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Abstract North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by
abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events.
However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19ka), no D-O
events are observed in the Greenland ice cores. Our new analysis of the Greenland §'20 record reveals
a switch in the stability of the climate system around 30ka, suggesting that a critical threshold was
passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded
sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the
strength of meridional overturning circulation. The results suggest that these feedbacks tipped the
climate system into full glacial conditions, leading to maximum continental ice growth during

the LGM.

1. Introduction

The Last Glacial Maximum (LGM) from 23,000 to 19,000 cal years ago (23 to 19ka) is associated with a
summer insolation minimum at 65°N, but understanding how this period of maximum ice volume was
synchronized globally remains unclear [European Project for Ice Coring in Antarctica Community Members,
2006; He et al., 2013; Mix et al., 2001; Vandergoes et al., 2005]. Potentially important in this regard are
Dansgaard-Oeschger (D-O) events, millennial-scale climate oscillations that switched the northern climate
rapidly and temporarily from relatively cold to warm atmospheric conditions (up to A16°C), which are
bundled into decreasing amplitude cooling cycles culminating in massive discharges of ice into the
North Atlantic (Heinrich or H events) [Bond et al., 1993; Wolff et al., 2010]. D-O events are most strongly
expressed in the Greenland ice cores during the period of 60-30ka, followed by some 16 kyr (thousand
years) of relatively stable cold conditions before the late glacial interstadial warming (the Belling-Allered
or GI-1; 14.6 ka) and subsequent Younger Dryas stadial (GS-1) [Bond et al., 1993; Masson-Delmotte et al.,
2005; Wolff et al., 2010; Rasmussen et al., 2014] (Figure 1). The cessation of millennial duration D-O events
after 30 ka parallels a shift to excess deuterium isotope values in the Greenland Ice Core Project record,
which has been interpreted to result from greater sea ice extent and a stronger penetration of southern (war-
mer) Atlantic-sourced precipitation prior to and during the LGM [Masson-Delmotte et al.,, 2005]. The changing
timing and amplitude of D-O events might therefore offer important insights into the trigger(s) and feedback
governing the onset and structure of the LGM.

The distinctive shape of late Pleistocene D-O events in Greenland (Figure 1) implies rapid and extreme
changes in the North Atlantic wind field [Wunsch, 2003] and demonstrates the presence of multistability in
the climate system that might have relevance over longer time scales [Maslin and Brierley, 2015; Paillard, 1998].
Others have reported a bifurcation in the GICC05 §'80 record, implying that the climate system shifted from
a bistable to a monostable state sometime prior to the LGM [Livina et al., 2010]. The precise timing, mechan-
ism(s), and wider ramifications of this change remain unresolved, however, limiting our understanding of
high-frequency climatic variability within the Earth’s system.
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Figure 1. The Greenland ice core J “O record top panel GICCO5 and
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middle panel combined GICC05-CB chronology) and changing obliquity owest probability of eroneous dete(ft.o
and 65°N summer insolation (bottom panel). Limited Dansgaard-Oeschger of the number of states present [Livina
expression is defined by the light grey column and the Last Glacial Maximum €t al,, 2011]. We thus used this sliding win-
(LGM) by the dark grey column. Numbers denote Dansgaard-Oeschger dow size to generate a series of inverted
(D-O)/Greenland interstadial (Gl) events as recognized in the ice core record.  empjrical probability density histograms

Heinrich events are given by *H1-6. over time (Figure 2 and Movie ST in the

supporting information).

Changes in the number of states represent bifurcations in the system [Livina et al., 2010, 2011]. On the
approach to a bifurcation, or “tipping point,” a phenomenon called “critical slowing down” is often observed.
Here the basin of attraction of the system starts to become wider and shallower [van Nes and Scheffer, 2007].
Consequently, if the system is perturbed slightly, it will travel farther in the basin of attraction and take longer
to return to its stable state. The system thus becomes increasingly slow in recovering from minor perturba-
tions. Early warning signals of approaching tipping points can be identified by analyzing the pattern of
fluctuations in the short-term trends of a time series preceding the transition; the increased recovery time
is detected as a short-term increase in the autocorrelation or “memory” of the time series [Ives, 1995]. An
increasing trend in variance is also often found due to the ability of the system to travel farther from its
equilibrium point as the basin of attraction shallows and widens.

We therefore used the GICC05 6'80 record to investigate whether we could detect early warning signals of
this bifurcation (Figure 3). We preprocessed the data by applying a Gaussian kernel smoothing function over
a bandwidth sufficient to remove long-term trends; this is necessary due to nonstationarities in paleoclimate
data. We chose a smoothing bandwidth such that the long-term trends are removed but the data are not
overfitted [Dakos et al., 2008]. We then obtained the residual time series by subtracting the smoothed record
from the original record. We then measured autocorrelation at lag 1 and variance within a sliding window of
analysis (50% of data length) [Dakos et al., 2008]. A sensitivity analysis was undertaken to ensure that the
results are robust over a range of smoothing bandwidths and sliding window sizes. We applied the
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Figure 2. (a-i) Nine time slices showing the changing shape of the potential well over time using the GICCO5 time scale (green) and the alternative GICC05-CB time
scale (black), capturing the transition from a bistable to a monostable state over the period of 35-20 ka. The vertical green lines indicate the size of the sliding window
of analysis. See Movie S1 in the supporting information for the full record.

nonparametric Kendall’s 7 rank correlation coefficient to measure the trends in autocorrelation and variance
by assessing the predominance of concordant pairs, providing an objective evaluation of the statistical
evidence for the trend [Kendall, 1948]; this was measured from 40 ka associated with the 65°N minimum in
summer insolation (Figure 1). To test whether these results are statistically different from random, we created
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Figure 3. Time series analysis of Greenland 580 on the GICCO5 and GICCO5-CB chronology from 60ka to31 ka.
(a) Greenland 50 (GICCO5) with Gaussian-kernel-smoothing filter shown (purple line). (b) Residuals from the detrended
data. (c) Autocorrelation over the sliding window (window = 50% of data) GICCO5 (solid blue line) and GICC05-CB (dashed
blue line). (d) Variance over the sliding window with GICC05 (solid red line) and GICC05-CB (dashed red line). Kendall's

indicate the statistical evidence for the trend, calculated from 40 to 31 ka (blue and red dashed lines in Figures 3c and 3d).

a surrogate data set by randomizing the original data over several thousand permutations (Text S1 in the sup-
porting information). The probability of making a type | statistical error for the original data is obtained by
comparing to the probability distribution of the surrogate data. This randomization method guarantees
the same amplitude distribution as the original time series but removes any ordered structure or linear
correlation [Theiler et al., 1992]. Autocorrelation and variance were computed for the surrogate time series,
and a histogram constructed to show the frequency distribution of the trend statistic (in this case, Kendall's 7).
We used the 90th and 95th percentiles to provide the 90% and 95% rejection thresholds, respectively
(Figure 4). If the value computed for the original time series lies beyond the thresholds created by the surrogate
time series, we can reject the null hypothesis (i.e., no nonrandom trend) and calculate the probability of making a
type | error [Theiler et al., 1992].

3. Exploring an Alternative Greenland Chronology

Previous studies have demonstrated that the spectral characteristics in Greenland ice core records depend on the
chronology used [Ditlevsen et al., 20071, and multicentennial corrections have been identified in GICCO5 [Svensson
et al, 2008; Rasmussen et al.,, 2014; Buizert et al,, 2015; West Antarctic Ice Sheet (WAIS) Divide Project Members, 2015],
suggesting that refinements in age modelling could offer new insights into past climate dynamics while also test-
ing the robustness of analyses. Using known relationships between Northern Hemisphere temperatures and
associated changes in tropical rainfall belts [Hughen et al.,, 1996; Overpeck et al., 1989; Rind, 1998; Rind et al,
2001; WAIS Divide Project Members, 2015], an alternative Greenland ice core chronology for the onset of abrupt
warming events has been developed in combination with the independently -dated Cariaco Basin marine
sedimentary sequence (constrained by Hulu Cave U-Th ages); with the latter preserving a record of millennial-
scale changes in the Atlantic Intertropical Convergence Zone [Cooper et al, 2015; Deplazes et al, 2013;
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Figure 4. These graphs illustrate the results of both the statistical analysis and the sensitivity analyses. The black
histograms show the frequency distribution of Kendall z from 1000 realizations of the surrogate time series model. The
black dashed lines indicate the 90 and 95% rejection thresholds. The blue/red histograms overlaid show the distribution of
Kendall z over a range of sliding window sizes and smoothing bandwidths for autocorrelation and variance, respectively.
The type 1 error probability falls <0.05 for all realizations of the sensitivity analysis for variance, and most fall <0.01 for the
sensitivity analysis for autocorrelation. The solid (dashed) blue line shows the Kendall z value from the GICCO05 (GICC05-CB)
time series for autocorrelation, and the solid (dashed) red line shows the Kendall = from the GICCO5 (GICC05-CB) time series
for variance, for the window size of 50% and bandwidth of 2000, as used in Figure 3.

Hughen et al.,, 2006; Peterson et al., 2000; Tzedakis et al., 2007] (Text S2 in the supporting information). By deriving
an alternative replicated framework for the Greenland ice core chronology in (that fits within the uncertainty of
both timescales) parallel to GICCO05, we tested for and identified the drivers of limited D-O expression in the
North Atlantic over the period of 30 to 14.6 ka. We then resampled the resulting record (henceforth “GICCO5-
CB") at the same 20 year resolution as GICCO5 (Figure 1). While the GICC05-CB has the same 6'20 structure, the
alternative chronology allows us to test the robustness of the time series analyses generated from GICCO5.

4, Results and Discussion

Results of our stability analysis (Figure 2) show a switch from a bistable to a monostable state due to the loss
of stability of the warm interstadial state, consistent with previous studies [Livina et al., 2010]. Since the timing
of the bifurcation is inherently dependent on the size of the sliding window of analysis, our sensitivity analysis
used sliding window sizes from 5 to 15 kyr to investigate the effect of this parameter on the timing of the bifur-
cation. We found that with window sizes >6 kyr, the monostable state is present around 30 ka (Figure S1 in the
supporting information), 5000 years earlier than previously reported [Livina et al., 2011]. Our analysis suggests
that after 30 ka, the climate system bifurcated from a bistable to a monostable state, as the duration and sub-
sequent expression of D-O events reduced and then disappeared in the Greenland record (Figure 2 and
Movie S1 in the supporting information). The system then returned to a bistable state during the Bglling-
Allerad warming and Younger Dryas stadial (Greenland Interstadial 1 and Greenland Stadial 1, respectively)
(Figures S3 and S4 in the supporting information) [Lowe et al., 2008]. Importantly, the underlying potential
became highly asymmetric as the system gradually lost stability around 30 ka (as shown in Figure 2). This sug-
gests that D-O events 2-4 occurred when there was no stable interstadial state and the system was destined
to return to the stadial state. It is important to note, however, that since our analysis uses a sliding window, it
is difficult to identify precisely the point at which the interstadial state completely lost stability. It is therefore
possible that D-O events 3 and 4 were represented by a “degenerate potential” [Livina et al., 2010, 2011], a
quasi-stable state close to a bifurcation.

We searched for early warning signals of this transition from a bistable to monostable state in both GICC05
and GICC05-CB by measuring the trends in autocorrelation and variance over a sliding window, both of which
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are expected to increase as a bifurcation is approached due to the gradual reduction in recovery rates to
perturbations (Text S1 in the supporting information) [Dakos et al., 2008; Lenton et al., 2012]. Here we observe
a positive trend in autocorrelation and variance in both records approximately 10 kyr before the switch in
periodicities at around 30 ka (Figure 3), consistent with the climate system experiencing a long-term forcing
prior to reaching a critical threshold [Livina et al., 2010]. We measure the statistical evidence of the trend from
the 65°N minima in summer insolation at 40 ka, and test against a null model based on randomizations of the
original time series (Text S1 in the supporting information and Figure 4). Both records showed strong increas-
ing trends in variance (Kendall z > 0.8), with type | error (p) < 0.05, and increasing trends in autocorrelation
(Kendall 7 > 0.73), with p < 0.05 for GICCO5 and <0.01 for GICC05-CB. Importantly, these trends reverse after
30ka (Figure S7 in the supporting information). Finding the same trends in GICCO5 and GICC05-CB in both the
stability and tipping point analyses suggests that evidence for this bifurcation around 30 ka is robust regard-
less of the chronology used.

4.1. Mechanisms of Change: Sea Ice and Obliquity

The trends in autocorrelation and variance in both records, and resultant timing of the climate shift, parallel
the decrease in the Earth’s axial tilt (obliquity) [Berger, 1978] (Figure 1), in marked contrast to summer insola-
tion at 65°N, which rises and then falls over the same period. Low obliquity is known to drive high sea ice
extent in the Arctic due to decreased seasonality [Mantsis et al., 2011; Tuenter et al., 2005]. Sea ice extent in
the Labrador Sea plays an important role in global atmospheric and ocean circulation, being associated with
large surface heat flux anomalies and changes in the location and strength of the midlatitude jet stream
[Alexander et al,, 2004] (including associated snowfall §'0 over Greenland) [Hurrell, 1995; Kvamsto et al,,
2004; Strong and Magnusdottir, 2010] while also influencing North Atlantic Deep Water formation [Rhein
et al., 2002] and Atlantic meridional overturning [Vettoretti and Peltier, 2013].

Given the shift to a monostable state by 30 ka was accompanied by a positive trend in autocorrelation and
variance, we constructed a series of global climate simulations to test the impact of changing obliquity on
the Northern Hemisphere using the Commonwealth Scientific and Industrial Research Organisation Mk3L
Earth system model [Phipps et al, 2011] (Text S3 in the supporting information). This Earth system model
has fully interactive ocean, atmosphere, land, and sea ice submodels and is designed for millennial-scale
climate simulations with an ocean model resolution of 1.6° latitude x 2.8° longitude x 21 vertical levels, and an
atmospheric model resolution of 3.2° latitude x 5.6° longitude x 18 pressure levels. We used four experiments
in our study (Table S2 in the supporting information), with greenhouse gas and orbital forcing specified accord-
ing to four periods: (i) a preindustrial control run equivalent to the year Common Era (CE.) 1780, (i) a 21 ka Last
Glacial Maximum run, (iii) a 28.5 ka obliquity -minimum run, and (iv) a 49 ka obliquity -maximum run. We found
that preindustrial sea ice extent approximately agreed with modern (C.E. 1980-1999) [Cavalieri et al., 1996] spa-
tial and seasonal trends in the Labrador Sea and North Pacific (Figure S8 in the supporting information), provid-
ing confidence in the reconstructions. We initiated each experiment from a modern-day climatology and ran it
for 2000 years using the forcing described in Table S2 in the supporting information. We derived the orbital
parameters for the 49, 28.5, and 21 ka experiments using the Berger algorithm [Berger, 1978]. For greenhouse
gas concentrations, we took the values reported from the Antarctic ice cores European Project for Ice Coring
in Antarctica Dronning Maud Land and Dome C (Table S2 in the supporting information).

Our simulations suggest more extensive sea ice cover in the Labrador Sea and North Pacific during the mini-
mum in obliquity (centered on 28.5 ka) relative to its peak (at 49 ka) (Figure 5). It is also important to note that
the equivalent greenhouse gas radiative forcing difference was only 0.098 Wm™2 between the maximum
and minimum obliquity periods, whereas it was almost 5 times greater (0.49 W m~2) between the minimum
obliquity period and the LGM (Table S2 in the supporting information); while relatively small, it is probable
that greenhouse gas forcing during obliquity periods still played an important secondary role in the expan-
sion of sea ice across this period. Our simulations suggest that greatly extended sea ice cover in the Labrador
Sea enhanced westerly airflow to the south of Greenland (Figure 5 and Figure S10 in the supporting informa-
tion) and North Atlantic Deep Water formation was reduced substantially relative to peak obliquity at 49 ka
(Figure S11 in the supporting information). With a reduction in North Atlantic Deep Water formation, the
North Atlantic became cooler and fresher (Figure S10 in the supporting information), driving more extensive
sea ice cover in the Labrador Sea. The North Atlantic Deep Water cell is reduced by 10% from 49 ka to 28.5 ka,
compared with a 4% increase from 28.5 to 21ka (Figure S11 in the supporting information); and the
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(a) Ice Concentration Summer (b) Ice Concentration Winter

Figure 5. Modeled differences between 28.5 and 49 ka global climate model experiments showing (a and b) sea ice
concentration and (c and d) zonal wind at 850 hPa (wind vectors shown; minimum threshold mask of 0.4 m 571). The
(left) summer plots are average of August to October. The (right) winter plots are average of February to April, reflecting the
lag in sea ice coverage behind the minimum and maximum seasonal insolation. “LS” denotes Labrador Sea.

approximate depth of the North Atlantic Deep Water cell also reduced from 2500 m at 49 ka to 1500 m at 28.5
and 21 ka. Although atmospheric changes have been shown to exert a strong influence over sea ice extent in
the Labrador Sea on monthly to interannual time scales [Deser et al.,, 2000; Strong and Magnusdottir, 2010],
modeled simulations suggest that more extensive sea ice in the Labrador Sea might act as a negative feedback
mechanism that attenuates atmospheric variation on longer (centennial) time scales [Kvamsto et al., 2004],
consistent with the 10 kyr parallel trends in autocorrelation, variance, and obliquity. With summer insolation
at 65°N decreasing until 21 ka, our simulations show a further expansion in sea ice in the Labrador Sea, while
the extensive coverage in the North Pacific was maintained (Figure S9 in the supporting information). Most
importantly, our results suggest that the obliquity minimum led to a strengthening and equatorward shift in
the westerly wind belt in the northwest Atlantic (Figure 5 and Figure S10 in the supporting information), redu-
cing the delivery of air masses and expression of millennial-scale events in Greenland between 30 and 14.6 ka.

4.2, Wider Implications

The inferred increase in sea ice in the Northern Hemisphere by 30 ka coincides with reconstructions of abrupt,
early cooling of deep North Atlantic waters, and reduced meridional overturning circulation [Waelbroeck
et al., 2002]. These changes preceded maximum continental ice volume [Clark et al., 2009] and in combination
with an enhanced latitudinal insolation gradient at this time [Davis and Brewer, 2009; Raymo and Nisancioglu,
2003], seem likely to have contributed to the onset of glacial conditions in the North Atlantic, with global

TURNEY ET AL.

TIPPING INTO THE LAST GLACIAL 10,388



@AG U Geophysical Research Letters

10.1002/2015GL066344

Acknowledgments

This work was supported by the
Australian Research Council. Numerical
simulations were run on the National
Computational Infrastructure National
Facility at the Australian National
University. Steven Phipps kindly
assisted with the setup of the model
simulations. The GICCO5-CB 3'°0 record
is lodged on the Paleoclimatology
Database (National Oceanic and
Atmospheric Administration data set ID:
noaa-icecore-19015).

implications. For instance, the timing of the above state shift is identical to trends in middle- to high-latitude
climate and glaciation in the Southern Hemisphere [Fogwill et al., 2015; Heusser et al., 1999; Vandergoes et al.,
2005], suggesting synchronous global change. With the recent description of a southern high-latitude source
for the interstadial warming during the Belling-Allergd (Gl-1) [Thiagarajan et al., 2014], we speculate that D-O
events prior to 30 ka might have originated in the Southern Hemisphere [Thomas et al., 2011] and were only
expressed in Greenland when sea ice was limited due to relatively high axial tilt, something not possible with
the buffer of more extensive cover in the Labrador Sea after 30 ka. Importantly, there is evidence of reduced
expression of D-O events during the previous obliquity minima (70ka) [North Greenland Ice Core Project
Members, 2004]. Regardless of the origin of D-O events, however, our results suggest that obliquity tipped
the North Atlantic into a more frozen state, driving synchronous hemispheric climate change that led to
the establishment of the Last Glacial Maximum.
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