARAMETERS. Each parameter is input as a zero to four digit hex number followed by a carriage return. Valid hex digits are echoed back to the user input device; invalid or unrecognized characters are not. The carriage return is not echoed. Valid digits are 0-9 and A-F. If no digits are input before the carriage return a default value of zero is assumed for the parameter. Only the last 4 digits entered are significant, so that typing errors may be corrected by typing unitl the last 4 digits represent the desired value and then typing carriage return.

OUTPUT FORMAT:

All output is serial asynchronous ASCII at 1200 baud; 8 data bits, one stop bit, no parity bit.

PROMPTS. The prompt "非SAMPLES?" is output upon initial reset, followed by the "INTERVAL?" and "DELAY?" prompts. The set of three prompts is repeated for each sample set specified. The prompt formats are:
(CR) (LF) 非SAMPLES? (SP) (ETX)
(SP) (SP) (SP)INTERVAL? (SP) (ETX)
(SP)(SP)(SP)DELAY? (SP) (ETX)
where $L F=$ line feed (hex $O A$), $C R \equiv$ carriage return (hex $O D$), $S P=$ space (hex 20), and ETX = End-Of-Text (hex 03). A 200 millisecond pause follows each CR transmitted by TREC.

VERIFICATION. A double linefeed is output on entry to the verification routine. A verification record is output for each set of sample parameters entered during initialization. Each record has the format
\#SAMPLES = HHHH INTERVAL= HHHH DELAY= HHHH(CR)(LF)
where HHHH is a four digit hex number. After the last record the checksum is output in the format

CHECKSUM $=$ HHHH ACTION?(SP)(ETX).
AQUISITION. During the delay intervals the character "@" is output once per second. This output stops during tilt switch waits and during the actual sampling process.

PLAYBACK.
After recovery and CPU reset the recorded data is output. Each 14 bit sample is output as four hex digits H_{i} in the following format

$$
\mathrm{H}_{3} \mathrm{H}_{2} \mathrm{H}_{1} \mathrm{H}_{0}(\mathrm{LF})(\mathrm{CR})
$$

where: $\quad H_{3}$ contains the overrange (bit 2) and polarity (bit 3) bits; bits 0 and 1 of this digit should be ignored. H_{2} contains bits 11 (MSB) through 8 of the A / D output, H_{1} contains bits 7 through 4, H_{0} contains bits 3 through 0 (LSB).

Each carriage return is followed by a 200 millisecond pause. After the last aquired sample has been output, the end of data message is output:

```
STOP(LF)(CR).
```


ERROR MESSAGES:

TREC performs minimal input validity checking due to its small size. If a non hex character is supplied during data input, that character will not be echoed to the user. No error message is output. Input values are not checked for reasonableness or consistency.

1. The sum of the number of samples in all sample sets should not exceed 1380 decimal. No harm will result from specifying a greater number of samples, but only the first 1380 samples will be aquired.
2. Specifying a sample interval of "1" (0.1 sec) will result in an actual sample interval of 6553.6 seconds.

SUBROUTINES REQUIRED: (all internal to TSEC package)
The first set of routines listed below are memory resident before, during, and after aquisition.

PLAYBK	-	dumps recorded samples.
OUTDAT	-	outputs a 4 hex digit number.
MAIN	-	aquisition control program.
DLAY	-	turn on delay; tilt switch.
AQUI	-	sample and sample interval control.
GETDAT	-	gets one sample from A/D.
TSEC	-	precision 0.1 second timing routine.
OUTCHR	-	outputs a variable length ASCII string.

The following routines are loaded into the data area of memory and are executed once during initialization. They are overlaid (destroyed) by data during the actual aquisition process.

INIT	-	initializes registers, prompts for parameters.
VERIFY	-	outputs parameters, computes checksum.
INDAT	-	reads and converts 4 digit ASCII hex numbers.

DATA STRUCTURES:
Most operating parameters, counters, and pointers are stored in the internal CPU registers. There are three simple data structures:

1. STACK. Used for temporary storage during computations and for holding data to be output with the OUT instruction.
2. PARAMETER STRINGS. There may be one to eight six-byte strings. Each string consists of three 16 bit (two byte) values stored high byte first: number of samples, interval, and delay. A value of zere samples indicates the end of the string area.
3. DATA VALUES. Two-byte data values are stored high byte first, beginning directly above the last parameter string and continuing up through the highest location in the available memory.

TIMING:
A11 TREC timing routines are based on a 38.400 kHz CPU clock. Assuming this clock frequency, DLAY and AQUI will execute their respective delay and sample intervals with an accuracy of . 005%. At the beginning of each new sample set there will be an uncompensated delay of 16 milliseconds while the new sample parameters are accessed.

Ed Mellinger

DATE:
25 April 1982

Appendix 1

AVRG:
The program AVRG is a modified version of TREC designed for use when noise is a problem in the A / D converter input. AVRG operates in a manner similar to TREC during all modes of operation, with the exception of:

INITIALIZATION.
The INTERVAL value should be specified in seconds rather than in tenths of seconds as with TREC. A value of 1 (1 sec) is acceptable to AVRG, but not to TREC.

The maximum total number of samples in all sample sets is 1325 decimal (52D hex).

AQUISITION.
The symbol "S" is output once per second while in aquisition mode. After one specified sample interval (1 to 65536 sec) has elapsed, a set of eight samples is aquired over a period of one second and averaged to produce a single value. This value is stored in data memory in the usual fashion.

The following minor irregularities have been noted in the operation of AVRG:

1. The sample interval is actually 1.0023 times the specified sample interval, in seconds.
2. The first sample following a delay period will be erroneous due to the A / D converter turn-on time constant.
3. SOURCE CODE FOR TEMPERATURE RECORDER *. TFEC

AUOCET SYSTEMS 1882 CROSS-ASSEMBLER - VERSION 1.48
SOURCE FILE NYME: TREC.ASY
;DSDP CORING TOOL TEPPERATURE RECORDER OPERATING SOFTHARE
;ED MELLINGER 11 APRIL 1982
;UPDATES: 21 APRIL 1982
;'TREC" IS DHA LOADED INTO LOWEST GEB BYTES OF MEMORY. CPU ;RESET CAUSES JIMP TO "INIT' WHICH INITIALIZES CPU REGISTERS AND ;PROMPTS FOR SAMPLE-SET PARAMETERS. UP TO 8 SAMPLE SETS MAY BE ;SPECIFIED, EACH WITH INDEPENOENT TURN ON DELAY (8-65536 SEC), ;SAMPLE INTERNAL ($8-6553.6$ SEC) AND NIMBER OF SAMPLES (1-1498). ;MAX TOTAL NLMBER OF SAMPLES IS 1408. ENTERING A UALUE OF ZERO ;SAFPLES TERMINATES 'INIT" AND CAUSES "VERIFY" TO BE EXECUTED. ;"VERIFY" PRINTS THE SAMPLE-SET PARAMETERS ENTERED DURING 'INIT" ;AND OUTPUTS AN 8 BIT LINEAR CHECKSIM OUER THE OPERATING PROGRAH ;AREA. IT THEN PROHPTS FOR USER ACTION; ENTERING 'G" CAUSES ;PROGRAM "MAIN" EXECUTION TO BEGIN, ANY OTHER CHARACTER CAUSES A ;RESTART AT 'INIT'.
;"MAIN" READS THE SAMPLE-SET PARAHETERS STORED IN MEMORY BY ;'INIT' AND INITIALIZES THE SAMPLE COLNT, INTERKAL TIMER, AND ;DELAY WORKING REGISTERS. NHAIN" THEN JIMPS TO "DLAY" WHICH ;OELAYS FOR THE SPECIFIED TIME; DURING DELAY THE TILT SWITCH ;OPTION IS ACTIUE AS SPECIFIED BELON. AFTER DELAY DDLAY' JUMPS TO ;"ACUI' WHICH POWERS UP THE A/D CONERTER ANO AQUIRES THE ;SPECIFIED NUMBER OF SAHPLES. "AQUI" CALLS SUBROUTINE "TSEC" TO ;IMPLEMENT THE SPECIFIED SAMPLE INEERML AND "GEIDAT" TO STORE ;AOUIRED DATA INTO THE DATA MEMORY AREA. WHEN THE SPECIFIED ;NLHBER OF SAMPLES hAVE BEEN AQUIRED 'AQUI' RETURNS TO "MAIN' ; HHERE THE NEXT SET OF SAMPLE-SET PARAMETERS IS READ. IF NIMBER ;OF SAMPLES IS ZERO THEN ARUISITICN TERMINATES AND THE INSTRUMENT ;IS POWERED DOWN WITH AN 'INP 7^{7} COHAND.
;AFTER INSRLMENT RECOUERY THE CPU IS RESET FND BEGINS ;EXECUTION FROM LOCATION 8080. NO-OP INSTRUCTIONS PLACED AT B808;B882 BY "MAIN' CAUSE EXECUTION TO TRANSFER TO 'PLAYBK' WHICH ;OUTPUTS THE STURED DATA AS A SERIES OF RECORDS OF FOUR HEX ;CHARACTERS EACH, AFIER THE LAST DATA RECORD IS OUTPUT "PLAYBK' ;OUTPUTS THE MESSAGE 'STOP' FOLLOWED BY ETX,LF,CR, AND THEN POWERS ;DOWN THE RECORDER. DATA MAY BE OUTPIT AGAIN BY RESETTING THE ;CPU.
;THE MAINLINE ROUTINES 'INIT", "UERIFY'; "MAIN', "DLAY', ;"AQUI', AND "PLAYBK" ALL EXECUTE WITH PC=8. THEY CALL THE ;ufility routines 'indat', "OUTDAt", "OUTCHR', 'TSEC', 'GETDAT', ;AND "OITNUM" TO IMPLEMENT YARIOUS I/O ANO TIMING FINCTIONS. EACH ;UTILITY ROUTINE HAS A SEPARATE PC ANO IS CALLED BY THE "SEP PC" ;TECHIQUE.

ANOCET SYSTEMS 1802 CROSS-ASSEMBLER - VERSION 1.48
TREC

8888
;ROUTINES 'INIT', "UERIFY", "INDAT', AND 'OUTCHR" ARE LOADED ;INTO THE DATA AREA OF MEMORY. THEY ARE EXECUTED ONCE DURING ;INITIALIZATION AND ARE OVERLAID BY DATA DURING THE ACTLAL ;AGUISITION PROCESS. ROITINES 'PLAYEK", "HAIN", "DLAY", "AQUI', ;'GETAAT", 'TSEC', AND "OUTDAT" ARE LOADED INTO LOW MEMORY AND ARE ;ALHAYS PRESENT.

ANOCET STSTEMS 1882 CROSS-ASSEMBLER - UERSION 1.48
TREC
ECLATES

	;PROGRAM COUNTERS		
	;MAINPC EQU	R9	mainine routines PC
	;TSECPC EQU	R1	"TSEC' PC
	;INPC EOU	R3	'INDAT' PC, SHARED WITH 'OUTNM'
	;0UTDPC ENS	$R 4$	"OUTDAT" PC
	;GETPC EQU	R5	'GETAAT ${ }^{\text {P P }}$ P
	;OUTCPC ECU	R6	'OUTCHR" PC
	;OUTNPC EQU	R3	'OUTNIM PC, SHARED WITH 'INDAT'
	; DATPTR EQU	R7	data MEYORY POINTER, ALSO 'LINSLM' POINTER
	;PARPTR EQU	R8	SAMPLE-SET PARAMETER STRING POINTER
	;STKPTR EQU	R2	STACK POINTER
	; ENOFLG EQU	RD	END-OF-DATA-AREA FLAG; SHARED WITH 'SMPCTR"
	;BUFFERS AND HORKING STORAGE		
	; IOOAT EQU	R9	DATA FROMTO I/O ROUTINES
	;DLYSTR EQU	RA	DELAY STORAGE FOR 'OLAY'
	; INTSTR EQU	R9	CURRENT SAFFle internal for 'agul', Shared with "Outchr'
	;COUNTERS		
	;TSCTR EQU	RB	'TSEC' INTERUL COUNTER
	;DLYCTR EQU	RC	"DLAY" INTERULL COLNTER
	;STPCTR EQU	RD	"AQUI' SAMPLE COUNTER; SHARED WITH "ENDFLG"
	; TLTCTR EQU	RE	"DLAY" TILT SWITCH COLNTER
	;SCRATCHPAD		
	;SCRA EQU	RF	SCRATCHPAD REGISTER
8888			
	;I/O PORT NMMES		
	;HBYTE EQU	INP1	HIGH BYTE OF A/D CONERTER
	;LByTE EEU	INP2	LOW BYTE OF A/D
	;ADSTRT EQU	INP3	A/D START SIGHL
	\#UARTIN EQU	INP4	UART RCUR BUFFER REGISTER
	;LARTOT EQU	015	UART XMITTER BUFFER REGISTER
	;INLSED EQN	INP'	UNUSED I/O SLOT
	;PCuron EQU	INP7	POWER DOWN
	;CONSTANTS		
$98 \mathrm{C4}$	NOINST EQU	${ }^{8} \mathbf{C 4 H}$;OP-CODE OF 'NOP' INSTRUCTION
9848	DLAMMK EQU	${ }^{848 \mathrm{H}}$;CHAR '®' FOR 'DLAY' TIME MARK
9847	CAPGEE EQU	'6'	;USER '60' SMMEOL

AUOCET SYSTEMS 1882 CROSS-ASSEMBLER - VERSION 1.49
TREC
Equates

988A	LF	EQU	8AH	;LINEEEED CHARACTER
0800	CR	EQU	90H	;CARRIAGE RETURN
0828	SP	Efl	828 H	;SPACE
0083	ETX	EQJ	83H	; END OF TEXT CHARACTER

AUOCET SYSTEAS 1802 CROSS-ASSEMBLER - VERSION 1.49
TREC
PROGRAM

0800 C88131
8803
8883
8883
8983
8883

8003 E2

888498
0085 B7
888688
8087 A7

LBR
INIT
;ON INITIAL CPU RESET, ;JIMP TO 'INIT'. ;ON LATER RESET, ; JIHP TO "GLITCH". ;ON LAST RESET, ;FALL THRU TO "PLYBK"

;ENTERED ON CPU RESET AFTER FIRST THREE LOCATIONS ARE FILLED WITH ;NOPS BY "IAIN". USES "PARPTR" AS DATA POINTER, LOADS EACH TWO ;BYTE SAYPLE INTO 'IDDAT' AND CALLS 'OUTDAT' TO XMIT DATA UIA ;UART. EACH 4 DIGIT ASCII HEX UALUE IS FOLLOWED BY LF,CR, AND A $; 0.2$ SEC PAUSE. RECORDER IS POWERED DOWN AFTER END OF DATA.

SEX R2 ;FIX STACKPTR AFTER RESET
;AT TERMINATION OF "MAIN", "PARPTR' POINTS TO START OF DATA AREA. ;TRANSFER IT TO "DATAPTR" FOR USE BY 'PLAYBK".

GHI RB
PHI R7
GLO R8
PLO R7
;COMPARE "DATPTR' TO 'ENDFLG" TO CHECK FOR END OF DATA
888897
089952
888 90
980B F7
080C 3A14
88BE 87
809F 52
081880
8011 F7
08123223
0814

901447
801589
881647
9817 A9
9818 D4


``` ; PROGRPM 'TREC'
```


AUOCET SYSTEMS 1892 CROSS-ASSEMBLER - VERSION 1.49
TREC
PROGRPM

881906 001A 8 A800g

88 1D F882
801F AB
8820 D1
88213988
8023 D6
8024 53544F58
8828 9З8А8D88
802C 6 F
902D 88
082E

	;"OITDAT" tRANSMITS CONTENTS OF REGIStER 'IDDAT' AS 4 ASCII hEX digits. ;"OUTDAT" ENTERED UIA 'SEP OUTDPC' AND EXITS UIA "SEP MAINPC'.		
882 ED D	OTEXIT: SEP	Re	;RETURN TO CALLER
802F99	OUTDAT: GHI	R9	;HIGH BYTE TO XMIT
$8839 \mathrm{F6}$	Str		
$8831 \mathrm{F6}$	SHR		
0832 F 6	SHR		
8033 F6	SHR		;ISOLATE HIGH NIBBLE
8834 D3	SEP	R3	;SEND IT
883599	GHI	R9	;HIGH BYTE
${ }^{8836}$ FA8F	ANI	8FH	;LOW NIBBLE
883803	SEP	R3	; SEND IT
883989	GLO	R9	;LON BYTE
893A F6	SHR		
${ }^{8838} \mathrm{~F} 6$	SHR		
983C F6	SHR		
8830 F6	SHR		;HIGH NIBBLE
983 D 3	SEP	R3	; SEND IT
683F 89	GLO	R9	;LOW BYTE
8848 FABF	ANI	9FH	;LOW NIBBLE
8842 D3	SEP	R3	SEND IT
8043382 E	BR	OTEXIT	;RESET 'OUTDPC' BEFORE EXIT
	;"OUTNIM' -- DEDICATED SUBROUTINE FOR DOUTDAT'. CCNWERTS 4 BIT BINARY ;VALUE IN D REG TO ASCII HEX ($\theta-9$, A-F) AND XIITS UIA UART.		

$$
F-12
$$

AUOCET SYSTENS 1802 CROSS-ASSEMBLER - UERSION 1.48
TREC PROGRAM

8845 D4	ONEXIT: SEP	$R 4$;RETURN TO 'OUTDAT"
8046 FFgA	OUTNMM: SMI	8AH	;TEST FOR $<=9$
8048 C7	LSNF		;SKIP ADD IF YES
0849 FC87	ADI	7	; IF A-F, ADD EXTRA
084B FC3A	ADI	83-4	;ADD NET 39 OR
8840			;NET 36 T0 GET
8940			;ASCII CHARACTER.
8840 52	STR	R2	;PUT ON STACK, NO PUSH
084E 344E	ONLOOP: 81	ONLOOP	; WAIT FOR UART TRE
885965	$0: 15$;SEND TO LART
885122	DEC	R2	; INDO AUTOINCREMENT
08523845	BR	ONEXIT	;RESET 'OUTNPC'

" ${ }^{\prime \prime}$ MAIN* READS SAYPLE-SET PARAMETERS FRCM MEMORY (POINTED TO BY ;(PARPTR") AND STORES THEM IN "SMPCTR', 'INTSTR", AND "DLYSTR", ;IF SPECIFIED NLMBER OF SAMPLES IS ZERO, AQUISITION STOPS AND THE ;RECORDER IS PONERED DCWN. IF \# SAMPLES IS NONZERO "MAIN" JIHPS ;TO "DLAY" FOR DELAY BEFORE AQUISITION BEGINS. AFTER DELAY, ;"DLAY" JUMPS TO "AQUI" WHERE THE SPECIFIED NHMBER OF SAYPLES ARE ;AQUIRED, FOLLOWED BY A RETUPN TO "MAIN" WHERE THE NEXT SAMPLE;SET'S PARAMETERS ARE READ.

JMAIN, DLAY, ANO AQUI EXECUTE WITH PC=MAINPC=RO. IN ;GENERAL, THETIMING OF THESE ROUTINES IS CRITICAL TO OUERALL ;TIMING ACCURACY. ANY PROGRAH CHANGES SHOULD THEREFORE BE MADE ;WITH CARE.

985448	MAIN:	LDA	R8	;GET SAMPLE HB
18955 BD		PHI	RD	;STORE
885652		STR	R2	;ALSC SANE TEMP.
885748		LDA	R8	; GET \# SAMPLES LB
8858 AD		PLO	RD	;STORE
8059 F1		OR		;MERGE LB AND HB
985A 3A6C		BN2	NOIDLE	;KEEP GOING IFC30
${ }^{985 C}$				EELSE POWER DOW

;BEFIRE PONERING DON PUT "NO-OPS' AT 8888-8882; TO ALLON ;*PLAYBK" TO BE EXECUTED AFTER NEXT CPU RESET. (NOTE D=6 HERE)

885C BF	PHI	RF	;FIRST NEED
085D AF	PLO	RF	;POINER TO 8008
085E F8C4		LDI	NOINST

TREC
PROGRAM

806597
8966 BD
806787
8068 AD
8069 7A
806A 6F 8968 98

986C 48
8860 89
8865 48
906F A9
987848
0071 BA
887248
8973 AA

STR RF \square
 ;AND AT 0882
;ALSO SANE LAST DATA LOCATION AS FLAG FOR "PLAYBK"
GHI R7
PHI RD
GLO R7
PLO RD
REQ
TTURN OFF A/D
;PDNER DOAN
;IDLE TO BE SURE
;IF \# SAMPLES <8 GET INTERNAL AND DELAY PARAMETERS ALSO

NOIDLE:	LDA	R8
PHI	R9	;GET AND STORE
LDA	R8	;SAPLE INTERUAL
PLO	R9	;HB THEN LB.
LDA	$R 8$;GET AND STORE
PHI	RA	;DELAY TIME
LDA	R8	;HB THEN LB.
PLO	RA	

;FALL THRU INTO "OLAY" WHEN ALL PARMETERS ARE LOADED. "DLAY" ;MOUES "DLYSTR" INTO "DLYCTR", DECREAENTS "DLYCTR" CNCE PER ;SECOND UNTIL "DLYCTR" IS ZERO, THEN JIMPS TO "AQUI". TILT ;SWITCH IS SAMPLED EVERY SECOND DURING DELAY. IF SHITCH OPENS ;FOR 68 CONSECUTIUE SAHPLES (1 MINUTE) THEN "RESTRT" IS EXECUTED. ;'RESTRT" RESETS DELAY COUNTER TO ITS INITIAL VALUE ("DLYSTR" ;INTO "DLYCTR"), THEN SAMPLES TILT SHITCH EVERY 4 SECONDS. IF ;SNITCH CLOSES FOR 75 CONSECUTIUE SAPPIES (5 MINUTES) THEN 'DLAY' ;is executed and delay starts ouer.
;TIMING IN THESE ROUTINES IS CRITICAL; MAKE CHANGES CAREFULLY.

8874 98	DLAY:	GHI	RA	;GET DELAY TIME
		PHI	RC	;FRCM STOPAGE
88768 8		GLO	RA	; INTO
8877 AC		PLO	RC	;HORKING COINTER.
8878 F83C		LDI	83CH	;68 SEC TIMEDUT
897A AE		PLO	RE	;TO DETECT TILT.

;("GLITCH* IS THE RE-ENTRY POINT IN CASE OF A SPURIOUS CPU RESET ;DURING "DLAY" or "AQui"; IT IS ENTERED after CPU RESET via a ;LONG BRANCH PLACED AT 8988-8882 BY 'INIT'. RECOVERY FROM ;SPURIOUS RESETS IS possible during 'dlay" and "adui', With ;POSSIBLE LOSS OF ONE DELAY OF AQUISITION CYCLE. GLITCHES DLRING ;"MAIN" ARE FATAL SINCE "PARPTR" WILL BE INCORRECTLY POSITIONED

AUOCET SYSTEMS 1882 CROSS-ASSEMBLER - VERSION 1.49
TREC
PRGGRAM
;UPON RE-ENTY.)
8078 E2 GLITCH: SEX R2 ;FIX R(X) AFTER RESET

987\% 9	DYLOAP: GHI	RC	;TEST DELAY
897052	STR	R2	; BY MERGING
897E 8C	G. 0	RC	; ${ }^{\text {d }}$ LYCTR ${ }^{\text {P }}$ HB+LB.
887F FI	OR		;1F BOTH 2ERO
88883284	B2	AQUI	; 60 DO ARUI.
08828 E	GLO	RE	;ELSE TEST FOR
8883 32A2	BZ	RESTRT	;TILY, RESTART IF YES

;OUTPUT g' FOR TIMING, DELAY ONE SECOND, CHECK TILT SHITCH

8885				; IF ALL OK,
8885 6E		INP6		;DO TIME MARKS
8886 F 849		LDI	DLAMM	; XMIT MARK UIA
888852		STR	R2	;UART EVERY SEC.
808965		OU5		
8884 22		DEC	R2	;iNDO AUTOINCR.
9888 2 C		DEC	RC	;DEC DELAY COUNTER REG
898C F889		LDI	9	;COARSE DELAY,
908E AB		PLO	RB	;9.9 SEC VAI
808F D1		SEP	R1	;'TSEC' CALL.
8898 F 849		LDI	849 ${ }^{\text {H }}$;FINE DELAY (49H-73D)
8892 FF61	DELOOP:	SMI	1	;TO FILL OUT DYLOOP
9994 7A		REQ		; (ALSO OFF A/D)
8995 3492		EN2	DELOOP	; T0 EXACT 1.0 SEC
8697 3F9E		BN4	DTILT	;CHECK TILT SH,
8099 F83C		LDI	93CH	; IF NO TILT,
8998 AE		PLO	RE	;RESET TILT COLNTER
899C 387C		BR	OYLDOP	;KEEP DELAYING.
909E 2E	DTILT:	DEC	RE	; IF TILT, DEC COUNTER.
8095 7A		REO		;(2 CYCLE N0-OP)
88AB 307C		BR	DYLOOP.	:KEEP DELAYING.

;"RESTRT" RESETS THE DELAY COLNTER ("DLYCTR") AND HAITS FOR THE ;TILT SWITCH TO OPEN AND STAY OPEN 5 MINUTES.

88A2 F84B
08A4 AE
88A5 8E
RESTRT: $\begin{array}{cc}\text { LDI } \\ \text { PLO } & \text { B4BH } \\ \text { RE }\end{array}$
$; 4 B \mathrm{H}=75 \mathrm{DFOR}$
;5 MIN RESTART DELAY.
RSLOOP: GLO RE
:TEST FOR LNTILT

$$
F-15
$$

AUOCET SYSTEMS 1802 CROSS－ASSEMBLER－VERSION 1.46
TREC
PROGREA

98A6 3274	B2	DLAY	；RE－START DELAY If YES
8848 F828	L．DI	9284	；4．9 SECOND
80AA AB	PLO	RB	；CDARSE OELAY OKLY
98AB DI	SEP	R1	；UIA＇TSEC＇CALL．
884 C 3781	B4	NOTILT	；TEST TILT SH
88AE F84C	LDI	04CH	；IF OPEN，RESET
98BE AE	PLO	RE	；TILT COLNTER（＋1）
98812 E	NOTILT：DEC		；IF CLISED，DEC
0882 38A5	BR	RSLOOP	¢COUNTER AND LOOP．

；＇ARUI＇IS ENTERED FROM＂DLAY＂．＂AQUI＇CHECKS SAMPLE COUNTER ；REG．＂SMPCTR＂FOR 2ERO，RETURNS TO MAIN IF YES．IF NO，＂ARUI＇ ；POWERS UP A／D，INITIALIZES＂TSEC＂COUNTER WITH SAMPLE INTERKAL ；AND CALLS＂TSEC＇．AFTER＇TSEC＇TIMES THE SPECIFIED INTERUAL； ；＇AQUI＇STARTS A／D CONERSION AND CALLS＇GETDAT＇TO TRANSFER ；CONERTER DATA TO MEYORY IN DESIFED FOPFAT（PACKED OR WNPACKED）． ；AFTER TRANSFER，＂AQUI＇CHECKS DATA POINTER＂DATPTR＂AND PREvents ；IT FROM INCREMENTING BEYOND THE END OF DATA MEMORY（LOCATION ； $8 B F F$ ）．
；＇AQUI＂is a Maineine routine（pC－MAINPC＝Rg）．ITS timing is ；CRITICAL AND MODIFICATIONS SHOULD BE MADE MITH CARE．
；FIRST CHECK FOR DONE

8984 90	AQUI：	GHI	RD	；GET SAMPLE COWNTER HB
88855		STR	R2	；PUT ON STACK，NO PUSH
9086 8D		GLO	RD	；GET SAMPLE CTR LB
8887 Fl		OR		；MERGE KBLLB
${ }^{8888} 3254$		日2	MAIN	；IF BOTH 2ERO，GO DO
808A				；NEXT SAMPLE SET．

；IF NOT DONE，SEND MARK AND WAIT 1 SAMPLE INTERNL

808A 78	SEO	
898B 6E	INP6	
80BC 2 D	DEC	RD
9880 99	GHI	R9
86BE BB	PHI	RB
98BF 89	GLD	R9
89C8 AB	PLO	RB
日日C1 28	DEC	RB
80C2		
$88 C 2 \mathrm{DI}$	SEP	R1
89C3 68	INP3	
98C4 F86A	LDI	86f H
98C6 FFbi		

；PWR UP A／D
；PULSE I／O 6 LINE
；DEC SAPPLE CONNTER
；HOUE INTERNAL
；INTO＇TSEC＇MRKING
；COLNTER
；LESS A．1 SEC For
；LATER FINE DELAY．
；DELAY SPEC＇D TIME
；START A／D COMMERSION
；FINE DELAY
；WAIT FOR A／D

AUOCET SYSTEAS 1882 CROSS－ASSEMBLER－UERSION 1.49
TREC
PROGRAM
88C8 3AC6
ANZ AOLOOP
；GET DATA FROM A／D AND CHECK FOR DATA MEMGRY FULL

$\begin{aligned} & \text { ө日CA D5 } \\ & \text { ө日CB } \end{aligned}$	SEP	R5	；CALL＇GETDAT＇TO ；MOVE DATA TO MEU
80CB 97	GHI	R7	；CHECK FOR
80CC FFAC	SMI	日CH	；DATA MEM FULL
80CE 3BB4	BM	AQUI	；LOPP IF NO
日608 27	DEC	R7	；IF YES，
800127	DEC	R7	；DEC POINTER
88023854	BR	MAIN	；AND FORCE NEXT

；（THIS Allows CORRECT TERMINATION OF AQUISITION IN＂MAIN＂．ALL ；SAMPLE PARAMETERS MUST BE READ TO CORRECTLY POSITION PPARPTR＂ ；FOR PLAYBACK．）
；＂GETDAT＂－－NONPACKING VERSION．GETS A／D DATA AND STORES ；SERUENTIALLY in memory．（packing version Allows 33\％more ；SAPPLES IF 12－BIT SAMPLES ARE USED）．

8004 D8	goexit：SEP	Re	；RETUPN TO＇ARUI＇
800569	GETDAT：INPI		；GET A／D HB
880657	STR	R7	；PUT IN DATA MEM
980717	INC	R7	；INC POINTER
0808 SA	INP2		；GET A／D LB
880957	STR	R7	；PUT IN DATA MEM
88DA 17	INC	R7	；INC POINTER
88083804	BR	GEEXIT	；RESTORE＇GETPC＂

；＂TSEC＇IS a 8．1 SEC TIMING ROutine．time From begining of ；EXECCIITON OF FIRST INSTRUCTION（DEC TSCTR）TO END OF EXECUTION

AVOCET SYSTEMS 1882 CROSS-ASSEMBLER - VERSION 1.48
TREC
PROGRAM

88E8

90E8 D8
88E9
98EA F874

B8EC FF81
G8EE 3AEC
88F9 9B
88F1 52
88F2 88
B8F3 FI
08F4 3258

00F6 30E9

9188
0101
0131
8131
STKTOP: 0 PARAM: ORG
+
$\$+48$
;SPACE FOR ;8 SAMPLE-SET PARAHETER STRINGS
;EACH SAYPLE-SET PARAMETER STRING IS 6 BYTES LONG; ;TWO BYTES EACH (HB FIRST) FOR: SAMPLES; SAMPLE INTERUAL, AND ;TURN-ON DELAY. DURING AQUISITION, SATA IS STORED IN MEMORY ;BEGINNING DIRECTLY AFTER (ABONE) THE LAST PARAYETER. THE LAST ;PARAYETER IS ALWAYS THE 'ZERO SAYPLES' FLAG WHICH TERHINATES ¡INPUT AND AQUISITION.
;

;THE FOLLOWING ROLTINES ARE LOADED INTO THE DATA AREA AND ARE ;EXECITED ONCE DLRING INITIALIZATION. THEY ARE ONERLAID ;(DESTROYED) BY OATA DURING THE ACTUAL AQUISITICN PROCESS.

;ENTERED UIA LONG BRANCH INSTRUCTICN AT 8888-0882, AFTER ;CPU RESET, INITIALIZES REGISTERS TSECPC, INPC, OUTPC, DUTCPC, ;GETPC; STKPTR; PARPTR; SETS X=STKPTR; POWERS DOWN A/D. PROMPTS

TREC
PROGRAM

0131

01317 A

8132 F889
8134 B1
8135 F8E9
0137 Al
0138 F882
813A B3
813B F85A
013 A A3
013E F808
8148 B4
8141 F82F
8143 A4
0144 F880
9146 B6
8147 F8DE
9149 A 6
8144 F880
814C B5
8140 F805
914 F A5
0150 F801
8152 B2
8153 F880
0155 A2
;USER FOR INPUT OF SAPPLE-SET PARMETERS:
; \#SAMPLES? \# OF SAMPLES IN THIS SET; ZERO STOPS FURHTER INPIT.
; INTERUAL? SAYPLE INERNAL FOR THIS SET, IN TENTHS OF SECONDS.
; DELAY? TURN ON DELAY BEFORE ARUIRING THIS SET, IN SECONDS.
;THE RESPONSE TO EACH PRCMPT SHOLLD BE A ONE TO FOLR CHARACTER ;HEX INTEGER FOLLOWED BY A CARRAIGE RETURN. THE INPUT PROTOCOL ;IS UT4 FORHAT, I.E. ONLY THE LAST 4 DIGITS ARE SIGNIFICANT; ;THUS ERRORS MAY BE CORRECTED BY TYPING UNTIL THE NMMBER IS ;CORRECT AND THEN TYPING "RETURN". ILLEGAL OR INRECOGNIZED ;CHARACTERS ARE NOT ECHOED BACK TO THE USER INPUT DEVICE.

;"INIT" CONTINLES TO PRCMPT FOR SAMPLE-SET PARAHE A UALUE IS READ FOR \# SAMPLES. . UP TO 8 SETS

INIT: REO
;TUPN OFF A/D
;INITIALIZE WORKING REGISTERS AS REQ’D

LDI	A.1(TSEC)	;INITIALIZE
PHI	R1	;'TSEC' PC.
LDI	A.8(TSEC)	
PL0	R1	
LDI	A. 1 (INDAT)	
PHI	R3	;'INDAT' PC.
LDI	A.8(INDAT)	
PLO	R3	
L.OI	A. 1 (OUTDAT)	
PHI	R4	; OUTTDAT" PC.
LDI	A.8(OUTDOAT)	
PL0	R4	
LDI	A. 1 (OUTCHR)	
PHI	R6	; ${ }^{\text {OUTTCHR" PC. }}$
LDI	A.8(OUTCHR)	
PLO	R6	
LDI	A. 1 (GETDAT)	
PHI	R5	;'GEIDAT" PC.
LDI	A. 8 (GETDAT)	
PLO	R5	
LDI	A.1(STKTOP)	
PHI	R2	jSTACK POINTER
LOI	A.O(STKTOP)	
PLO	R2	

AUOCET SYSTEMS 1882 CROSS-ASSEMBLER - UERSION 1.46
TREC
PROGRAM

8156 F801	LDI	A. 1 (PARA ${ }^{\text {a }}$;PARAMETER
815888	PHI	R8	;STRING POINTER
0159 F881	LDI	A.8(PARHM)	
815 B A8	PLO	R8	
$815 C$ E2	SEX	R2	; $\mathrm{X}=$ STKPTR ALHAYS

;PRONPT USER FOR SAMPLE-SET PARFMETERS

$\begin{aligned} & 815 D \mathrm{D6} \\ & \text { 8155 8ABDOB } \end{aligned}$	PROWPT: SEP DB	$\begin{aligned} & \text { R6 } \\ & \text { LF,CR, } \theta \end{aligned}$;CALL 'OUTCHR' 50 ;SEND LF,CR.
8161 F880	LDI	8	;SET UP 8.2 SEC
8163 BB	PHI	RB	;DELAY AFTER CR
0164 F882	LDI	2	
8166 AB	PLI	RB	
$8167 \mathrm{D1}$	SEP	R1	;CALL *TSEC*

;PROMPT AND GET \# OF SAPPLES

0168 D6
016923534140
81713 F288388
817503
817699
817758
017852
017918
817889
017858
817 C 18
8170 Fl
917E 32AD
8188

SEP	R6	;CALL 'OUTCHR'
D8	'"SAMPLES'	
D8	'?', SP,ETX, 8	
SEP	R3	;CALL "INDAT"
GHI	R9	;GET RETURN HB
STR	R8	;STORE IN MEMORY
STR	R2	;ALSO ON STACK
INC	R8	;iNC MEM PTR

;GET RETURN LB ;STORE IN MEMORY ; INC MEM PTR ;MERGE HB AND LB ;IF 9 , NO MORE INPUT. ;ELSE GET INIVL, DELAY.
;PROMPT AND GET SAYPLE INTERKAL

918806
8181282828
8184 494E5445
818C 3 F298398
019803
819199
819258
819318
819489
819558

SEP	R6
DB	SP,SP,SP

DB 'INTERVAL'
DB '?', SP,ETX,8
$\operatorname{SEP} \mathrm{R} 3$
GHI R9
STR R8
INC R8
GLO R9
STR R8
;SEND PROMPT
;GET INPUT

ANOCET SYSTENS 1802 CROSS-ASSEMBLER - UERSION 1.48
TREC
PRGGRAM

019618	INC	R8	
	;PROMPT AND GET TURN ON DELAY TIME (DELAY BEFORE SA		
8197 D6	SEP	R6	;SEND PROMPT
9198292828	D8	SP,SP,SP	
$919844454 \mathrm{C41}$	D8	'DELAY?'	
91A1 288380	DB	SP,ETX,0	
9144 D3	SEP	R3	;GET INPT
O1A5 99	6HI	R9	;STORE IN
91A 58	STR	R8	; MEMORY
814718	INC	R8	;PARAM STRING AREA
019888	GLO	R9	
01 A9 58	STR	R8	
O1A 18	INC	R8	
81 AB 3850	BR	PROMPT	GEET NEXT
81 AD			;PARAMETER SET

;CHANGE 'LONG BRANCH" INSTRUCTION AT 0888-9882 TO RE-ENTER "DLAY" ;IN CASE OF SPURIOUS RESET.

014 F F888	BURN:	LDI	8	;SET UP POINTER
$81 / 4 \mathrm{~F}$ 日F		PHI	AF	;TO LOCATION
8180 AF		PLO	RF	
9381 1 F		INC	RF	;OF JMP ADDRESS
$8182 \mathrm{F880}$		LDI	A. I(GLITCH)	;GET NEW ADDRESS
81845		STR	RF	;STORE IN 9801
9185 IF		INC	RF	
9186 F878		LDI	A.8(GLITCH)	
01885		STR	RF	;AND IN 8882

;FALL THRU TO UERIFY WHEN THRU

Q1B9 ;OUTPUTS SAPLES, INTERULL, AND DELAY DATA FOR USER ;INSPECTION. CCOPPUES LINEAR CHECKSIM LLINEAR SIM OF MEMORY ;BYTES) OVER PROGRM AREA FROM 8888 TO LABEL 'ENDCHK" AT END OF ;"TSEC', AND OUTPUTS RESLLTT. PRCHPTS WITH 'ACTION...?" FOR USER ;RESPONSE. ENTER UPPERCASE 'G" TO BEGIN EXECUTION OF "MAIN", ANY ;OTHER CHARACTER TO START "INIT" OUER AGAIN. 'PARPTR" AND ;"DATPTR' ARE RE-INITIALIZED BEFORE THE JIMP TO 'MAIN".

8189
8189 F888
$018 B 83$
01BC F846
;"VERIFY" EXECUTES WITH PC=NAINPC=R8.
VERIFY: LDI A.ICOUTNMM) ;FIRST BUSINESS IS
PHI R3 ;TO INIT "OUTNPC"
LDI A.B(OUTNUM) ;NOH THAT 'INDAT'

ANOEET SYSTEMS 1802 CROSS-ASSEMBLER - UERSION 1.48
TREC
PROGFAM

${ }^{81 B E}$ A3		PL0	R3	;IS FINISHED
818 F 889		LDI	A. 1 (PARAM)	;RESET PARPTR TO
OIC1 88		PHI	R8	;START OF
$91 \mathrm{C} 2 \mathrm{F89} 1$		LDI	A.g(PARAH)	;PARAM STRING
$01 \mathrm{C4}$ A8		PLO	R8	; BEFORE VERIFYING
8150		SEP	R6	;CALL OUITCHR AND
$81 C 6$ OABA8B		DB	LF,LF, ${ }^{\text {d }}$;LEANE TWO BLAK LINES
810906	VLGOP:	SEP	R6	; LLOOP IS
O1CA 8ABDE8		DB	LF, CR, θ	;0才PIT L00P
$91 C D$ F892		LDI	2	; 0.2 SEC DELAY
${ }^{81} 16 \mathrm{~F}$ AB		PLO	R8	;AFTER CR, UIA
110901		SEP	R1	;CALL TO "TSEC"

;OUTPUT \#SAPPLES; EXIT ULOOP IF =8.

010148	LDA	R8	;GET \#SAMPLES HB
010289	PHI	R9	;PlT IN OUT BUFFER
81035	STR	82	;ALSO ON STACK
810448	LDA	R8	;GET \#SAMPLES LB
8105 A9	PLO	R9	;PUT IN OUT BUFFER
8106 Fl	OR		;MERGE HB AND LB
8107 C2628F	LBZ	LINSLM	; EXIT ULOOP IF
B10A D6	SEP	R6	;ELSE SEND TEXT
010 B 2353414 D	DB	'HSAMPLES'	
8153302888	DB	${ }^{\prime}={ }^{\prime}$, SP, 0	
9156 D4	SEP	R 4	TTHEN SEND DATA

;OUTPUT SAMPLE INTERNAL

815748	LDA	R8	;GEI INTERSAL HB
015889	PHI	R9	;PUT IN EXJFER
91 E9 48	LDA	R8	;GEI INTERMAL LB
91EA A9	PLO	R9	;PUT IN BUFFER
81 Eb 06	SEP	R6	;SEND TEXT
91EC 282928	D8	SP,SP,SP	
81EF 494E5445	${ }^{\text {D }}$	'INTERNAL'	
8177302808	D8	${ }^{\prime}=1$, SP, 8	
01FA D4	SEP	R4	;THEN SEND DATA

;OUTPUT TURN-ON DELAY

Q1FB 48
01FC 89
OIFD 48
81FE A9

LDA R8
PHI R9
LDA RB
PL0 R9
;GET HB
;GET LB

ANOCET SYSTEMS 1802 CROSS-ASSEHBLER - VERSION 1.40
TREC
PROGRAM
81FF 06
8286282020
$828344454 C 41$
828B D4
828C C081C9
028F

SEP	R6	;SEND TEXT
DB	SP,SP,SP	
DB	'DELAY=',SP; 8	
SEP	R4	;THEN SEND DATA
LBR	ULOOP	;REPEAT FOR NEXT
		;PARAYETER SET

;COMPUTE CHECKSUM AND OUTPUT RESUKT.

829F F806	LINSIM: LDI	0	;FIRST SET UP
8211 B7	PHI	R7	;POINTER TO
8212 A7	PLO	R7	;PROGRAH AREA
821389	PHI	R9	jCLEAR RUJFER HB
8214 E7	SEX	R7	;READY FOR ADDING
021589	CKLOOP: GLO	R9	;GET OLD SLM
8216 F4	ADD		;ADD MEMORY BYTE
8217 A9	PLO	R9	;SANE NEN SLM
821817	INC	R7	;INC POINTER TO NEXT BYTE.
021997	GHI	R7	¡TEST IF THRU BY
021A FFB0	SMI	A. 1 (ENDCHK)	¢COMPARING TTR
921C CB8215	LENF	CKLOOP	;AMD FLAG LABEL.
821F			;KEEP LOCPING IF NO
82IF 87	GLO	R7	¢BOTH BYTES
0220 FFF6	SMI	A. 8 (ENDCHK)	ghMUST MATCH
8222 CB6215	LBNF	CKLOOP	;TO PE DONE
9225 E2	SEX	22	;RE-ENABLE STACK
8226 D6	SEP	R6	;WHEN DONE, SEND
822726282843	D8	SP, SP, SP, ${ }^{\text {C }}$	
822F 5355403D	DB	'SUNF', SP, 8	
023504	SEP	R4	SAND SEND DATA

;OUTPUT PROMPT AND READ GQNO GO CHARACTER.

023606	SEP	R6	;SEND PROMPT
023728282841	D8	SP,SP,SP; 'ACT'	
6230 494F4E3F	DB	'[ON?', SP, ETX, ${ }^{\text {] }}$	
02443544	ACLOOP: B2	ACLOOP	;AHIT UART REPLY
82466 C	INP4		;GET REPLY
0247 FF47	SHI	CAPGEE	;1S IT 'G' ?
8249 CAB131	LBNZ	INIT	\%IF NO, "INIT"
024 C			¢IF YES; 'MAIN"

;AFTER LAST SAMPLE-SET PARAMETER HAS BEEN READ 'PARPTR POINTS TO ;START OF DATA AREA. TRANSFER IT OT "DATPTR", THE RE-INITIALIZE ;"PARPTR". THEN JIMP TO "MAIN" TO BEGIN AQUISITION PROCESS.

ANOCET SYSTEMS 1882 CROSS-ASSEMBLER - VERSION 1.48
TREC
PRGGRAH
824C 98
824D 87
日24E 88
824F A7

8258 F891
8252 B8
8253 F881
8255 A8
8256 C88854
8259

OHI	R8	
PHI	R7	
GL0	R8	
PLO	R7	
LDI	A. 1 (PARM)	
PHI	R8	
LDI	A. 8 (PARY ${ }^{\text {(})}$	
PLO	R8	
LBR	MAIN	; END OF GPERATOR
		;initialization

;CALLED VIA "SEP INPC". CLEARS "IODAT", THEN READS RCVD. ;CHARACTERS FRON UART. HEX DIGITS ($8-9, A-F)$ ARE CONUERTED TO ;4 BIT VALUES AND SHIFTED INTO "IODAT" FROM RIGHT TO LEFT, AND ;ALSO ECHOED TO USER. NON-HEX CHARACTERS ARE IGNORED. INPUT ;STRING IS TERMINGTED WITH A CR; REIURN IS VIA "SEP MAINPC". ;ASSIMES $X=$ STKPTR.

825988	INEXIT: SEP	R 8	;RETUPN TO CALLER
625A F888	INDAT: LDI	8	;ON ENTRY
825C B9	PHI	R9	;CLEAR BUFFER
8250 A9	PLO	R9	

;INPUT A CHARACTER, CHECK IT, CONJERT IT TO 4 BITS, ECHO IT

825E 355E	$\begin{array}{ll} \text { ILOOP: } & \text { 日2 } \\ & \text { INP4 } \end{array}$	H1LOP	; Wait for chapacter ;THEN GET IT
8261 FF9D	SMI	CR	;CHECK FOR CR
82633259	B2	INEXIT	¢EXIT IF YEs
9265 FP	LDX		;RE-GET CHAR
8266 FF39	SM	838H	;TEST FOR NON-HEX
8268 385E	BM	ILOOP	; IF NON, TRY AGAIN
826A FF9A	S11	8AH	; ELSE TEST FOR
026C 3878	BM	DECIML	;DECIMAL, 60
826E			;CONERT IF YES
${ }^{\text {926E FF97 }}$	SHI	7	;ELSE TEST *3A-48
8279 385E	EM	1L00P	;TRY AGAIN IF YES
8272 FF66	SMI	6	;ELSE TEST $)=$ \#46
6274335 E	8P2	ILOOP	;TRY AGAIN IF YES
9276 FC96	ADI	6	;ELSE OK HEX A-F
8278 FC8A	DECIM: ADI	8 AH	;MAKE 4 BIT UALUE
927A AF	PLO	RF	;SANE TEMP
			F-24

ANOCET SYSTEMS 1802 CROSS-ASSEMBLER - VERSION 1.48
TREC
PROGRAM

82783478	INLOAP: Bl	INL.OOP	; WAIT FOR TRE
827065	0iff		;THEN ECHO CHAR BACK
027E 22	DEC	R2	; UNDO AUTOINCR

;SHIFT RCND 4 BIT WALUE INTO "IODAT' FROM R TOL

927F99	GHI	R9	;GET BlfFer hb
8288 FE	SHL		
8281 FE	SHL		
8282 FE	SHL		
0283 FE	Sth		;SHIFT L 4
828452	STR	R2	;PUT ON STACK
828589	G00	R9	;BEFER LB
8286 F6	SHR		
0287 F6	StR		
9288 F 6	SHR		
0289 F6	SHR		;SHIFT R 4
8284 F1	OR		;MERGE HELN+LBHN
8288 B9	PHI	R9	;SAME AS NEW HB
828C 89	GLO	R9	; 8 UFFER LB
9280 FE	SHL		
028E FE	SHL		
828 FE	SHL		
8298 FE	SHH		; SHIFT L 4
029152	STR	R2	; PUT ON STACK
92928 F	GLO	RF	;RE-GET NEX NIBELE
8293 Fl	OR		MMERGE LBHN+NEWNIB
9294 A9	PLLO	R9	;SAUE AS NEW LB
8295 365E	BR	ILOOP	GGET NEXT DIGIT
8889	END		

AUOCET SYSTEMS 1892 CROSS-ASSEMBLER - VERSION 1.40
TREC
---- SMMBCL TABLE ----

	882 E	DECIML	0278	ILOOP	8255	NOTILT	9881	PLAYBK	8888
	8988	DELOOP	8992	INDAT	825A	OCEXIT	98DD	PraMPT	8150
	892E	OLAY	8874	InEXIT	8259	OCLOOP	8日E2	RESTRT	88A2
	0989	OLAMM	8046	INIT	0131	ONEXIT	8845	RSLOOP	88A5
ACLOOP	8244	DTILT	8095	INLOOP	8278	ONLOOP	884E	SP	8820
AQLOOP	98C6	DYLOOP	887C	LF	888A	OTEXIT	882E	STKTOP	8188
AQUI	9884	ENOCHK	80F6	LINSLM	828 F	OUTCHR	b日ge	TSEC	88E9
BUPN	$914 D$	ETX	8883	MAIN	9854	OUTDAT	802F	TSEXIT	80E8
CAPGEE	8847	GDEXIT	8804	MOVDAT	8814	OUINNH	8846	TSLOOP	89EC
CKLOOP	0215	GETDAT	8805	NOIDLE	806C	PARAM	8191	VERIFY	8189
CR	8880	GLITCH	8978	NOINST	88 C 4	PBEND	8823	ULOOP	B1C9

c. ADTEST

ADDRESE CODE MNEMONIC COMMENT

			:NAME GF PROGRAM, ADTEST
0000	F8	LDI	:MAKE REG $3=0008$
0001	cs	CS	;MAKE REG THE address of x out in the EOONIES WHERE IT WON'T HURT ANYTHING
0002	A3	PLO	:PUT LOW REG 3
0003	F8	LDI	
0004	00	00	
0005	E3	FHI	; PUT HI REG 3
0006	E3	SEX	;TO REG 3
0007	75	EET Q	:TURN ON A/D POWEF
			 :START A/D CYCLE AGAIN
0008	6 B	INP 3	;TRIGGER A/D ; WAIT LOOP FOR MEASUREMENT REPETITION
0009	Fs	LDI	
00001	FF	FF	:WAIT TIME
0008	FF	SMI	; SUBTRACT MEMORY IMMEDIATE
0000:	01	01	:NUMBER SUETRACTED
0000	C4	NOP	; WASTE TIME
000 E	E.4	Nop	
000 F	C4	NOP	
0010	C.4	NOP	
0011	C4	NOP	
0012	C.4	NOP	
0013	C4	NOP	
0014	C 4	NOP	
0015	3 A	BNZ	; SHORT BRANCH IF NOT O
0016	OB	0 E	; BRANCH LOCATION
			: READ A/D AND GEND IT OUT UIA UART
0017	3 E	BNS	; SHORT ERANCH IF EFS=0, WAIT IF A/D STATUS IS ; HI
0018	17	17	; BRANCH LOCATION
0017	69	INP 1	; INFUT 1, HI ORDER EYTE FROM A/D
001A	65	OUT 5	: OUTPUT 5, OUTFIJT HI ORDER BYTE TO UART
0018	23	DEC	© DECREMENT REG 3, CANCELS AUTG INCREMENT IN ;REG 3 DIJE TO OUT 5
0010	34	E1	; GHORT BRANCH IF EFI=1, WAIT TIL LAART READY
0010	1 C	1 C	: BRANCH LOCATION
001 E	6 A	INP 2	; INPUT 2, LO GRDER A/D BYTE
001 F	65	OUT 5	: OUTPUT 5, OUTPUT LG ORDER EYTE TG LAART
0020	23	DEC	;DECREMENT REG 3 (X REG), CANCELS AUTO inderement due to out 5
0021	34	B1	: GHORT BRANCH IF EF $1=1$, WAIT FGR UART TO ;FINISH
0022	21	21	; Branch locatigan
			: END OF READING OUT A/D
0023	30	ER	: SHORT ERANCH, START AGAIN
0024	08	08	; Branch location

d. MEMTEST2

AODR	cooe	LABEL	MNEMONIC	COMMENT ;PROGRAM NAME - MEMTST2
0000	C4		NOP	
0001	04		NOF	
0002	7B		SEQ	; TURN OFF A/D CONV
0003	F8AA		LDI \#AA	: LOAO IN TEST.FATTERN
0005	A4		PLO R4	; Save it in ra.0
				; START MEMORY TEST
0006	F800	START	LDI \#00	
0008	B3		FHI R3	; SET UP QUTPUT FOINTER
0009	A3		PL0 R3	
000A	E2		PHI R2	; SET UP MEMORY TEST FOINTER
0008	F860		LDE \#60	
0000	A2		PLG R2	
				; ******************************
				:FILL MEMDI UITH TEST PATTERN
000E	84	FILL	GLO R4	; LOAD TEST WORD
000 F	52		STR R2	;PUT IN MEMGRY
0010	12		INC R2	;POINT UP TO NEXT LOCATION
0011	92		GHI R2	; GET MEMORY FTS
0012	FFOC		SMI \#OC	; TEST FOR DONE
0014	3 BOE		BM FILL	; IF NO, KEEP FILLING
0016	F300		LDI \#00	;RESET R2 TO EEGINNING OF TEST AREA
0018	B2		PHI R2	
0017	F960		LDI \#60	
0018	A2		PLO R2	
				; COMPARE MEMORY WITH TEST PATTERN
0010	E2		SEX R2	:SET RE=X
0010	84	TEST	GLO R4	;GET TEST PATTEFN FROM R4.0
001 E	F3		$\times \mathrm{OR}$; COMPARE TEST PATN \& MEM CONTENT
0017	3A35		bnz Natak	; IF "NOT GK," ERANCH
0021	12	INCR	INC R2	: ELSE INCREMENT MEM PGINTER
0022	92		GHI R2	; GET POINTER
0023	FFOC		SMI \#OE	;TEST FOR DONE
0025	3810		EM TEST	; KEEF TESTING IF NOT DONE
0027	F847		LDI \#47	: LOAD "G".
0029	53		GTR R3	
002A	E3		SEX R3	
0028	342 B	Gloap	B1 GLOGP	; WAIT FOR UART FINISH
0020	65		OUT 5	OUITPUT TO UART
002 E	23		DEC RS	; LINDO AUITO-INCREMENT
002F	54		GLO R4	;GET TEST PATTERN
0030	FBFF		XRI \#FF	; COMFLEMENT IT
0032	A4		PLO R4	: STORE NEW TEST BYTE
0033	3006		BR START	; REFEAT TEST
				:MEMORY ADDRESS AND ERROR OUITPUT :ROUTINE
0035	E3	NOTOK	SEX R3	; POINT TO QUTPUT REG
0036	53		STR R3	STORE ERROR WORD IN OUTFUT REG
0037	3437	BLOOP	B1 ELOOP	:WAIT UNTIL UART READY
0039	65		OUT 5	; UART OUTPUT

003A	23		DEC	R3	IUNDO AUTO INCREMENT
0038	92		GHI	R2	; UPPER BYTE OF MEM TEST LOCATION
003 C	53		STR	R3	: OUTPUT TO UART
003D	3430	CLOOP	B1	CLOOP	
003 F	65		IUT	5	
0040	23		DEC	RS	
0041	82		GLO	R2	: LOWER BYTE OF MEM TEST LOCATION
0042	53		STR	R3	: OUTPUT TO UART
0043	3443	DLOOP	B1	DLOOP	
0045	65		GUT	5	
0046	23		DEC	R3	
					\%
0047	F800		LDI	\#00	; DELIMITER CHARACTER
01049	53		STR	R3	;OUTPUT TO UART
004A	344A	ELOOP	B1	ELOOP	
0040	65		OUT	5	
004D	23		DEC	R3	
004E	E2		SEX	R2	;RESET R2=2 FOR TEST
004F	3021		BR	INC	:RETUFN TG TEST RQUTINE
0051	C4		NOP		

Э. MALHINE CLDE FGF TEMFEFATURE RECQRDER (xxx.ASC FILES)

a. TREC.ASC

- RE.ASS PROGRM

0000:C0 $0131 \mathrm{E2} 98 \mathrm{B7} 88 \mathrm{A7}$ 0008:97 52 9D F7.3A 148752 0010:80 F7 322347 B9 47. A9 0018:D4 D6 00 OA 00 F8 02 AB $0020: D 13008$ D6 $53544 F 50$ 0028:03 OD OA 00 6F OO DO 99 U030:F5 F6F6F6 D3 99 FA OF 0038:D3 39 F6 F6 F6 F6 0389 0040:FA OF D3 30 2E D4 FF OA 0048:C7 FC 07 FC 3A 5234 4E $0050: 6522304548$ B0 3248 U058:AD F1 3A EC BF AF F8 C4 0060:5F 1F 5F 1F 5 F 97 BD 87 0068:AD 7A 6F 0048 B9 48 A9 0070:48 BA $48 \mathrm{AA} 9 A \mathrm{BC} 8 \mathrm{AC}$ 0078:F8 3C AE E2 9C 52 8C F1 0080:32 84 8E 32 A2 6E F8 40 0088:52 6522 2C F8 09 AB D1 $0090: 5849$ FF 01 7A $3 A 92$ 3F 0098:9E F8 3C AE 30 7C 2E 7A 00A0:30 7C F8 4E AE BE 3274 0DAB:F8 28 AB D1 37 BI F8 4C 9080;AE 2E 30 A5 905250 F 1 0088;32 $547 B 6 \mathrm{E} 2099 \mathrm{BB} 89$ $0000: A B$ 2B D1 6B F8 6A FF 01 00C8:3A C6 D5 97 FF OC 38 B4 D000:27 273054 DO 695717 0008: 6 A 57173004004032 OUEU:OD 52 34 E2 652230 DE 00E8:D0 2B F8 74 FF 01 3A EC 00F0:9B 5288 F1 32 E 830 Eg 00F8:CF FF FF FF FF FF FF FF 0100:FF FF FF FF FF FF FF FF 0108:FF FF FF FF FF FF FF FF 0110:FF FF FF FF FF FF FF FF 0118:FF FF FF FF FF FF FF FF 0920; FF FF FF FF FF FF FF FF 0128:FF FF FF FF FF FF FF FF 0130 :FF 7A F8 00 B1 F8 Eg A1 0138:F8 02 83 F8 5A A3 F8 00 0140:54 F8 2 FA A F8 $00 \mathrm{B6}$ F8 0148:DE A6 F8 00 B5 F8 D5 A5 0150:F8 01 B2 F8 00 A2 F8 01 0158:88 F3 01 A8 E2 D6 OA OD $0160: 00$ F8 $00 \mathrm{BB} 5802 \mathrm{AB} \mathrm{D1}$ 0168:D6 $23534140504 C 45$ $0170: 533 F 200300$ D3 9958 0178:52 18855818 Fl 32 AD 02010620202049455445 0188:52 56 41 4C 3F 200300 1190:0399581889581806 $0198: 20202044454 C 4159$ 01AD:3F 20030003995818 01A8:8958183050 F8 00 BF 01E0:AF 1F F8 00 5F IF F8 7B
b. AUERG.ASC

AUERG.ASC PROGRAM
0000:C0 $01 \mathrm{~A} 2 \mathrm{E} 298 \mathrm{B7} 88 \mathrm{~A} 7$ $0008: 975290$ F7 3A 148752 0010:80 F7 322347 Bg 47 A 9 0018:D4 D6 0D OA 00 F8 02 AB 0020:01 3008 D6 53 544 F 50 0028:03 OD OA OO 6F OO DO 99 5030:F6 F6 F6 F6 D3 99 FA 0F 0038:03 89 F6 F6 F6 F6 D3 89 0040:FA OF D3 30 2E 04 FF OA 0048:C7 FC 07 FC 3A 5234 4E 0050:65 22304548 BD 5248 0058:AD F1 3A 6C BF AF F8 C4 0060:5F 1F 5F 1F 5F 97 BD 87 0068:AD 7A 6F 0048 Bg 48 Ag 0070:48 BA 48 AA 9A BC 8A AC 0078:F8 3C AE E2 9C 52 8C F1 0080:32 B4 SE 32 A2 6E F8 40 0088:52 65 22 2C F8 19 ABDI 0090:F8 49 FF 017 A 3 A 923 F 0099:9E F8 3C AE 30 7C 2E 7A 0080:30 7C F8 4B AE 3E 3274 00A8:F8 28 AB D1 37 B1 F8 4C 6050:AE 2E 30 A5 99 BR 89 AB 0088:7B7B 3D 52 8D F1 3254 $00 C 0: F 800 \mathrm{BA} A A F 8535265$ 00CS:22 D5 2B 3B 52 8B F1 32 00100:09 F8 15 FF 0130 D3 30 0008:89 9A FA 80 FB 8073 3A 00EO:EC $2 A$ 3A FB FF $8 A B A F B$ 00E8:FF AA 30 F2 C4 C4 C4 C4 00FB:7878 12 3A F6 F6 F6 F1 00F8:57 17 SA F6 F6 F6 52 9A 0100:FE FE FE FE FE F1 5717 0108:20 97 FF OC CB $00 \mathrm{B4} 27$ 0110:27 C0 0054 D0 F8 08 AC 018:8C 32142 C 6 B 7 BF F86 0120 :FF 01 3A 2069 FA 8032 0128:3A 6A BA F4 AA 69 FA OF 0130:52 9A 74 EA 78787878 0138:30 18 6A FB FF FC 0152 0140:8A 74 AA 69 FA DF F8 FF 0148:52 9A 74 BA 30180040 0150:32 4E 52 3453652230 0158:4F D0 2B F8 74 FF 01 3A 0160:50 98528BF1 325930 0168:5A FF FF FF FF FF FF FF 0170:FF FF FF FF FF FF FF FF 0178:FF FF FF FF FF FF FF FF 0180:FF FF FF FF FF FF FF FF 0188: FF FF FF FF FF FF FF FF 0130:FF FF FF FF FF FF FF FF 0198:FF FF FF FF FF FF FF FF 01A0:FF FF 7A F8 01 B1 F8 5A 0148:A1 F8 02 B3 F8 CD A3 F8 8180:00 84 FS $2 F A 4 F S 0186$

0188:F8 4F A6 F8 01 B5 F8 15 01CO:A5 F8 01 B2 F8 71 A2 F8 01C8:01 B8 F8 72 A8 E2 D6 OA 0100:00 00 F8 00 BB F8 02 AB 0108:01 $062353414 D 504 C$ $01 E 0: 45533 F 200300$ D3 99 01E8:58 5218895818 F1 C2 01F0:02 200620202049 4E 01F8:54 455256414 C 3 F 20 0200:0300 039958188958 0208:18 0620202044454 C 0210:41593F200300 D3 99 0218:58 18895818 CO 01 CE 0220:FB 00 BF AF 1F F8 00 5F 0228:1F F8 7B 5F F8 00 B 3 F 0230:46 A3 F8 01 B8 F8 72 A8 0238:D6 UA OA 00 D6 UA OD 00 0240:F8 02 AB D1 48 B9 5248 0248:A9 F1 C2 02 82 D6 2353 0250:41 4D 50 4C 45533020 0258:00 D4 488948 A9 D6 20 0260:20 2049 4E 54455256 0268:41 4C 30 20 00 04 48 B9 0270:48 A9 062020204445 0278:4C 41 593020000400 0280:02 3C F8 00 B7 A7 B9 E7 0288:89 F4 A9 1797 FF 01 C8 0290:02 88 87 FF 67 CB 0288 0298:E2 06202020434845 0240:43 4B 535540302000 0248:04 06 202020414354 02B0:49 4F 4E 3F 20030035 02B8:B7 6C FF 47 CA 01 A2 98 02C0:B7 88 A7 F8 01 B8 F8 72 02C3:A8 CO U0 54 00 F8 00 B9 02D0:A9 35 D1 6C FF 0032 CC 02D8:FO FF 3038 D1 FF OA 3B 0250:EB FF 07 3B D1 FF 0633 02E8:D1 FC 06 FC OA AF 34 EE 02F0:65 2299 FE FE FE FE 52 02F8:89 F6 F6 F6 F6 F1 8989 0300:FE FE FE FE 52 8F F1 AG 0308:C0 02 D1 FF FF FF FF FF 0310:00 Z

c. FLYBK.ASC

PLYEK, ASC PRUGKAM
0000:F8 00 B1 F8 86 A1 F8 00 0008:84 F8 55 A4 F8 00 66 F8 0010:78 A6 F8 00 B3 F8 6C A3 0018:F8 O1 B2 F8 00 A2 E2 F8 0020:08 BD F8 FF AD F8 01 B7 0028:58 O1 A7 975290 F7 3 AA 0030:37 875280 F7 324947 0038:89 47 A9 D4 D6 0D OA 00 0040:F8 00 BB F8 02 AB D1 30 0048:2B D6 535445500300 0050:0A 006 6F0 DO 99 F6 F6 0058:F6 F6 D3 99 FA OF 0389 $0060: 56$ F6 F6 F6 D3 89 FA 0 F D068:03 3054 D4 FF OA C7 FC 0070:07 FC 3A 5234746522 0078:30 6B DO 40 32 7A 5234 0080:7F 65223078 D0 $28 \mathrm{F8}$ 0088:74 FF 01 3A 3998528 B 0090:F1 32853086 FF FF FF $0098:$ FF FF FF FF FF FF FF FF $00 \mathrm{~A} 0: Z Z$

』. ADTEST.ASC
ADTEST.ASC PROGRAM
0000:F8 C3 A3 F8 00 B3 E3 7B $0008: 6 \mathrm{~B}$ F8 A8 FF 01 CA C4 C4 0010:C4 C4 C4 C4 C4 3A OB 3E 0018:17 69652334 iC 6A 65 0020:23 34213008 ZZ
-. MEMTSZ.ASC
MEMTSTZ.ASC PROGRAY
0000:C4 C4 7B F8 AA A4 F8 00 0008: 83 A 3 B2 F8 60 A2 8452 0010:12 92 FF OC 3 BE OE F8 OB 0018:82 F8 60 A2 E2 84 F3 3 0020:35 1292 FF OC 3B 10 F8 0028:4753 E3 3428652384 $0030: F E$ FF A4 3006 E3 5334 0038:37 55239253343065 0040:23825334436523 F8 0048:00 53 344A 6523 E2 30 $0450: 2124$

```
AFFENDIX G. FRO-SEO PROGRAMS
```

1. FROBASIC.EAS

GET NO DUUELE
5 PROGRAM PROBASIC
10 PRINT 'FOR HEATFLCW TYPE 'RLN MENU'〈CR〉'
. 2. MENU. EAS
set Na doube
5 PROGRAM MENU

20 PRINT HCNES FRINT TAB(38);INERSE\$; MENU" ;NORMAL\$ PRINT \PRINT
30 PRINT "1. THERMAL CONDUCTIUITY OPERATICNS"
40 PRINT " 2 , DOWN HOLE INSTRLMENT OFEEATICNS'
99 PRINT " 9 . EXIT BASIC'

120 CN A 6070 140, $150,20,20,20,20,20,20,220$
130 GOTO 20

145 CHAIN "THERMCON.BAS"

155 CHAIN "LDADER.BAS"
220 END

3．LGADER．GAS
SET NO DOUBLE
5 PROGRAM LOADER
10 REM DSDP INSTRLMENT PROGRAM MODIFIED FOR PRO－350
11 REM BY GEORGE L．PELLETIER WHOI 19 DEC 85

30 PRINT HCME\＄＋INERSE\＄＋＇＊CORING TOOL TEMPERATURE RECORDER $\star^{*}+N O R M A L \$ \$ PRINT
35 PRINT＂MENU＂Print＂1．LIAD Progray＂Print＂2．LoAd Parameters＂
40 PRINT ${ }^{3} 3$ ，DLMP DATA＇\backslash PRINT＇4，DISPLAY FILE DATA＇
45 PRINT＇5，PRINT FILE DATA＂
50 PRINT＇6．CONERT \＆PRINT FILE GATA＇\backslash PRINT ${ }^{1} 7$ ．END＇

110 ON A GOTO $120,1000,2000,3000,4000,5000,6000$
115 GOTO 30

125 PRINT＂1．LOAD MEMORY TEST＇\ PRINT＇2．LCAD MAIN PROGRAM＂
130 PRINT＇3．LDAD A／D TEST＂ PRINT＂4．LIAD AVERAGING PROGRAM＇
135 PRINT＂5．LQAD PLAYBACK PROGRAY＂

155 IF AK1 OR A＞S THEN 30
160 IF A末＝＂1＂THEN PG\＄＝＂MEMTS2．ASC＂ $\operatorname{GOTO} 250$
170 IF $A \$={ }^{2} 2^{4}$ THEN PG $\$=$＂TREC $2 . A S C " \$ GOTO 250
180 IF $A \$=3^{\circ} 3^{4}$ THEN PG $\$={ }^{*} A D T E S T . A S C " \backslash G O T O 250$
190 IF $\ddagger \$={ }^{2} 4^{*}$ THEN $P G \$=* A V E R G . A S C " \$ GOTD 250

250 OPEN PG FOR INPUT AS FILE \＃1＂A REM GET READY TO LCAD PROGRAM
255 PRINT \PRINT INERSE\＄；＂SWITCH INSTRLMENT FRCH RIN TO LOAD THEN PRESS RETJINN＇；NOPMAL
256 INPUT A $\$$
260 PRINT HOME\＄＋CENTER\＄＋INERSE\＄＋＂LCADING＇＋PGF＋NORMAL\＄
270 GOSUB 10000 GOTO 30

2000 ChAIN＂LIADD2．SAS＂WITH HOME\＄，INERSE\＄，NORMAL\＄，FLASH\＄，CENTER

4000 CHAIN＂LOADBA．EAS＂WITH HOME
5000 CHAIN＂LOAD4．EAS＂WITH HCME ，INERSE末，NORMAL\＄，FLASH $\$$ ，CONTER $\$$

6005 CHAIN＂MENU，EAS＂
6010 END
10000 REM LOAD PROGRAM INTO DCWN HOLE INSTRIMENT SBR．
10100 INPUT $\# 1 / 1$, A $\$$
10150 GPEN＇XK：＇AS FILE $\ddagger 2 八$ REM COMLNICATIUNS PORT
10200 FOR $N=6$ TO LEN（A $\$$ ）STEP 3

10515 IF $11=2$ THEN TOTALL＝NMMBER ELSE IF $: 1=1$ THEN TOTAL＝TOTAL $+(N L M B E R * 16$ ）
10550 NEXT 11
10600 PRINT \＃2\％，CHR $\$$（TOTAL）；
11960 NEXT N
11470 GOTO 10100
11500 CLOSE $\$ 1 \%, \%$ き
11510 PRINT HOME $\$+C H R \$(27))^{n}\left[12 B^{n}+C H K \$(27)+412 C^{n}+F L A S H \$;\right.$
11520 PRINT ${ }^{\text {sPRGGRAM TRANSMITED }}$＋＋NORMAL $\$ \backslash$ PRINT
11530 FRINT INERSE末；＇SNITCH INSTRUMENT TO RESET＇ NORMAL
11550 PRINT＂PRESS RETURN TO CONTINUE＂：\backslash INPUT A $\$$
11600 RETURN
4. LOADI. BAS
get No jolele

1081 REM 19 DEC 85

1010 OPEN EXK:" AS FILE \ddagger OTA REM COMLNICATIONS PORT
1015 PRINT \PRINT INERSE\$+MOVE INTERFACE SHITCH FROM RESET TO RLN ;NORMAL\$
1017 LINPUT $\approx 2 / 4$, A\$
$1018 \mathrm{~N} 2=0$
$1019 \mathrm{~B}=$ ' $^{\text {" }}$

1025 IF ASCII(MID\$(A\$,LEN(A\$),1))=3 THEN GOSUB 1200 GOTO 1027 ELSE 1020

1032 PRINT $\approx 2 \%$, CHR \ddagger (13) \GOTO 1040
1033 FOR 12=1 TO $50 \backslash$ NEXT $12 \backslash$ RETURN
1040 IF $\mathrm{HEX} \$={ }^{0} 0000^{\prime}$ AND N2=1 THEN 1045 ELSE 1019
$1045 \mathrm{~N}=1$
1049 6\$=「"

1080 GOTO 1050
1090 FOR N1=2 TO N-1
1100 SAMF=M1D\$(C\$(N1),11,4)\INTVL\$=M1D\$(C\$(N1),28,4)\DELY\$=M1D\$(C\$(N1),42,4)

1120 HEX $=$ INTML $\$ \backslash$ GOSUS $1600 \backslash$ PRINT MID $(C \$(N 1), 15,13)+D E C \$;$
1130 HEX\$=DELY\$ GOSUB 1600 PRINT MID\$(C\$(N1),32;10)+DEC
1140 NEXT N1 \backslash PRINT C $\$(\mathrm{~N})$
1150 CALL INKEY (A $\$$) $\operatorname{IF} \operatorname{LEN}(A \$)=0$ THEN 1150
1160 IF ASCII(A\$)=13 THEN PRINT きZ

1190 PRINT *PRESS RETURN FOR MENU' $\backslash \backslash$ INPUT A
1195 CHAIN "LOADER.SAS"
1200 REM B CLEANUP

1229 RETURN
1500 REM DEC TO HEX CONERT
1505 HEX\$=' ${ }^{1}$
1510 FOR $N=12$ TO 4 STEP -4
1515 HEX=0
1520 IF DEC(2NAN THEN 1530 ELSE DEC=DEC-2NNHEX=HEX+1\ GOTO 1520
1530 IF HEX<10 THEN HEX $\$=H E X+C H R \$(H E X+48)$

1550 NEXT N
1560. IF DEC 10 THEN HEX $=$ HEX\$+CHR $\$($ DEC+48)

1570 IF DEC)9 THEN HEX\$=HEX\$CHR\$(DEC+55)
1586 RETURN
1600 REM HEX TO DEC CONNERT
1610 FOR I1:4 T01STEP -1W

1630 IF: $1=4$ THEN $\left[\begin{array}{ll}1 / 011\end{array}\right.$
1640 IF $11=3$ THEN $D N=[N+(D 1 * 16)$
1650 IF $11=2$ THEN $D N=\operatorname{NOt}(01 \times 256)$
1660 IF $11=1$ THEN $\operatorname{DN}=\mathrm{CN}+(01 * 4096)$

1680 RETURN

5．LOAD2．BAS

```
GET NO DCUBLE
2000 FROGRAM LOAD2(HOME$,INERSE$,NORMAL$,FLASH*,CENTER$)
2001 REM }19\mathrm{ DEC 85
2005 CENTER1$=CHR$(27)+"[13;354"
2010 DIM *4,DA$(1400,1)\ PRINT HOtIE$+INRERSE$+"kkk DLMP DATA **k*+NORMAL$
2015 OPEN "INTERIM" AS FILE &4, VIRTLAL
2016 PRINT CENTER*;INERSE*;"CLEARING INTERIM STDRAGE" #NORMAL.$
2018 FOR N1=0 TO 1400\OA& (N1,0)=" "\DA$(N1,1)=*"\ NEXT N1
2020 OPEN "XK:* AS FILE *2%A REM CON*UNICATIONS PORT
2030 PRINT \ FRINT IREESS*;"CNITCH INSTRLMENT CONTROL TO RESET THEN PRESS *;
2040 PRINT "RETURN" ;NORMAL$\ INPUT A$
2050 LINPUT $2,A$\ IF LEN(A$)>0 THEN 2050\ REM CLEAR COWM PORT
2055 IF LEN(A$)>0 THEN 2050
2060 PRINT \FRINT "SWITCH INSTRLMENT CONTROL TO ';FLASH$;'RLN';NORMAL$;' NOW'
2070 LINPUT ##%,A$\ IF LEN(A$)<1 THEN D%=D%+1\ GOTD 2100 ELSE DA$ (N,0)=DA$(N,0)+A$
2080 IF N=0 THEN PRINT HOHE$;CENTER$;FLASH%;'DIMPING DATA';NORMAL$
2090 IF LEN(DA$(N,0))<6 THEN 2070 ELSE N=N+1\ PRINT CENTERI$;ND%=0\ 60TO 2070
2100 IF 0%<800 THEN 2070
2110 CLOSE %%%
```



```
2130 CLOSE &2%
2140 FRINT HOWE$
240 FOR N1=0 TO M PRINT DA$(N1,1),\NEXT NI\ PRINT
2160 PRINT FLASH$+"DLAP TO DISK? (N OR RETURN)"+NORMAL$;\INPUT A$
2170 IF A%='N' THEN 2280
2120 PRINT "FILENAME "\ INPUT NA$
2190 PRINT HCWE$+CENTER$+INNERSE$+'WRITING ";NA$+NORMAL$
2200 OPEN NA$ FOR OUTPUT AS FILE % %%
2210 PRINT 抙%,N
2220 FOR NL=0 TO N
2230 PRINT $5%,0A$(N1,1)
2\varepsilon40 NEXT N1
2250 CLOSE %5%
2260 PRINT HOME$+CENTER$+FLASH$+"FILE "NA$;" STORED"+NORMAL$\ PRINT
2270 PRINT "PRESS RETURN FOR MENU";\ INPUT A$
2275 ClOSE
2280 CHAIN "LOADER.EAS"
2290 REM RECONFIGURE DATA FROM [本 TO DA$
2295 D$=" "\N3=0
2300 FOK N1=0 T0 N-1
2320 FOR NZ=1 TO LEN(DA$(N1,0))\A$=M1D$(DA$(N1,0),N2,1)
2330 IF ASCII(A$)>47 AND ASCII(A$)<90 THEN D$=0$+錐
2335 IF LEN(D$)=4 THEN DA$(N3,1)=D$N3=N3+1\D$="\\ PRINT CENTER1$;N3
2340 NEXT N2\ NEXT N1
2350 N=N3-1\ RETURN
```

```
6. LGADS.BAE
```

SET NO DOLELE
200 PRUGKAH LUAD3 (HCNE
3001 REM 19 DEC 85
3005 DIM $\ddagger 4$, DA $\$(1400,1) \backslash$ PRINT HCME
3006 OPEN 'INTERIM" AS FILE *4, UIRTUAL

3008 FOR $N=0$ TO 1400 $10 \mathrm{DA} \$(\mathrm{~N}, 0)={ }^{2}=\mathrm{WEXT} N$
3010 GISSUB 3000

3030 IF Ni-INT(N1/84)*84=83 THEN 3035 ELSE 3040
3035 PRINT \PRINT "PRESS RETURN TO CCNTINUE"; \backslash INPUT A A\$ PRINT HCME $\$$
3040 NEXT NI PRINT \PRINT 'DISPLAY DATA AGAIN? (Y OR RETURN)'; \backslash INPUT A $\$$
3045 IF A $\$=$ YY" THEN PRINT HOME\$ GOTO 3020
3048 CLOSE
3050 CHAN 'LOADER,BAG'
9000 PRINT \PRINT "FILENAME '; \backslash INPUT NA $\$$
9005 PRINT HCWES+CENTER\$+INERSE\$+"READING ";NA\$NORMAL
9010 OPEN NA FOR INPUT AS FILE $\ddagger 2 \%$
3030 INPIT $\ddagger 26, M$ REM NLMBER OF RECORDS IN FILE
9040 FOR $\mathrm{NB}=0$ TO N
9050 INPUT $\ddagger 2 \%, 0 \mathrm{DA} \ddagger(\mathrm{N} 1,0)$
3060 NEXT N1
9070 CLOSE $\ddagger 2 \%$
9075 PRINT HOME\$
9080 RETURN
7. LOAD 3A. BAS

SET NO DOUSLE
4000 PROGRAM LOADSA (HOHE $\$$,INERSE $\$$,NORMAL
4001 REM 19 DEC 85
4002 DIM $\# 4,04 \approx(1400,1)$
4003 OPEN 'INTERIM' AS FILE $\# 4$, UIRTUAL

4005 PRINT CENTER $;$ INERSE $;{ }^{\prime}$ CLEARING INTERIM STORAGE';NORMAL $\$$
4007 FOR $N=0$ TO 1400 $\backslash D A \$(N, 0)=\times \backslash$ NEXT N
4010 GOSUB 9000
4015 PRINT HOME ; ;CENTER\$;INERSE\$;"PRINTING ";NA末;NORMAL\$

4035 PRINT. $\# 2 \%, N / \$ \backslash$ PRINT $\ddagger 2$
4040 FOR N $1=0$ TO N STEP 6
4050 FOR N2=0 TOS

4060 NEXT N2 \backslash PRINT $\# 2 Z^{2} へ$ NEXT N1
4070 CLOSE
4080 CHAIN "LOADER.SAS"
3000 PRINT \PRINT "FILENAME '; \backslash INPIT NA\$
9005 PRINT HOME
9010 OFEN NAF FOR INPUT AS FLLE $\ddagger 2 \%$
9030 INPUT $\ddagger 2 \%, N$ REM NUMER OF RECORDS IN FILE
9040 FOR N1=0 TO N
3050 INPUT $\# 2 \%, D A \$(N A, 0)$
9060 NEXT N1
9070 CLOSE \ddagger \%
3075 PRINT HOYE $\$$
9080 RETURN
8. LOAD4.EAS

5001 REM 19 DEC 85
5002 DECLARE OOUBLE $A, B, R 1, R 2, A L, B E, G A, T M, L R \backslash D M M 4, D A \$(1400,1)$
5003 OPEN 'INTERIM' AS FILE \#4, UIRTUAL

5007 PRINT CENTER\$; INJERSE; "CLEARING IN:
5008 FOR $N=0$ TO 1400\DA $\$(N, 0)=" \$ NEXT N
5010 PRINT "INSTRLMENT NLYYBER? " \backslash INPUT A $\$ \backslash J=\ A L(A \$)$
5015 RESTORE
5020 FOR $N=0$ TO I READ A, B, R1 ${ }_{3} A L, B E, G A \backslash N E X T N$
5030 PRINT "CRUISE NLMBER? " \backslash INPUT CR\$ \backslash PRINT "DATE? ${ }^{2}$; INPUT DA
5040 605UB 9000 W2 $=\mathrm{N}$
5045 OPEN NA ${ }^{2}+^{2}$. TXT" FOR OUTPUT AS FILE *1\%
5050 FRINT HCHE $\$$ CENTER $;$ INERSE $\$$; CONNERTING \& PRINTING";NORMAL $\$$
5060 DATA $14797245, .55253495,8715,8.99100555-4,2.4362808 \mathrm{E}-4,1.2626278 \mathrm{E}-7$
5062 DATA . $14797245, .55253495,8715,8.9910055 E-4,2,4362808 \mathrm{E}-4,1.2626278 \mathrm{E}-7$
5064 DATA $.14797245, .55253495,8715,8.9910055 \mathrm{E}-4,2.4362808 \mathrm{E}-4,1.2626278 \mathrm{E}-7$
5066 DATA . $14797245, .55253495,8715,8,9910055 \mathrm{E}-4,2.4362808 \mathrm{E}-4,1,2626278 \mathrm{E}-7$
5068 DATA $.14797245, .55253495,8715,8.9910055 \mathrm{E}-4,2,4362808 \mathrm{E}-4,1,2626278 \mathrm{E}-7$
5070 DATA $, 14797245, .55253495,8715,8.74722104 E-4,2.47238861 E-4,1,16103772 \varepsilon-7$
5072 DATA $.14797245, .55253495,8715,8,84648075 \mathrm{E}-4,2.45607753 E-4,1,21657048 \mathrm{E}-7$
5074 DATA .14797245, $55253495,8715,8.78525336 \mathrm{E}-4,2.46894380 \mathrm{E}-4,1.17247016 \mathrm{E}-7$
5076 DATA . $14797245, .55253495,8715,8.83512916 \mathrm{E}-4,2,45027504 \mathrm{E}-4,1.17903032 \mathrm{E}-7$
5078 DATA . $14797245,55253495,8715,8.50827418 E-4,2.50936456 E-4,1.03111000 E-7$
5080 DATA $.14797245, .55253495,8715,3.78246674 \mathrm{E}-4,2,46585729 \mathrm{E}-4,1.17843303 \mathrm{E}-7$

5105 H=0 REM LINE COLNTER

5120 PRINT $\ddagger 2 \%,{ }^{\text {a }}$ INSTRUMENT $\ddagger{ }^{\text {"; }} \mathrm{INL} \%=\mathrm{L} \%+1$
5125 PRINT 41%, INSTRLMENT \ddagger " 1
5130 REM PRINT CHR (27); CHR\$ (58);
5140 PRINT 7% NA $\$$

5160 FOR $I=0$ TO N2
5170 FOR $11=4$ T0 1 STEP -1 1 C $\$=M 1 D \$(D A \$(1,0), 11,1)$

5130 IF I1:1 THEN 5260
5200 IF C $=\left(=\right.$ n n THEN $01=V A L(C) \backslash$ GOTO 5220
5210 D $=\mathrm{ASCII}(C=5)-55$
5220 IF $11=4$ THEN $D N=01$
5230 IF I1=3 THEN [N $=$ ENt (D1*16)
5240 IF II=2 THEN DN $=0 \mathrm{~N}+(\mathrm{D} 1 \times 256)$
525060705270
5260 IF C $\$$ <" $^{\circ} 8^{n}$ THEN DNN $=$-DN
5270 NEXT 11

$5330 L R=L O G(R 2) \backslash T M=\left(1 /\left(A L+L R * B E+L R^{\wedge} 3 k[B A)-273.15\right)\right.$


```
5345 IF L%=60 THEN L%=0\ PRINT * %/,CHR$(12)
5360 NEXT 1
5370 PRINT ¥%%,CHRま(12)
5380 CLOSE #2^ACLOSE #1%
5285 CLOSE
9390 CHAIN "LDADER.BAS"
9000 PRINT \ PRINT 'FILEM&ME '; INPUT NA$
9005 PRINT HCNE$+CENTER$+INUERSE$+"READING ";NA$HNORMAL$
9010 OPEN NAS FOR INPIT AS FILE $2%
9030 INPUT *2%,M REM NLMBER OF RECORDS IN FILE
9040 FOR NI=0 TO N
9050 INPUT *2%,[A$$(N1,0)
3060 NEXT N1
9070 CLOSE &%%
9075 PRINT HONE$
9 0 8 B ~ R E T U R N
```


APPENDIX H. COMPUTER PROGRAMS TO REDUCE HPC TEMPERATURE DATA

LANGUAGE: FORTRAN-4
MACHINE: VAX 11/780 (Virtual Memory System)
INTRODUCTION - Two programs (DECAYI, FITTING1) have been developed to extrapolate temperature measured over time after penetration of a core barrel (HPC) into bottom sediments. These are presently written as separate programs, although they could be combined as subroutines called by a main program.

REFERENCE: K. Horai, A theory of processing downhole temperature data taken by the hydraulic piston corer (HPC) of the DSDP, ms. in preparation.

DECAY1 - Computes theoretical cooling temperature of an idealized core barrel in sediment, for the normalized initial temperatures of $1^{\circ} \mathrm{C}$ for the HPC, and $0^{\circ} \mathrm{C}$ for the sediment. The core barrel is assumed to be a perfect conductor (uniform temperature) although with finite heat capacity, with 2-dimensional (radial) conduction to the sediment.

Instructions for running the program from a computer terminal

1. You will be asked by the terminal for values of a and b; the inner and outer radii, respectively, of the HPC. The values of a and b (units of meters) are typed in from the terminal.
2. Give a 6-digit file name to identify the cooling curve. If you give uvwxyz, the file name to be created will be Iuvwxyz.DAT.
3. Then you will be asked for the thermal conductivity of the sediment. Type in its value (units of $W / m K$).
4. Then you will be asked for the time interval between data points. Check the temperature record to be compared with the theory, and give it in the units of seconds.
5. The program computes 3500 terms of the integrand given in the theory (these are displayed on the terminal as computations progress) and 200 cooling temperatures at the specified time interval by numerically integrating the integrands, multiplied by an exponentially decaying term as given in the theory. The results are stored in the file.

FITTING1 - Compares the theoretical cooling curve with the temperature record to determine the optimal fit by least-squares analysis.

Instructions to run the program:

1. You will be asked for the 6-digit thermal decay file name. Type in from the terminal keyboard Tuvwxyz.DAT file.
2. Then you will be asked for a 6-digit file name to specify the corresponding data. Type in from the terminal Dabcdef.DAT to open this data file.
3. Type in the number (IO) of "bad" (poorly fitting) data points (the first part of the cooling curve) that are not used in the analysis. Sometimes this must be done iteratively (trial and error) for noisy or otherwise uncertain data.
4. The printout will give the residual fit for various shift (NO) in origin of data points vs. theoretical curve. This is done to determine an effective origin time for uncertain penetrations. The data and the theoretical cooling temperatures will be printed for the value of NO that gives the minimum residual.

DOCUMENT LIBRARY

April 9, 1985
DISTRIBUTION LIST FOR TECHNICAL REPORT EXCHANGE

Institute of Marine Sciences Library
University of Alaska
O'Neill Building
905 Koyukuk Ave., North
Fairbanks, AK
Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92093
Hancock Library of Biology \& Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371
Gifts \& Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, NS, B2Y 4A2, CANADA
Office of the International
Ice Patrol
c/o Coast Guard R \& D Center
Avery Point
Groton, CT 06340
Library
Physical Oceanographic Laboratory
Nova University
8000 N. Ocean Drive
Dania, FL 33304
NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149
Library
Skidaway Institute of Oceanography
P.O. Box 13687

Savannah, GA 31416
Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

MIT Libraries
Serial Journal Room 14E-210
Cambridge, MA 02139
Director, Ralph M. Parsons Laboratory
Room 48-311
MIT
Cambridge, MA 02139
Marine Resources Information Center
Bldg. E38-320
MIT
Cambridge, MA 02139
Library
Lamont-Doherty Geological Observatory
Colombia University
Palisades, NY 10964
Library
Serials Department
Oregon State University
Corvallis, OR 97331
Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882
Working Collection
Texas A\&M University
Dept. of Oceanography
College Station, TX 77843
Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062
Fisheries-Oceanography Library 151 Oceanography Teaching Bldg. University of Washington
Seattle, WA 98195
Library
R.S.M.A.S.

University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

5. Abstract (Limit: 200 words)

A miniature temperature recorder has been developed to be used with the hydraulic piston sediment corer (HPC) on the Deep Sea Drilling Project (DSDP). The instrumentation fits into pressure-sealed slots in the wall of the HPC, allowing temperature measurements to be made simultaneously with coring operations. Temperatures from -2 to $70^{\circ} \mathrm{C}$ are measured to a resolution of about $0.01^{\circ} \mathrm{C}$. Up to 130013 -bit measurements are recorded in random access memory (RAM), at a sampling rate ranging between 0.1 s to over 100 min ., as specified by the operator in a program loaded into a microprocessor of the instrument. During recording the instrumentation uses about 3.5 mamp at 7.5 volts, which can be supplied for about 20 hours of operation by a custom-made pack of silver-oxide batteries. The corer is normally left motionless in the sediment for about 10 min . to allow extrapolation of the measured temperatures to equilibrium in situ temperature. Examples of data from DSDP Leg 86 are given.

- Document Analysis a. Descriptors

1. miniature temperature recorder
2. heat flow
3. drilling instrumentation
b. Ident/fiers/Open-Ended Terms

c. COSATI FIeld/Group

Availability Statemen:

Approved for publication; distribution unlimited.

19. Security Class (This Report) UNCLASSSIFIED	21. No. of Pages 59
20. Security Class (This Page)	22. Price
OPTIONAL FORM 272 (4-77) (Formerly NTIS-35) Department of Commerce	

[^0]: Figure 3. Photograph of instrumentation and battery pack outside of special hydraulic piston coring

