
Life cycle and early development of the thecosomatous pteropod 

Limacina retroversa in the Gulf of Maine, including the effect 

of elevated CO2 levels 

 

Ali A. Thabetab, Amy E. Maasac*, Gareth L. Lawsona and Ann M. Tarranta 

 

a. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 

02543  

b. Zoology Dept., Faculty of Science, Al-Azhar University in Assiut, Assiut, Egypt. 

c. Bermuda Institute of Ocean Sciences, St. George’s GE01, Bermuda 

 
*Corresponding Author, equal contribution with lead author 

  Email: amy.maas@bios.edu 

   Phone: 441-297-1880 x131 

 

 

Keywords: mollusc, ocean acidification, calcification, mortality, developmental delay  



Abstract 

 

Thecosome pteropods are pelagic molluscs with aragonitic shells. They are considered to be 

especially vulnerable among plankton to ocean acidification (OA), but to recognize changes due 

to anthropogenic forcing a baseline understanding of their life history is needed. In the present 

study, adult Limacina retroversa were collected on five cruises from multiple sites in the Gulf of 

Maine (between 42° 22.1’–42° 0.0’ N and 69° 42.6’–70° 15.4’ W; water depths of ca. 45–260 m) 

from October 2013−November 2014. They were maintained in the laboratory under continuous 

light at 8° C. There was evidence of year-round reproduction and an individual life span in the 

laboratory of 6 months. Eggs laid in captivity were observed throughout development. Hatching 

occurred after 3 days, the veliger stage was reached after 6−7 days, and metamorphosis to the 

juvenile stage was after ~ 1 month. Reproductive individuals were first observed after 3 months. 

Calcein staining of embryos revealed calcium storage beginning in the late gastrula stage. 

Staining was observed in the shell gland, shell field, mantle, and shell margin in later stages. 

Exposure of two batches of larvae at the gastrula stage to elevated CO2 levels (800 and 1200 

ppm) resulted in significantly increased mortality in comparison with individuals raised under 

ambient (~400 ppm) conditions and a developmental delay in the 1200 ppm treatment compared 

with the ambient and 800 ppm treatments. 

 

 

Introduction 

Pteropods are free-swimming molluscs with a holoplanktonic life-style that are also known as 

sea butterflies. The thecosome (shelled) pteropods have been the subject of recent research 

interest because they produce aragonitic shells that are particularly susceptible to ocean 

acidification (OA) (Comeau et al. 2010a; Lischka et al. 2011; Bednaršek et al. 2012a; Manno et 

al. 2012). Thecosome pteropods can be found at most depths of the ocean, but are especially 

abundant in the epipelagic layer. Despite growing interest in this group, multiple aspects of their 

basic ecology, such as global distribution and life history patterns, remain poorly resolved (Fabry 

et al. 2008; Hunt et al. 2008; Bednaršek et al. 2012b). Because pteropods may serve as sentinels 

for the effects of OA, it is important to have a baseline understanding of their ecology, 



developmental timing and life history so that changes due to anthropogenic forcing can be 

recognized. 

 

For non-photosynthetic calcifying organisms, biological sensitivity to OA results from 

decreases in carbonate ion concentration, which reduces the availability of this building block for 

biogenic calcium carbonate structures (Millero 2007). In addition, increases in hydrogen ion 

concentration reduce the pH, influencing many physiological processes (Fabry et al. 2008; 

Pörtner 2008). OA has been shown to have deleterious impacts on diverse groups of marine 

calcifying invertebrates (reviewed by Hendriks et al. 2010; Kroeker et al. 2010). Although the 

consequences of OA vary among groups, generally it has been found that early life stages, when 

individuals typically have less energetic reserves to cope with environmental stress, tend to be 

most sensitive (e.g., Dupont et al. 2008; Kurihara 2008; Albright 2011; Cripps et al. 2014). This 

is compounded by the fact that the initial sites of calcification tend to be more prone to effects of 

acidification, likely because they are comprised of more soluble forms of calcium carbonate, are 

accreted at a rapid rate, and are constrained by a limited energy budget (e.g., Waldbusser et al. 

2013; White et al. 2013; Waldbusser et al. 2015b).  

 

To enable studies of the effects of ocean acidification and other stressors on development 

and early shell formation in thecosome pteropods the normal developmental processes of this 

group must be clearly documented. The majority of OA work with pteropods has focused on one 

family within the thecosomes, the Limacinidae. This group is the most numerically dominant in 

all ocean basins, has a particularly high biomass in polar regions, and has already been shown to 

be affected by regions of undersaturation (Bednaršek et al. 2012a; Bednaršek et al. 2014). 

 

Most species of Limacinidae appear to share similar reproductive biology, behavior, and 

larval development (Lalli and Wells 1978; Lalli and Gilmer 1989), and all are protandrous 

hermaphrodites (starting life as males and developing female gonads as they age). Thus, gender 

in Limacinidae varies with size, and three types can be identified: small individuals are typically 

sexually undifferentiated, somewhat larger individuals are solely males, and the largest are 

simultaneous hermaphrodites (Hsiao 1939). Previous work on the genus Limacina has suggested 

that some species spawn multiple times per year (Dadon and Cidre 1992), although these authors 



suggest that this is a consequence of asynchrony between two cohorts, with adult mortality after 

each reproductive event. It has been suggested that polar species may have a 1–2 year life span 

(Kobayashi 1974; Gannefors et al. 2005; Hunt et al. 2008; Wang 2014), but the life span of 

temperate and tropical species is unknown and likely shorter. All of these studies have relied 

upon field sampling to infer life span and reproductive timing because keeping pteropods in 

captivity has proven difficult (reviewed by Howes et al. 2014).  

 

Relatively little is known regarding the morphology and timing of progression through 

early developmental stages and initial calcification in the genus Limacina (Lalli and Gilmer 

1989). All three of the Limacina spp. studied to date produce egg masses that develop through a 

trochophore stage into planktotrophic veligers (Lebour 1932; Paranjape 1968; Bandel and 

Hemleben 1995). Lebour (1932), the first to document early thecosome development, worked 

with Limacina retroversa, a temperate and sub-polar species. Her findings were based on 

observations of larvae and juveniles obtained from net tows and of egg masses laid in the 

laboratory by adults. She observed that the embryonic stages hatched to unshelled larvae on the 

second day after spawning and developed into veligers with a cup-shaped shell a few days later. 

In contrast, Paranjape (1968) observed that embryos of the polar species Limacina helicina 

developed a cup-shaped shell while still in the egg capsule and hatched at the veliger larval 

stage. Bandel and Hemleben (1995) documented the early development and metamorphosis of 

the tropical Limacina trochiformis, noting that the sinistrally shelled larvae of this species hatch 

from the egg capsule after about 2 d in the veliger stage. Temperatures were not reported by 

Bandel and Hemleben (1995) or Lebour (1932), making direct comparisons of developmental 

rates difficult.  

 

Limacina retroversa is a temperate and boreal pteropod that was chosen for this study as 

a useful model for thecosome life history and development. This species, which is abundant in 

the North Atlantic and is consistently found in the Gulf of Maine (Redfield 1939) is a 

characteristic component of the permanent pelagic community, where it can be found throughout 

the year and is thought to be an important prey item for planktivorous fishes, such as mackerel 

(Bigelow 1924). Redfield (1939) sampled the seasonal distribution of L. retroversa in the Gulf of 

Maine and observed that the population density was low during the fall, increased in December, 



and spread westward during the winter. The population of L. retroversa was originally thought to 

sustain itself with local reproduction (Bigelow 1924), but Redfield (1939) suggested that large 

numbers of L. retroversa are advected into the Gulf of Maine from off-shelf regions rather than 

produced endemically.  

 

To better characterize the life history and early development of the Limacinidae, we have 

focused on this easy-to-obtain species, L. retroversa. In the present study, we take advantage of 

seasonal sampling and have developed a laboratory culture protocol to (1) estimate the 

generation time, (2) describe the morphology and timing of embryonic and larval developmental 

stages of L. retroversa under constant laboratory conditions, (3) visualize early shell formation, 

and (4) explore the effects of elevated CO2 on early development. 

 

Materials and methods 

Adult collection and spawning 

To observe seasonality in spawning behavior and to obtain fertilized eggs for developmental 

studies, adult Limacina retroversa were collected from multiple sites in the Gulf of Maine 

(station locations in the vicinity of 42° 22.1’–42° 0.0’ N and 69° 42.6’–70° 15.4’ W; water 

depths of ca. 45–260 m) during 1–3 d cruises beginning October 21st 2013, January 29th  2014, 

April 25th 2014, August 19th 2014 and November 4th 2014 on the R/V Tioga. Individuals were 

sampled via oblique tows of a Reeve net with 333-µm mesh. Seawater was collected for CO2 

exposure experiments from ca. 30 m depth using a submersible pump and filtered through 63-µm 

mesh. Aboard ship, adult pteropods were stored in this filtered in situ water (salinity 32–34, 

depending on the season) in 1-L jars that were held in an 8 ± 1°C refrigerator to replicate typical 

conditions at 50–100 m depth within the study area, where adults were typically found. 

Additional seawater was transported to a laboratory holding tank and continuously circulated 

through a 1-µm filter. The pteropods were transported to the lab from the vessel via coolers with 

ice packs to minimize thermal stress.   

 

Pteropod culture 

Juvenile and adult L. retroversa were maintained in 13-L glass carboys at 8° C in a continuously 

illuminated climate-controlled room. Since the vertical migratory behavior and light regime in 



the wild is unknown, and although continuous light is not the environment L. retroversa would 

typically experience in the Gulf of Maine, it was chosen for simplicity and to provide maximum 

phytoplankton (food) production in the cultures. Adults were fed weekly with 1500–4000 cells 

mL-1 of Rhodomonas lens and 150–500 cells mL-1 of Heterocapsa triquetra (depending on 

pteropod density, which ranged from 50–500 individuals per carboy as mortality occurred). The 

culture water was changed with local 1-µm filtered seawater (inflow from Buzzards Bay, 

Massachusetts; salinity 31–34) weekly. During each water change, the culture was examined for 

egg production by gently siphoning the carboys onto a 35-µm mesh. The individuals were then 

transferred to a glass dish and examined under a stereomicroscope. At this time dead pteropods 

were removed. Fertilized eggs were separated from adults by passing them through a larger mesh 

net (> 150 µm), after which eggs and adults were rinsed into separate clean culture vessels. 

 

Early stage embryos and veligers were kept at 8° C in 2-L polycarbonate bottles and were 

fed weekly with 50–500 cells mL-1 of Rhodomonas lens, and Isochrysis sp., clone T-Iso. The 

number of individuals per bottle ranged from ~1000 at initial collection to ~500 by the second 

water change, and dwindled to ~100 as mortality occurred. Similar to the adults, their water was 

changed with local 1-µm filtered seawater (salinity 31–34) weekly by slowly siphoning 

individuals onto a 35-µm mesh net, briefly observing the individuals under a stereomicroscope, 

and gently washing them into a freshly cleaned and filled polycarbonate bottle. As the veligers 

grew larger, the dinoflagellate Heterocapsa triquetra was added to their diet at densities of 50 

cells mL-1, their ration of Rhodomonas lens, and Isochrysis sp. clone T-Iso was gradually 

increased to 2000 cells mL-1, and they were transferred to 13-L glass carboys. 

 

Developmental observations 

After the April 2014 cruise, a large portion of the first batch of sampled embryos were isolated 

for studies to characterize the developmental timing of L. retroversa. After initial collection egg 

capsules and developing pteropods were transferred into crystallization dishes containing 0.2-µm 

filtered in situ seawater (34) and reared at 8 °C. Egg capsules and developing pteropods were 

collected on mesh nets (35–75 µm, depending on the size of the stage) and then rinsed through 

larger mesh nets (150 µm) to remove debris. Swimming gastrulae and trochophores were 



separated from unhatched egg capsules under a stereomicroscope with a Pasteur pipette into 

clean dishes.  

 

Embryonic and larval pteropods were monitored over 7 d using a stereomicroscope. To 

examine the timing of early embryonic development, an egg mass was closely monitored every 

hour from deposition to the 16-cell stage. For additional observations of larval development, 

groups of 20 early-stage embryos (1- to 4-cell stage ; ≤ 6 h old) were collected from gelatinous 

egg masses into 20-ml glass scintillation vials. Two replicate vials were monitored at 8, 16, 24, 

36, 48 and 72 h. To observe later developmental stages (trochophore through veliger), groups of 

25 late gastrulae (ciliated stage; ~3 d old) were isolated from the mixed-stage embryos and 

placed into scintillation vials (two replicates per time point). These gastrulae were fed with two 

species of phytoplankton: Rhodomonas lens (1200 cell mL-1), and Isochrysis sp., clone T-Iso 

(10,500 cell mL-1). Each day for four subsequent days, the developmental stages of the pteropods 

were classified. All of these observations were combined to create a full developmental timeline 

from fertilization through to the veliger stage.   

 

Calcein staining 

Initial calcification of larval shells is an important developmental milestone, and is known in 

other organisms to be a process sensitive to OA (Waldbusser et al. 2013; White et al. 2013; 

Waldbusser et al. 2015a; Waldbusser et al. 2015b). To monitor the initial calcification of L. 

retroversa, calcein staining was employed to identify calcium based structures during early 

development. A 50 mg L-1 solution of calcein dye was prepared in filtered seawater (0.2 µm, 

collected in situ) and stored in the dark at 8 °C. Gastrulae, trochophores, veligers and juveniles 

were placed into 3.5 cm diameter petri dishes containing the calcein solution. These 

manipulations were done on ice to minimize thermal stress. Developing pteropods were then 

incubated in the calcein solution for 1–24 h (durations were varied to determine optimal staining 

time) at 8 °C to fluorescently mark calcareous structures. After the calcein exposure, larvae and 

juveniles were rinsed three times with filtered seawater and incubated in clean scintillation vials 

with food as previously described. 

 

Light microscopy 



Developmental observations were made on living individuals under white transmitted light and 

UV epifluorescent light (Zeiss Fluoarc unit) using a Zeiss Axiovert 200 microscope and 

photographed using an AxioCam MRC camera and AxioVision 4.9.1.0 software. The diameter 

and surface area of egg capsules, gastrulae, trochophores, and veligers were measured using 

Image Pro Plus, Version 6 (Media Cybernetics, Inc.).  

 

Scanning Electron Microscope (SEM) 

For higher resolution observations of larval structures, embryos, trochophores and veligers were 

fixed for SEM following the protocol of Buckland-Nicks (2014) by first placing individuals in an 

isotonic primary fixative (2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, 0.06 M 

sucrose, pH 7.4) on ice for 2 h. The samples were then washed twice in 0. 1 M sodium 

cacodylate buffer for 10 min, then post-fixed in isotonic secondary fixative (1.25 % OsO4 in 0.1 

M sodium cacodylate, 0.21 M sucrose, pH 7.4) for 1 h. Finally, the samples were washed in 

distilled water (2 washes, 10 min each), dehydrated through a series of ethanol solutions (10%, 

30%, 50%, 70%, 80%, 90%, 95%, and 100 %, 10 min each), and then dried using a critical point 

dryer (Tousimis Samdri-780A).  

 

To observe shell morphology in veligers, we followed the protocol of Bednaršek et al. 

(2012b) with some modification. Larvae were fixed in 70% ethanol for 4–6 d then transferred to 

50% ethanol for 3 min. Samples were washed in distilled water (two washes, 10 min each), 6% 

H2O2 (to remove salt crystals, two washes, 15 min each), and again in distilled water (two 

washes, three 3 min each). Samples were dehydrated through a series of methanol solutions 

(10%, 30%, 50%, 70%, and 85%, 10 min each). Samples were transferred into 2,2-

Dimethoxypropane (DMP; 2 washes in DMP, 15 min each), a 1:1 mixture of DMP and 

1,1,1,3,3,3-Hexamethyldisilazane (HMDS; 10 min), and finally into 100% HMDS, which acts as 

a critical point dryer (2 washes in HMDS, 20 min each). All specimens for SEM were mounted 

on SEM stub tape, sputter coated with 10 nm platinum (Leica MED 020), and visualized using a 

scanning electron microscope (Zeiss Supra40VP).     

 

Confocal laser scanning microscopy 



Because the egg capsule prevented high resolution SEM images of earlier life stages, live 

calcein-stained and unstained pteropods (late gastrula to trochophore stages) were mounted in 

seawater on a 35-mm covered glass-bottomed dish and observed using a laser scanning confocal 

system (Zeiss LSM-710) with a 40x water-immersion objective (inverted Observer Z1 

microscope). All imaging was conducted under plane and stack scan modes with a 488 nm 

excitation wavelength, and the emission was taken with a long pass 493–616 nm filter. 

 

Larval CO2 exposure 

Two CO2 exposure experiments were performed; experiment 1 began on the 21st of August 2014, 

and experiment 2 on the 7th of November 2014. Both were maintained at 8 ± 1 °C. Two days 

after eggs were laid, embryos in the gastrula stage from multiple adults were mixed and 

transferred to crystallization dishes containing 0.2-µm filtered in situ seawater. Gastrulae were 

counted under a stereomicroscope and randomly distributed among glass culture tubes 

containing in situ 0.2-µm filtered seawater that was pre-equilibrated with CO2 as follows: 

replicates of 40 gastrulae were added to 20 ml for measurement on days 1, 2, or 3, while larger 

numbers and volumes were used for measurement on day 6 (replicates of 360 gastrulae in 50 ml 

in Experiment 1, 240 gastrulae in 50 ml in Experiment 2). This difference in number of 

individuals per replicate was chosen to allow for sufficient numbers of surviving individuals on 

day 6. Embryos were exposed to three different levels of CO2 (ambient, 800 and 1200 ppm) by 

continuously bubbling with air mixtures that were created using a compressed air gas flow 

controller system. These levels were chosen to simulate end-of-century predicted levels of 800 

ppm (high but only slightly undersaturated with respect to aragonite: ΩAr ~ 1.0), and future ocean 

levels of 1200 ppm (high and undersaturated with respect to aragonite: ΩAr ~ 0.7), based on 

estimates of the IPCC Ar5. Three replicates were performed for each combination of day and 

treatment, except that, due to limited embryo availability, experiment 1 had only two replicates 

for the 800 ppm treatment on day 2 and for all three treatments on day 6. To minimize 

evaporation and maintain constant salinity during the experiment, the gas lines were first passed 

through humidifying chambers (sealed 1-L jars containing seawater) before entering the culture 

tubes, which were sealed with parafilm. Embryos and larvae were fed on days 1, 3 and 5 with 

Isochrysis sp., clone T-Iso at a density of 10,500 cells ml-l. On days 1, 2, 3 and 6, individuals 

were gently transferred from the culture tubes into 20-ml crystallization dishes for observation. 



The number of surviving individuals and their stage distribution were assessed under a 

stereomicroscope.  

 

Salinity, pH and temperature were measured on days 1, 2, 3 and 6 of CO2 exposures in 

experiment one and, due to instrumentation error, only on days 4 and 6 in experiment two. 

Salinity in the vials containing the embryos was measured using a seawater refractometer (Hanna 

Instruments, model 96822). Due to the small volume of water in the culture tubes, pH and 

temperature were measured simultaneously in three separate culture tubes for each CO2 

treatment. The pH was determined using a USB 4000 spectrometer with an Ls-1 light source and 

a FIA-Z-SMA-PEEK 100-mm flow cell (Ocean Optics, Dunedin, Florida, USA). Bottle samples 

for dissolved inorganic carbon (DIC) and total alkalinity (TA) measurements were collected 

prior to the experiment and hence represent the starting conditions. DIC and TA were measured 

from these bottle samples either on a Versatile Instrument for the Determination of Total 

Inorganic Carbon and Titration Alkalinity (3C VINDTA system; Marianda, Kiel, Germany) or 

using a DIC auto-analyzer (AS-C3, Apollo SciTech, Bogart, USA) via acidification, followed by 

non-dispersive infrared CO2 detection (LiCOR 7000: Wang and Cai 2004) and an Apollo 

SciTech alkalinity auto-titrator (Bogart, Georgia), a Ross combination pH electrode, and a pH 

meter (ORION 3 Star) based on a modified Gran titration method (Wang et al. 2013). Carbonate 

system parameters were then calculated using the CO2SYS software (Pierrot et al. 2006), 

applying the constants refitted by Dickson and Millero (1987), and the KHSO4 dissociation 

constant from Dickson (1990). 

 

Statistical analysis 

To determine whether there were significant effects of CO2 exposure on mortality during each 

day, percent survival data were arcsine-square root transformed to meet the assumptions of 

normality. The assumption of homogeneity of variance was not met so a Welch’s one-way 

ANOVA was conducted, followed by Dunnett’s T3 post hoc tests.  To test for developmental 

delays, we conducted Chi-Square tests for each day with a Bonferroni adjustment for post-hoc 

analysis. Dead individuals were excluded to remove the effect of survival from the analysis, and 

counts of veligers were combined with counts of trochophores since they were only present as a 



small fraction of the individuals in the ambient treatments on day 6 during experiment 2, causing 

them to skew the statistical analysis. All statistics were run in SPSS. 

 

Results 

Pteropod Life Cycle and Developmental Observations 

Adult Limacina retroversa from the Gulf of Maine consistently laid fertilized eggs within the 

first 2 d of capture following each of the five seasonal cruises. In comparison with the four other 

cruises, relatively few fertilized eggs were laid following the January cruise. Mature individuals 

kept as brood stock laid smaller numbers of eggs throughout their captivity. Egg masses were 

laid in gelatinous ribbons. The embryos within the egg capsules hatched, developed into veligers 

after 6–7 d, and developed into juveniles in 1–2 months. By 3 months, individuals began to 

produce eggs. Adults continued to increase in size and produce eggs for another 3 months, 

reaching the largest size reported in the literature (> 2.5 mm; Hsiao 1939; Redfield 1939), after 

which individuals died (~ 6 months; Table 1). Additional, qualitative observations of feeding and 

behavior during culturing are included in Electronic Supplementary Material. 

 

Limacina retroversa embryos were usually spherical, about ~80 μm in diameter 

(Electronic Supplementary Material), and enveloped by a transparent egg capsule that was 

spherical at oviposition and became more oval during cleavage until hatching. Polar bodies were 

observed in all embryonic developmental stages until hatching and were attached to the surface 

of the embryos. After spawning, cleavage occurred following a typical molluscan developmental 

pattern (spiral holoblastic, Fig. 1). The first division was equal and parallel to the animal-vegetal 

axis, and polar bodies were observed at the animal pole (Fig. 1 B). The second cleavage was 

apparently equal and was perpendicular to the first cleavage and the cleavage furrows between 

the 4 blastomeres were visible (Fig. 1C).   

 

The gastrula, identifiable by the characteristic blastopore, was observed at 24 h (Fig. 1F). 

Gastrulae started to spin inside the capsule ~36 h after oviposition. After ~48 h gastrulae began 

to develop cilia on their surface and a shell gland (observed as a black granule under light 

microscopy) at the depression of the ectoderm (Fig. 1 G). The egg capsule gradually became 



weak and was broken by spinning motions of the embryos, which hatched into free-swimming 

trochophores after ~ 3 d (Fig.1 H). 

 

Newly hatched trochophores were slightly oval, and smaller than developing embryos 

(Electronic Supplementary Material). Larvae swam horizontally and rotated using the prototroch 

on the apical end (Fig. 2A, B). During the early trochophore stage, the shell field was located on 

the lateral side of the body (Fig. 2B, C) and occupied 21 ± 6% of the trochophore surface area. 

The shell field gradually decreased in size, migrated posteriorly along the lateral side (Fig. 1H), 

ending up on the posterior portion of the hyposphere (Fig. 2D). During trochophore 

development, the number and length of the cilia within the ciliary band increased. As the larvae 

transitioned from trochophore to veliger, a cup-shaped structure appeared to be secreted by the 

shell field (Fig. 2E, F). 

 

Veligers were characterized by the development of the velum and the transparent 

protoconch shell, which has a characteristic cup-like shape (Fig. 1I). The velum, or feeding 

organ, increased in size to form ciliated lobes with longer and more numerous cilia. At this point, 

the larvae were able to swim in all directions and rotate by the velum (Fig. 1J, K). Veligers grew 

continuously, beginning to exhibit a sinistral coil (Fig. 1J, 3C) and development of a thinner, 

smoother operculum (Fig. 1J, 3A-B). Individuals began to develop parapodia (“wings”, Fig. 1K) 

and produced shells with at least 2.5 whorls before metamorphosing into juveniles, losing their 

velum and using the parapodia for locomotion (Fig. 1L). By the time juveniles had accumulated 

an average of 3.2 whorls, the juvenile shell had increased ~five-fold in diameter (Electronic 

Supplementary Material).  

  

Early Calcification 

Calcein staining of embryological development was conducted to enable visualization of initial 

calcification by L. retroversa embryos. Late-stage gastrulae, trochophore and veligers showed no 

changes in behavior, malformations, or increased mortality following exposure to the calcein 

solution. Structure of the shell field and larval shell was well-marked with calcein and produced 

a distinct green label under fluorescent light. The level of fluorescence after 1 h exposure was 

sufficiently bright to not require the longer staining periods that were tested (up to 24 h), 



providing a more discrete snapshot of calcification. If visualized immediately after staining, 

some internal organs (e.g., the gut) were marked with calcein (Figs. 4 and 5); however, in 

organisms stained for 1 h, this internal staining faded within 1 d, leaving fluorescence visible 

only in structures that were presumably calcium carbonate up to 21 d later. 

 

Short exposure (1 h) of late-stage gastrulae to calcein faintly stained the shell gland (Fig. 

4 A). Similarly, during the trochophore stage 1 h of calcein staining was sufficient to label initial 

shell formation within the shell field (Fig. 4 B). For greater resolution of this critical stage, 

stained trochophores were visualized using confocal laser scanning microscopy. Large stained 

granules were visible at the posterior end of the embryo and around the shell field, and smaller 

granules were also seen distributed along the body (Fig. 4C).  

 

Calcein staining revealed that some form of calcium deposition is associated with the 

formation of the earliest cup-shaped structure by late-stage trochophores (Fig. 2E, F), as this 

stain remained visible in the protoconch 10 d after removal from calcein after the transition of 

the trochophore into the veliger stage (Fig. 4D). Veligers had a well-developed protoconch shell 

that surrounded the whole larval body and an operculum with a thinner and smoother surface 

(Fig. 3A–C). The protoconch of 2-week veligers was very thin (1.7–2.4 µm) and smooth. At this 

point it was observable that the veliger shell was comprised of both an inner cross-lamellar layer 

and very thin outer prismatic layer (Fig. 3 D).  As the veliger shells grew, a suture was apparent 

between the smooth older portion and the rough growth margin (Fig. 3E, F). Veligers showed 

staining at the growth margin and along the sutures of the shell (Fig. 5). Immediate visualization 

after 1 h of staining showed labeling of internal organs (Fig. 5A); however, within 1 d, the 

calcein was lost from the internal organs leaving only stained shell and mantle structures. The 

staining of the mantle was particularly clear in early veligers. Time lapse images of a 1.5 week-

old veliger showing an individual coming out of its shell display a circle of fluorescing granules 

(Fig. 4E). Due to the position and calcein labeling, this circle is likely to be mantle tissue, which 

secretes new shell as the organism grows. Although labeled 5 d previously, the shell has no 

calcein staining, while these internal granules persistently retained whatever calcium was labeled 

during the 1 h of staining. In later stage veligers (3-weeks) and juveniles, the stain remained 

exclusively in the shell throughout the 21 d of observation. Occasionally there were lines of 



fluorescence and possible repair at points more proximal to the protoconch along the shell (Fig. 

5B). Calcein marked early juveniles of L. retroversa with varying degrees of brightness. 

Irrespective of staining intensity, over time the distinct green line established during calcein 

staining became clearer due to the growth at the margin of the unlabeled shell (Fig. 5C). 

 

CO2 exposure experiments 

Bubbling of experimental seawater achieved distinct carbonate chemistry among treatments 

during both experiments (Table 2). Although it appears that there was a lower ambient pCO2 in 

August (experiment 1) which influenced the gas mixtures, the aragonite saturation states for 

ambient were consistently > 1, the medium treatment was close to 1 and high was strongly 

understaturated (ΩAr = 0.73 in August and 0.63 in November). 

 

CO2 exposure resulted in decreased survival of pteropod embryos and larvae in both 

experiments (Table 3; Fig. 6). Although the data were normally distributed post-transformation, 

the homogeneity of variance assumption of the ANOVA was not met in either experiment. The 

low number of replicates (2 or 3 per time point) likely contributed to this deviation. In the first 

experiment, survival on day one was substantially reduced in the high CO2 (1200 ppm) treatment 

(Table 3). Survival decreased over time, and by day six there was heavy mortality in all 

treatments. There were significant differences among the 3 treatments on days 1 and 6 (Welch’s 

one-way ANOVA; Table 3). During the second experiment, a similar trend of decreasing 

survival was apparent in all treatments, although overall mortality was less severe by day 6 

(Table 3). There were significant effects of treatment during days 2 and 6, with generally higher 

mortality in the elevated CO2 treatments (Table 3).  Post-hoc analysis of survival generally 

suggested significant differences (P < 0.05) in survival rate in the high (1200 ppm) treatment in 

comparison with the ambient and 800 ppm treatments (Fig. 6).  

 

We detected significant differences (Asymptotic significance < 0.05) in relative 

proportions of stages on days 3 and 6 during experiment 1 and on days 1 and 6 in experiment 2 

(Electronic Supplementary Material). These were indicative of a trend towards a developmental 

delay, with a larger proportion of earlier life stages in the high treatment (1200 ppm) relative to 

ambient towards the end of experiment 1, and throughout the exposure in experiment 2. In 



contrast, the 800 ppm treatment appeared to have a similar proportion of life stages to the 

ambient treatment during both experiments (Fig. 7; Electronic Supplementary Material).    

 

Discussion 

The present study provides new information on the life cycle, development, and early 

calcification of the thecosome pteropod Limacina retroversa. This species can produce egg 

masses after only 3 mo of development in the laboratory at 8° C, and it is thus likely that two 

generations y-1 are produced by the Gulf of Maine population. Initial calcification occurs as early 

as the gastrula stage when the embryo is still encapsulated, and early life stages appear to be 

sensitive to elevated CO2 levels. 

 

Seasonal sampling of thecosomes from the Gulf of Maine consistently resulted in the 

capture of reproductively active adults that produced fertilized eggs.  This is similar to 

observations of L. retroversa off Plymouth, U.K. (Lebour 1932). While some of the spawning 

observed was likely a response to the stress of capture, these observations indicated that some 

proportion of the population may be fertile year-round. Higher temporal resolution sampling 

would be required, however, to contradict the findings of Hsiao (1939), which suggested that 

mature female L. retroversa were absent in December and January. Furthermore, after 

individuals reached reproductive maturity we observed continuous egg production, with eggs 

present at each weekly water change. Although they appear capable of producing viable eggs 

throughout all seasons, this does not necessarily imply that they are constantly reproducing in the 

wild. The Gulf of Maine is a dynamic ecosystem with large annual changes in surface 

temperature. We collected adult pteropods in the upper 100 m of the water column, where 

concurrent hydrographic sampling indicated they would experience temperatures ranging from 

6–18 °C. Nearby PMEL/NOAA buoy data of surface seawater carbonate chemistry indicate that 

there is also a yearly cycle of higher than global average CO2 in the winter (up to 500 ppm), 

followed by a drawdown in the spring by the phytoplankton bloom to ca. 200 ppm, equivalent to 

lower than pre-industrial levels (Vandemark et al. 2011). Thus, the growth and spawning of these 

individuals occurs within the context of a much more variable environment than that experienced 

in our laboratory culture (constant food, light, ~400 ppm CO2, 8 °C), and it is likely that the 



natural population reacts to feeding history and synchronizes reproduction with favorable 

environmental conditions.  

 

Previously, based on seasonal size-class sampling and analyses of gonad development, 

indications were that L. retroversa in the Gulf of Maine exhibits peak spawning activity in May 

(Hsiao 1939), but that reproduction also continues actively into the fall. The authors also noted 

that reproductive development appeared to occur more rapidly in the summer, although it was 

also hypothesized that the two size cohorts observed in the region were a consequence of two 

unrelated populations of L. retroversa which were advected into the Gulf of Maine from offshore 

(Hsiao 1939; Redfield 1939). Studies of the South Atlantic population of L. retroversa similarly 

indicated that the major pulses of reproduction occurred in spring and at the end of summer 

(Dadon and Cidre 1992). In this case, however, the authors suggested that there were two 

generations per year, with individuals born in the spring maturing at a smaller size and growing 

faster during the warm season to produce eggs at the end of summer which then slowly 

developed during the fall and winter to produce offspring the following spring. Based on their 

apparent life span (~6 months), it seems likely that there is more than one generation per year in 

the Gulf of Maine region and that this population shares a similar life history pattern to that 

reported for L. retroversa from the South Atlantic. This is also the pattern described for the 

congener L. helicina (Kobayashi 1974; Wang 2014). The production of two distinct cohorts has 

interesting consequences in the context of juvenile exposure to environmental stress, as 

individuals released during the spring bloom and developing during the summer would naturally 

experience very different conditions from those released at the end of the summer and 

developing through the fall and winter.   

 

While we expect that developmental rates in the environment vary seasonally, we were 

able to repeatedly rear L. retroversa through embryonic and juvenile stages under controlled 

laboratory conditions at 8 °C, and generate a timeline for normal development. High resolution 

imagery also allowed examination of the typical morphology of trochophore and veliger 

development and shell deposition. Similar to the earliest reports of L. retroversa development 

(Lebour 1932), our embryos hatched from the egg capsule as a trochophore. This is different 

from descriptions of other species in the genus such as L. helicina (Paranjape 1968) and L. 



trochiformis (Bandel and Hemleben 1995) that were reported to hatch as veligers (with a shell 

and velum). Another interesting outcome of developmental observations was our documentation 

of the long duration of the developmental stages. Hatching from the egg capsule as trochophore 

took about 3 d, with a transition to the veliger stage after about a week. In contrast, the other 

study documenting L. retroversa development by Lebour (1932), reported hatching after only 1 

d, with a transition to veliger sometime around 4 d (temperature not reported). Embryos of L. 

helicina (Paranjape 1968) hatched as veligers after 2 d at 13 °C, but did not metamorphose to 

juveniles after 30 d of observation when the experiment was ended. This long veliger stage, 

which in our experiment lasted 1–2 months and was also reported as lasting ~40–50 d for L. 

retroversa at 10°C in Howes et al. (2014), may explain the lack of observed metamorphosis in 

Paranjape (1968). As thecosome pteropods spend the entirety of their lives in the plankton, 

perhaps there is little or no evolutionary pressure to rapidly transition to the juvenile stage. 

 

Studies conducted on diverse mollusc species have clearly shown that early life stages 

(Kroeker et al. 2013) and initial biomineralization windows (Waldbusser et al. 2013; White et al. 

2013; Waldbusser et al. 2015a; Waldbusser et al. 2015b) are particularly sensitive to ocean 

acidification. Thus, the point at which biomineralization begins in L. retroversa is an important 

developmental benchmark, and tracking the normal progression of early shell formation provides 

a point of reference to enable assessments of the effects of OA. In this study, we documented 

early calcification in L. retroversa through calcein staining paired with fluorescent, SEM, and 

confocal microscopy. Recently, calcein staining has been used to study the effects of OA on 

scallop larvae (Andersen et al. 2013), as well as pteropod adults (Comeau et al. 2009) and 

juveniles (Lischka et al. 2011). Calcification by veligers of the pteropod Cavolinia inflexa was 

also observed under ambient and acidified conditions (Comeau et al. 2010b), revealing the 

reduction or loss of shells during development when larvae were reared in acidified water.  

 

In our study, calcein staining marked the shell gland and presumed initial site of shell 

deposition, beginning with the appearance of stained granules in late gastrulae and the 

development of a cup-shaped shell in trochophores. Using these methods, however, it is not 

possible to determine whether the stained granules indicate the presence of calcium carbonate, or 

some other form of stored calcium (e.g., in a vacuole). In addition, the form of calcium carbonate 



present during the earliest stages of shell formation is unknown. Amorphous calcium carbonate 

(ACC) has been shown to be the initial building material for shells of many other molluscs 

(Weiss et al. 2002; Marin et al. 2012) and based on preliminary microscopy data, it appears that 

this may be the case for thecosomes as well (Gallager pers. comm.). Based on results from other 

species and due to its granular appearance, we consider it likely that in L. retoversa the initial 

cup-shaped shell is comprised mainly of an organic matrix and ACC. Because ACC is more 

soluble than aragonite, if initial L. retroversa biomineralization structures are comprised of ACC, 

then OA may pose an increased risk during larval stages.  

 

 Mineralogical studies on other molluscs have revealed a gradual replacement of the 

organic protoconch by ACC (Auzoux-Bordenave et al. 2010). Although our methods did not 

provide the same degree of mineralogical resolution, the protoconch II laid down in the veliger 

stage is clearly distinct in surface morphology from the protoconch I, suggesting a transition to 

aragonite deposition as has been seen in other molluscan species (Weiss et al. 2002; Auzoux-

Bordenave et al. 2010). Little was known about the structure of veliger shells in thecosome 

pteropods, but we identified the thick inner cross-lamellar layer and very thin outer prismatic 

layer in L. retroversa by two weeks into the veliger stage. This is consistent with what is known 

from adults of the congeners L. bulimoides, L. lesueuri, L. helicina and L. helicina antarctica, the 

shells of which are similarly composed of an inner cross-lamellar layer of aragonite crystals and 

an outer prismatic layer (Bé and Gilmer 1977; Sato-Okoshi et al. 2010; Bednaršek et al. 2012a). 

Sato-Okoshi et al. (2010) did, however, observe a third inner prismatic layer in large specimens 

of L. helicina antarctica. Whether this third layer is similarly present in large adults of L. 

retroversa remains to be established. This is the first confirmation that L. retroversa shell 

structure is consistent with that of its congeners, and supports previous findings that the 

aragonitic layer structure of adult thecosome shells appears to be largely conserved within 

families (Bé et al. 1972; Bé and Gilmer 1977; Sato-Okoshi et al. 2010; Zhang et al. 2011; 

Teniswood et al. 2013; Li et al. 2015). 

 

Interestingly, fluorescent granules, similar to those observed in the late gastrula and early 

trochophores, were also present in the mantle tissue of veligers for multiple days after removal 

from calcein. This suggests that calcium, in some form, is also stored in the mantle. Similar 



granules have been described in other species of molluscs (Marin et al. 2012) and have been 

suggested to provide a source of calcium for shell repair (Fleury et al. 2008). Also during the 

veliger stage, minimal staining in the shell suggests that the shell deposition may not occur 

continuously. This hypothesis is supported by SEM images of two week-old veliger shells, 

which occasionally showed distinct regions of shell structural growth. Calcein staining was also 

observed at points other than the leading shell edge, including strong staining along the 

columella and in regions that may have been damaged during handling. Shell repair has 

previously been suggested to occur in Cavolinia uncinata and Diacria trispinosa by van der 

Spoel (1967), and our observations corroborate previous evidence that it also occurs in the 

limacinids (Lischka et al. 2011). While Comeau et al. (2009) observed staining only along the 

thecosome growth margin, our results are more similar to those of Lischka et al. (2011), who 

note that calcein stained not only the growth margin but also other regions around the 

protoconch.  

 

 Another objective of the present study was to gain initial insight into the effects of 

elevated CO2 on the survival and developmental progression of L. retroversa. We found that 

early exposure of L. retroversa to elevated CO2 (1200 ppm) caused increased mortality relative 

to the ambient and 800 ppm treatments in two experiments. Increased mortality in response to 

OA exposure has been similarly observed in several previous studies with other larval molluscs, 

such as the bay scallop (1987 ppm; White et al. 2013), and the great scallop (1599 ppm; 

Andersen et al. 2013). In the only other study of the effects of OA on developing pteropods, 

Comeau et al. (2010b) found that mortality of Cavolinia inflexa was not influenced by OA 

exposure. While the results from Comeau’s study were intriguing, the ambient and elevated CO2 

treatments were applied to individuals from a single egg mass so that between-clutch differences 

could not be assessed. Furthermore, the study of C. inflexa started at the veliger stage, and it may 

be that the window of greater sensitivity is earlier in development when calcification begins.  

 

Reports of the effect of OA on pteropod mortality have varied, with one study reporting 

increased mortality in juveniles of L. helicina (Lischka et al. 2011), and others finding no 

significant effects on juvenile or adult survival of C. inflexa, L. helicina or L. retroversa 

(Comeau et al. 2012; Lischka and Riebesell 2012; Manno et al. 2012). Our dataset suggests that 



survival during the early development of L. retroversa is sensitive to elevated levels of CO2. This 

is similar to trends observed in meta-analyses of molluscan sensitivity to OA, which indicate that 

early life stages are significantly more vulnerable than adults (Kroeker et al. 2013).  

Beyond influencing survival, OA has been shown to affect the duration of development in many 

molluscan species (Timmins-Schiffman et al. 2013; Onitsuka et al. 2014; Guo et al. 2015). Our 

results indicate a developmental delay when comparing the high treatment relative to the ambient 

treatment. In contrast, the medium treatment (800 ppm) was similar in stage distribution to the 

ambient throughout. Most of the previous work exploring the effects of OA on mollusc 

development rate have used species with a shorter larval duration (e.g., veligers appearing within 

2 d) relative to L. retroversa (veligers within ~1 week). The selective pressures on these other 

species, for which the life history includes a transition to the benthic lifestyle and to calcite shell 

deposition, may be quite different than the selective pressures experienced by holoplanktonic 

thecosomes.  Further experiments exploring these trends are warranted, as thecosome 

development offers a unique contrast to other molluscan developmental studies. 

 

Although patterns were similar between our two experiments, both survival rate and 

developmental progression varied. The ambient CO2 in August was significantly lower than in 

November, which resulted in less acidified conditions in both the medium and high treatments. 

In addition, because the trials were conducted during different seasons, the larvae may have 

experienced differences in maternal provisioning that in turn could affect energy available for 

calcification and survival (Waldbusser et al. 2013). Alternately, the age distribution of 

individuals at the start of the incubation may have differed between experiments. While gastrulae 

were selected for both experiments, this stage lasts 1.5–2 d, so individuals may have been older 

in the second trial. We also note that embryos from the normal developmental study (conducted 

in May) had a faster rate of development than those raised in our CO2 experiments (conducted in 

August and November). During the study of normal developmental progression, individuals 

transitioned from gastrulae to veligers within 5 d, while within both CO2 experiments only a very 

small portion of the gastrulae reached the veliger stage by the end of the 6 d observation period.  

We do not know the cause of this difference, but variations in culture conditions (container size, 

continuous bubbling in the CO2 exposure) are the most likely source.   

 



Future Directions 

In this study we captured wild specimens of thecosome L. retroversa and reared them through an 

entire captive generation, producing adults that began to lay eggs after approximately three 

months. To our knowledge L. retroversa is the only pteropod species that has been reared 

through a complete captive generation, and this is the first full description of time to maturity for 

a pteropod. Despite this progress, mortality was high in our cultures, similar to previous 

observations (Howes et al. 2014). Additional work is clearly needed to optimize culture 

conditions. Establishment of stable cultures would enable long-term and/or multigenerational 

experiments.  

 

We found that L. retroversa calcification may begin as early as the gastrula stage and that 

a cup-shaped structure was formed during the early trochophore stage. Application of additional 

methods, such as birefringence, Raman spectroscopy and energy-dispersive X-ray spectroscopy 

will be needed to determine the mineral composition of structures in these early stages (as in 

Auzoux-Bordenave et al. 2010). In particular, we hypothesize that the initial cup-shaped 

structure is likely comprised primarily of organic matrix and ACC, and we are uncertain whether 

the granules observed during the gastrula stage are mineralized. These are important points to 

clarify, as ACC is more soluble than aragonite and could partially explain why the early life 

stages appear more sensitive to changing carbonate chemistry. Similarly, tests of calcification 

kinetics, maternal provisioning, and the window of calcification sensitivity remain to be 

conducted (sensu Waldbusser et al. 2013; 2015b). We hypothesize that embryos from different 

seasons have variable maternal provisioning, and that saturation state is the limiting factor during 

development, resulting in the observed differences in sensitivity to CO2 exposure during 

different experiments. 

 

Acknowledgements  

We would like to thank R. Galat, D. McCorkle, M. White, and C. Zakroff for assisting in the 

setup of the culturing and CO2 exposure facilities. We greatly appreciate the insight of D. 

McCorkle and the collaboration of Z.A. Wang and K. Hoering on the carbonate chemistry 

measurements. We much appreciate the hard work and dedication of Captain K. Houtler and 

Mate I. Hanley and would like to thank them for excellent support aboard the R/V Tioga. At sea 



sampling was supported by P. Alatalo, A. Bergan, L. Blanco Bercial, S. Chu, N. Copley, T. 

Crockford, S. Crosby, M. Edenius, K. Hoering, R. Levine, M. Lowe, C. Pagniello, A. Schlunk, 

Z.A. Wang, T. White, and P. Wiebe. A special thanks is owed to P. Alatalo, for critical 

assistance in maintaining long term cultures of pteropods and phytoplankton, providing insight 

and advice, and for consistent hard work during experiments. L. Kerr provided expertise with 

SEM and confocal microscopy at the Marine Biological Laboratory Central Microscopy Facility. 

We are grateful for advice from S. Gallager whose experience with pteropod rearing and 

visualization were profoundly helpful. A. Thabet is grateful for a fellowship from the Egyptian 

Culture and Education Bureau and for mentoring from Drs. S.A. Saber, M.M. Sarhan and M.M. 

Fouda. Funding for this research was provided by a National Science Foundation grant to 

Lawson, Maas, and Tarrant (OCE-1316040). Additional support for field sampling was provided 

by the WHOI Coastal Ocean Institute and Pickman Foundation to Wang, Maas, and Lawson. 

This paper is contribution number 3001 of the Bermuda Institute of Ocean Sciences. 

 

  



References 

Albright R (2011) Reviewing the effects of ocean acidification on sexual reproduction and early 

life history stages of reef-building corals. J Mar Biol 2011: 14 doi 10.1155/2011/473615 

Andersen S, Grefsrud ES, Harboe T (2013) Effect of increased pCO2 level on early shell 

development in great scallop (Pecten maximus Lamarck) larvae. Biogeosciences 10: 

6161–6184 doi 10.5194/bg-10-6161-2013 

Auzoux-Bordenave S, Badou A, Gaume B, Berland S, Helléouet M-N, Milet C, Huchette S 

(2010) Ultrastructure, chemistry and mineralogy of the growing shell of the European 

abalone Haliotis tuberculata. J Struct Biol 171: 277–290  

Bandel K, Hemleben C (1995) Observations on the ontogeny of thecosomatous pteropods 

(holoplanktic Gastropoda) in the southern Red Sea and from Bermuda. Mar Biol 124: 

225–243  

Bé AWH, Gilmer RW (1977) A zoogeographic and taxonomic review of Euthecosomatous 

Pteropoda. In: Ramsay A (ed) Oceanic micropalaeontology. Academic Press, London, pp 

733–808 

Bé AWH, MacClintock C, Currie DC (1972) Helical shell structure and growth of the pteropod 

Cuvierina columnella (Rang)(Mollusca, Gastropoda). Biomineralization 4: 47–79  

Bednaršek N, Feely R, Reum J, Peterson B, Menkel J, Alin S, Hales B (2014) Limacina helicina 

shell dissolution as an indicator of declining habitat suitability owing to ocean 

acidification in the California Current Ecosystem. P Roy Soc B-Biol Sci 281: 20140123  

Bednaršek N, Tarling G, Bakker D, Fielding S, Jones E, Venables H, Ward P, Kuzirian A, Lézé 

B, Feely R (2012a) Extensive dissolution of live pteropods in the Southern Ocean. Nat 

Geosci 5: 881–885  

Bednaršek N, Tarling GA, Bakker DCE, Fielding S, Cohen A, Kuzirian A, McCorkle D, Lézé B, 

Montagna R (2012b) Description and quantification of pteropod shell dissolution: a 

sensitive bioindicator of ocean acidification. Glob Change Biol 18: 2378–2388 doi 

10.1111/j.1365-2486.2012.02668.x 

Bigelow HB (1924) Plankton of the offshore waters of the Gulf of Maine. Govt. print. off. 

Buckland-Nicks J (2014) SEM analysis of marine invertebrate gametes. In: Carroll DJ, Stricker 

SA (eds) Developmental biology of the sea urchin and other marine invertebrates. 

Humana Press, pp 125-145 

Comeau S, Alliouane S, Gattuso J-P (2012) Effects of ocean acidification on overwintering 

juvenile Arctic pteropods Limacina helicina. Mar Ecol-Prog Ser 456: 279–284  

Comeau S, Gorsky G, Alliouane S, Gattuso JP (2010b) Larvae of the pteropod Cavolinia inflexa 

exposed to aragonite undersaturation are viable but shell-less. Mar Biol 157: 2341–2345 

doi DOI: 10.1007/s00227-010-1493-6 

Comeau S, Gorsky G, Jeffree R, Teyssie J, Gattuso JP (2009) Impact of ocean acidification on a 

key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6: 1877–1882  

Comeau S, Jeffree R, Teyssié JL, Gattuso JP (2010a) Response of the Arctic pteropod Limacina 

helicina to projected future environmental conditions. PLoS One 5: e11362  

Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean 

acidification in zooplankton? Glob Change Biol 20: 3377–3385 doi 10.1111/gcb.12582 

Dadon JR, Cidre LL (1992) The reproductive cycle of the thecosomatous pteropod Limacina 

retroversa in the western South Atlantic. Mar Biol 114: 439–442  

Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 

273.15 to 318.15 K. Deep-Sea Res 37: 755–766  



Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of 

carbonic acid in seawater media. Deep-Sea Res 34: 1733–1743  

Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2 

driven ocean acidification radically affects larval survival and development in the 

brittlestar Ophiothrix fragilis. Mar Ecol-Prog Ser 373: 285–294  

Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna 

and ecosystem processes. ICES J Mar Sci 65: 414–432 doi 10.1093/icesjms/fsn048 

Fleury C, Marin F, Marie B, Luquet G, Thomas J, Josse C, Serpentini A, Lebel J-M (2008) Shell 

repair process in the green ormer Haliotis tuberculata: A histological and microstructural 

study. Tissue Cell 40: 207–218  

Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S 

(2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147: 

169–177  

Guo X, Huang M, Pu F, You W, Ke C (2015) Effects of ocean acidification caused by rising CO2 

on the early development of three mollusks. Aquat Biol 23: 147–157 doi 

10.3354/ab00615 

Hendriks IE, Duarte CM, Álvarez M (2010) Vulnerability of marine biodiversity to ocean 

acidification: A meta-analysis. Estuar Coast Shelf S 86: 157–164  

Howes EL, Bednaršek N, Büdenbender J, Comeau S, Doubleday A, Gallager SM, Hopcroft RR, 

Lischka S, Maas AE, Bijma J (2014) Sink and swim: a status review of thecosome 

pteropod culture techniques. J Plankton Res 36: 299–315  

Hsiao SCT (1939) The reproduction of Limacina retroversa (Flem.). Biol Bull 76: 280–303 doi 

10.2307/1537865 

Hunt BPV, Pakhomov EA, Hosie GW, Siegel V, Ward P, Bernard K (2008) Pteropods in 

Southern Ocean ecosystems. Prog Oceanogr 78: 193–221  

Kaehler S, McQuaid C (1999) Lethal and sub-lethal effects of phototrophic endoliths attacking 

the shell of the intertidal mussel Perna perna. Mar Biol 135: 497–503  

Kobayashi HA (1974) Growth cycle and related vertical distribution of the thecosomatous 

pteropod Spiratella (“Limacina”) helicina in the central Arctic Ocean. Mar Biol 26: 295–

301 doi 10.1007/BF00391513 

Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP 

(2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and 

interaction with warming. Glob Change Biol 19: 1884–1896  

Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta‐analysis reveals negative yet variable 

effects of ocean acidification on marine organisms. Ecol Lett 13: 1419–1434  

Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages 

of invertebrates. Mar Ecol-Prog Ser 373: 275–284  

Lalli CM, Gilmer RW (1989) Pelagic snails: The biology of holoplanktonic gastropod mollusks. 

Stanford University Press, Stanford, CA 

Lalli CM, Wells FE (1978) Reproduction in the genus Limacina (Opisthobranchia: 

Thecosomata). J Zool 186: 95–108  

Lebour MV (1932) Limacina retroversa in Plymouth waters. J Mar Biol Assoc UK 18: 123–126  

Li L, Weaver JC, Ortiz C (2015) Hierarchical structural design for fracture resistance in the shell 

of the pteropod Clio pyramidata. Nat Commun 6: 6216 doi doi:10.1038/ncomms7216 

Lischka S, Riebesell U (2012) Synergistic effects of ocean acidification and warming on 

overwintering pteropods in the Arctic. Glob Change Bio 18: 3517–3528  



Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and 

elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: 

mortality, shell degradation, and shell growth. Biogeosciences 8: 919–932 doi 

10.5194/bg-8-919-2011 

Manno C, Morata N, Primicerio R (2012) Limacina retroversa's response to combined effects of 

ocean acidification and sea water freshening. Estuar Coast Shelf S 113: 163–171  

Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front 

Biosci S 4: 1099–1125  

Millero FJ (2007) The marine inorganic carbon cycle. Chem Rev 107: 308–341  

Moran AL (2000) Calcein as a marker in experimental studies newly-hatched gastropods. Mar 

Biol 137: 893–898 doi 10.1007/s002270000390 

Moran AL, Marko PB (2005) A simple technique for physical marking of larvae of marine 

bivalves. J Shellfish Res 24: 567–571  

Onitsuka T, Kimura R, Ono T, Takami H, Nojiri Y (2014) Effects of ocean acidification on the 

early developmental stages of the horned turban, Turbo cornutus. Mar Biol 161: 1127–

1138 doi 10.1007/s00227-014-2405-y 

Paranjape MA (1968) The egg mass and veligers of Limacina helicina Phipps. Veliger 10: 322–

326  

Pierrot D, Lewis E, Wallace D (2006) Co2sys DOS Program developed for CO2 system 

calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National 

Laboratory, US Department of Energy ORNL/CDIAC-105  

Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a 

physiologist's view. Mar Ecol-Prog Ser 373: 203–217  

Redfield AC (1939) The history of a population of Limacina retroversa during its drift across the 

Gulf of Maine. Biol Bull 76: 26–47  

Sato-Okoshi W, Okoshi K, Sasaki H, Akiha F (2010) Shell structure of two polar pelagic 

molluscs, Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma 

antarctica. Polar Biol 33: 1577–1583  

Teniswood CM, Roberts D, Howard WR, Bradby JE (2013) A quantitative assessment of the 

mechanical strength of the polar pteropod Limacina helicina antarctica shell. ICES J Mar 

Sci 70: 1499–1505 doi 10.1093/icesjms/fst100 

Timmins-Schiffman E, O’Donnell MJ, Friedman CS, Roberts SB (2013) Elevated pCO2 causes 

developmental delay in early larval Pacific oysters, Crassostrea gigas. Mar Biol 160: 

1973–1982  

van der Geest M, van Gils JA, van der Meer J, Olff H, Piersma T (2011) Suitability of calcein as 

an in situ growth marker in burrowing bivalves. J Exp Mar Biol Ecol 399: 1–7  

van der Spoel S (1967) Euthecosomata: A group with remarkable developmental stages 

(Gastropoda, Pteropoda). Noorduijn en Zoon, Gorinchem 

Vandemark D, Salisbury JE, Hunt CW, Shellito SM, Irish JD, McGillis WR, Sabine CL, 

Maenner SM (2011) Temporal and spatial dynamics of CO2 air-sea flux in the Gulf of 

Maine. J Geophys Res-Oceans 116 doi 10.1029/2010jc006408 

Waldbusser GG, Brunner EL, Haley BA, Hales B, Langdon CJ, Prahl FG (2013) A 

developmental and energetic basis linking larval oyster shell formation to acidification 

sensitivity. Geophys Res Lett 40: 2171–2176  



Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller 

CA, Gimenez I (2015a) Saturation-state sensitivity of marine bivalve larvae to ocean 

acidification. Nat Clim Change 5: 273–280  

Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller 

CA, Gimenez I, Hutchinson G (2015b) Ocean acidification has multiple modes of action 

on bivalve larvae. PloS One 10: e0128376  

Wang K (2014) The life cycle of the pteropod Limacina helicina in Rivers Inlet (British 

Columbia, Canada). Dissertation, The University of British Columbia, Vancouver 

Wang ZA, Cai W-J (2004) Carbon dioxide degassing and inorganic carbon export from a marsh-

dominated estuary (the Duplin River): A marsh CO2 pump. Limnol Oceanogr 49: 341–

354  

Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous 

calcium carbonate is a precursor phase for aragonite. J Exp Zool 293: 478–491  

White MM, McCorkle DC, Mullineaux LS, Cohen AL (2013) Early exposure of bay scallops 

(Argopecten irradians) to high CO2 causes a decrease in larval shell growth. PLoS One 8: 

e61065 doi 10.1371/journal.pone.0061065 

Zhang T, Ma Y, Chen K, Kunz M, Tamura N, Qiang M, Xu J, Qi L (2011) Structure and 

mechanical properties of a pteropod shell consisting of interlocked helical aragonite 

nanofibers. Angew Chem Int Ed 123: 10545–10549 doi 10.1002/anie.201103407 

 

 

Conflict of interest 

The authors declare that they have no conflicts of interest. 



Fig. 1 Embryonic and larval development of L. retroversa observed via light microscopy. A, 

Fertilized egg with two polar bodies; B, 2-cell stage with polar bodies; C, 4-cell stage; D, 8-cell 

stage; E, blastula; F, early gastrula with blastopore and polar body; G, late gastrula, showing 

formation of shell gland and cilia on the surface; H, trochophore, showing shell field; I, early 

veliger with cup-like structure; J, 1-week old veliger; K, 3-week old veliger; and L, juvenile. 

Abbreviations: bl, blastopore; c, cilia; cs, cup-shaped structure; ec, egg capsule; em, embryo; m, 

mantle; op, operculum; p, protoconch; pa, parapodia; pb, polar body; rm, retractor muscles; s, 

shell; sf, shell field; sg, shell gland; v, velum; vm; visceral mass.  



Fig. 2 Scanning electron micrographs of trochophores early veligers. A, Dorso-lateral view of 

trochophore showing prototroch ciliary band; B, lateral view showing tissue of shell field; C, 

higher magnification of shell field; D, ventro-lateral view showing developing shell field on 

lateral side of trochophore; E, dorso-lateral view of late trochophore showing first cup-shaped 

structure  F, lateral view of early veliger showing extension of cup-shaped structure along the 

lateral side. Abbreviations: cs, cup-shaped structure; pr, prototroch ciliary band; sf, shell field; v, 

velum.  



Fig. 3 Scanning electron micrographs of 1–2 week-old L. retroversa veliger. A, Ventral view of 

1 week-old veliger with closed aperture; B, lateral view of 1 week-old veliger showing velum 

inside the shell; C, Ventral view of 2 week-old shell; D, Cross section of growth margin; E, 

Lateral view of veliger shell showing two distinct calcification regions (white arrows); F, Higher 

magnification of growth margin. Abbreviations: op, operculum; s, shell; v, velum.  



Fig. 4 Calcein-stained embryonic and larval stages of L. retroversa under normal light (left 

panels), fluorescent light (right panels), and with confocal laser scanning microscopy (both 

panels, C). A, late-stage gastrula with shell gland (1 d after 1 h in calcein); B, trochophore with 

shell field (3 d after 1 h in calcein); C, confocal micrographs under full light (left) and 

fluorescent light (right) showing live trochophore and shell field (40x) (2 d after 2 h in calcein); 

D, larvae stained as a trochophore (1 h in calcein) then allowed to develop into a veliger (10 d 

after staining); E, Time lapse (time stamp upper right) of one week-old veliger (5 d after 1 h in 

calcein) showed staining of mantle (black asterisk) moving with the visceral mass inside the 

shell. Abbreviations: sf, shell field; sg, shell gland. 



Fig. 5 Calcein-stained veliger and juvenile of L. retroversa under fluorescent light in ventral 

view. A, 3 week-old veliger (immediately after 1 h in calcein); B, 3 week-old veliger (8 d after 1 

h in calcein); C, Juvenile (14 d after 1 h in calcein).   



 

Fig. 6 Percent survival (mean ± SE) of L. retroversa embryos and over time with three different 

CO2 exposure conditions during Experiment 2 (n for each treatment and time point reported in 

Table 3). Letters and Roman numerals indicate significant differences between treatments at 

each individual day (Welch’s one-way ANOVA with Dunnett’s T3 post-hoc comparison, 

significance assessed at P < 0.05).  



Fig. 7 Developmental progression of L. retroversa embryos and larvae from Experiment 2 on 

days 1, 2 and 6 of exposure to two different CO2 levels. Percentage of surviving larvae at early 

gastrula (non-motile; black), late gastrula (motile; dark grey), trochophore (light grey), and 

veliger (white) stage at each time point suggest a trend towards a developmental delay with a 

statistically significant difference on days 1 and 6 (Pearson Chi-Square test, significance 

assessed at P < 0.05).  



Table 1 Observed timing of developmental stages of Limacina retroversa in laboratory culture at 

8° C. 

Stage Time 

spawning 0 h 

2-cell 4 h 

4-cell 6 h 

8-cell 9 h 

16-cell 11 h 

blastula 16 h 

gastrula 24–72 h 

hatching 3 d 

trochophore 3–6 d 

veliger 6–7 d 

juvenile 1 mo 

reproductive adult 3 mo 

life span 6 mo 

  



Table 2 Carbonate chemistry parameters including salinity, pH, DIC and TA were measured and 

used to calculate aragonite saturation state (ΩAr) and partial pressure of CO2 in the acidification 

experiments using the software CO2SYS. DIC and TA represent starting conditions, while pH and 

salinity were measured at each time point. 

Experiment 1  

Treatment Salinity pH  ± SD DIC TA ΩAr pCO2 

Ambient 33.5 8.02 ± 0.018  2021.2 2176.4 1.73 380.5 

800 ppm 33.5 7.75 ± 0.010 2099.0 2161.7 0.98 753.5 

1200 ppm 33.5 7.64 ± 0.021 2081.8 missing 0.73 993.2 

 

Experiment 2 

Treatment Salinity pH ± SD DIC TA ΩAr pCO2 

Ambient 33 8.01 ± 0.012 2068.9 2195.0 1.50 465.7 

800 ppm 33 7.71 ± 0.014 2145.0 2193.6 0.90 854.9 

1200 ppm 33 7.58 ± 0.013 2188.3 2191.5 0.63 1262.2 

  



Table 3 Percent survival (mean ± SE) of L. retroversa embryos and larvae in two independent 

experiments, each with three CO2 exposure conditions. Each day (D) and exposure condition were 

represented by three independent replicates, except where only two replicates were available 

(indicated by shading). Results from Welch’s one-way ANOVAs indicate the effect of OA 

treatment on mean percent survival of L. retroversa embryos and larvae. 

Experiment 1   

Treatment 

Day 
Ambient 800 ppm 1200 ppm F Sig. 

D 1 95.0 ± 3.8 96.6 ± 2.2  55.8 ± 9.8 3.937 0.031 

D 2 56.6 ± 18.0 37.5 ± 17.5   42.5 ± 18.4 3.118 0.756 

D 3 71.6 ± 12.0 72.5 ± 9.5 45.0 ± 5.7 3.434 0.165 

D 6 27.2 ± 3.8   35.5 ± 3. 2.77 ± 0.5 1.687 0.026 

Experiment 2   

Treatment 

Day 
Ambient 800 ppm 1200 ppm F Sig. 

D 1 94.2  ± 3.6  94.2 ± 3.0   79.2 ±  4.4   3.651 0.134 

D 2 87.5 ± 3.8   89.2 ± 2.2   70.8 ± 3. 0 3.807 0.025 

D 3 64.2 ± 3.0 51.7 ± 2.2   38.3 ± 8.2   3.518 0.068 

D 6 59.2 ± 1.7 41.9 ± 2.7 30.7   ± 2.7 3.780 0.004 
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Culturing observations 

Although there were no specific feeding experiments conducted as part of this study, it is 

presumed that Limacina retroversa individuals were eating at all life stages. It is implausible that 

eggs could have reached six months in the laboratory without sufficient nourishment during both 

veliger and adult stages. Surviving organisms appeared healthy and active throughout their six 

month captivity. Since the water was 1-µm filtered prior to the addition of thecosomes and 

phytoplankton, there was nothing other than Rhodomonas lens, Isochrysis sp., clone T-Iso and 

Heterocapsa triquetra in the cultures, suggesting that these are appropriate food sources. The 

thecosomes (adults and juveniles) had dark guts, also supporting the feeding observation. We 

could not determine from these observations, however, whether it was multiple species being fed 

on or only one. Furthermore, we have no estimates of ingestion rate. We believe a large portion 

of the feeding was done via ciliary action as no mucous webs were directly observed. That does 

not mean they were never present. Typical adult behavior was to swim upwards in the water 

column then drift with parapodia extended downwards. Sometimes, in static culture, adults were 

seen to be neutrally buoyant or rising in the water column without swimming. No webs were 

superficially visible at this time, and although ciliary action and wing position could possibly 

explain the phenomenon, we did no tests to determine whether this was the cause of the observed 

behavior. Apparently healthy individuals were also seen resting on the bottom of the jar with 

parapodia extended. Mating and spawning were not directly observed during the culture period.  

 

  



Table ESM 1 Average (± SD) dimensions (μm) and area (μm2) of L. retroversa egg capsule, 

embryos and trochophores, as well as veliger and juvenile shells (μm).  

 

Stage # Egg Capsule Embryo 

Length Width Area Length Width Area 

1-cell 6 116 ± 13 98 ± 9 8777 ± 1457 81 ± 5 80 ± 5 5029 ± 629 

2-cell 4 117 ± 3 94 ± 5 8594 ± 80 100 ± 6 68 ± 3 5620 ± 380 

4-cell 13 116 ± 7 97 ± 5 8503 ± 736 104 ± 8 86 ± 6 5982 ± 704 

8-cell 4 120 ± 11 94 ± 5 8700 ± 679 102 ± 10 74 ± 5 5649 ± 1134 

blastula 10 115 ± 4 99 ± 5 8777 ± 571 90 ± 3 81 ± 5 5606 ± 618 

gastrula 15 117 ± 7 93 ± 7 8304 ± 803 80 ± 7 72 ± 6 4411 ± 765 

 
Length Width Area 

Shell gland 

trochophore 20 77 ± 7 63 ± 5 4029 ± 607 850 ± 251 

 

 Shell 

diameter Shell height 
Shell area 

veliger (one week) 10 103 ± 9 81 ± 8 7357 ± 1245 

veliger (two week) 15 98 ± 6 73 ± 6 5985 ± 622 

 
# of whorls 

Shell diameter 

juvenile 15 3.2 ± 0.37 556 ± 88 
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Table ESM 2 Distribution of L. retroversa (percentage, mean ± SE) developmental stages during two independent experiments, each 1 

with three CO2 exposure conditions. Each day (D) and exposure condition were represented by three independent replicates, except 2 

where only two replicates were available (indicated by shading). At the start of the experiment all individuals were in the gastrula 3 

stage (Gast.) and over time they transitioned to late gastrula (Late Gast.) characterized by shell gland formation, then to a trochophore 4 

(Troch.) and occasionally to a veliger (V.). The mortality during the experiment is documented as the percentage of dead individuals 5 

(Dead). Results from Pearson Chi-Square (Sig.) tested for the effect of OA treatment on developmental stage distribution for L. 6 

retroversa embryos and larvae, excluding the dead individuals and combining trochophore and veliger stages into one classification. 7 

 Experiment 1 

Treatment Ambient 800 ppm 1200 ppm Stats 

Stages 

Day 
Gast. 

Late 

Gast. 
Troch. V. Dead Gast. 

Late 

Gast. 
Troch. Dead Gast. 

Late 

Gast. 
Troch. Dead Sig. 

D 1 
95.8 ± 

3.0 
-- -- -- 

5.0 ± 

3.8 

96.7 ± 

2.2   
-- -- 

3.3 ± 

2.2 

57.5 ± 

8.8  
-- -- 

44.2 ± 

9.8 
-- 

D 2 
65.0 ± 

16.6   
-- -- -- 

43.3 ± 

18.0 

37.5 ± 

17.5   
-- -- 

62.5 ± 

17.5 

42.5 ± 

18.4  
-- -- 

57.5 ± 

18.4 
-- 

D 3 
51.7 ± 

2.2   

13.3 ± 

2.2   

6.7 ±  

4.4  
-- 

28.3 ± 

12.0 

52.5 ± 

5.2   

10.8 ± 

0.8 

0.8 ± 

0.8   

27.5 ± 

9.5 

40.0 ± 

2.9 

5.0 ± 

2.9 
-- 

55.0 ± 

5.8 
0.020 

D 6 -- 
6.0 ± 

1.0   

21.3 ± 

2.9   
-- 

72.8 ± 

3.9 
-- 

4.4 ± 

4.4 

31.1 ± 

0.8 

64.4 ± 

3.6 
-- 

2.1 ± 

0.8 

0.7 ± 

0.4 

97.2 ± 

0.6 
> 0.001 

  

Experiment 2  

Treatment Ambient 800 ppm 1200 ppm Stats 

Stages 

Day 
Gast. 

Late 

Gast. 
Troch. V. Dead Gast. 

Late 

Gast. 
Troch. Dead Gast. 

Late 

Gast. 
Troch. Dead Sig. 

D 1 
66.7 ± 

5.8 

17.5 ± 

2.5   

10.0 ± 

2.5   
-- 

5.8 ± 

3.6 

70.0 ± 

3.8   

14.7 ± 

3.6  

5.8  ± 

3.6 

5.8 ± 

3.0 

62.5 ± 

2.5   

4.2 ± 

2.2 

3.3 ± 

0.8 

20.8 ± 

4.4 
0.035 

D 2 
23.3 ± 

8.8  

38.3 ± 

10.2   

20.8 ± 

6.7   
-- 

12.5 ± 

3.8 

22.5 ± 

1.4   

51.7 ± 

3.0 

16.7 ± 

3.3  

10.8 ± 

2.2 

25 ± 

2.5   

34.2 ± 

5.8 

7.5 ±  

0 

29.2 ± 

3.0 
0.080 

D 3 
6.7 ± 

3.0 

35.8 ± 

7.3  

25.0 ± 

2.9 
-- 

35.8 ± 

3. 

6.7 ± 

1.7   

30.0 ± 

5.2   

15.0 ± 

4.3 

48.3 ± 

2.2 

2.5 ± 

1.4 

21.7 ± 

3.0   

12.5 ± 

5.2   

61.7  ± 

8.2 
0.761 

D 6 
6.0 ± 

1.7 

6.0 ± 

0.6   

45.3 ± 

3.1   

1.0 ± 

0.1 

40.8 ± 

1.7 

0.8 ± 

0.6   

1.9 ± 

0.7  

39.2 ± 

4.0 

58.1 ± 

2.7 

6.9 ± 

2.1 

2.4 ± 

1.1 

21.5 ± 

2.2 

69.3  ± 

2.7 
> 0.001 
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