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1) Why Image Analysis? 

Biological images contain a wealth of objects and patterns, which may convey information about 
underlying mechanism in biology.  Take a look at the following microscopy images: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The left microscopy image shows a field of view of tissue-culture cells.  One can ask: how many 
cells are there in this field of view?  What is the average size?  How much DNA is in each of the 
cells?  How are the microtubule and actin cytoskeletons organized spatially?  For the movie of the 
speckled spindle on the right, one can ask:  What is the distribution of polymer mass in the spindle?  
What is the flux rate?  Does it depend on the position along the spindle?  Where is monomer getting 
incorporated and lost? 
 
Image processing and analysis provides a means to extract and quantify objects and patterns in 
image data and obtain answers to meaningful biological questions.  It offers two advantages over 
traditional more manual methods of analysis:   1) Human vision, while highly sensitive, can be 
easily biased by pre-conceived notions of objects and concepts; automated image analysis provides 
an unbiased approach to extracting information from image data and testing hypotheses.  2)  Once 
an image-analysis routine is devised, it can be applied to a large number of microscopy images, 
facilitating the collection of large amounts of data for statistical analysis. 
 

Image Analysis Strategies 

Image analysis involves the conversion of features and objects in image data into quantitative 
information about these measured features and attributes.  Microscopy images in biology are often 
complex, noisy, artifact-laden and consequently require multiple image processing steps for the 
extraction of meaningful quantitative information.  An outline of a general strategy for image 
analysis is presented below: 
 
1)  The starting point in image analysis typically involves a digital image acquired using a CCD 
camera.  Raw microscopy images obtained on digital CCD cameras are subject to various 
imperfections of the image acquisition setup, such as noise at low light levels, uneven illumination, 
defective pixels, etc…  We often need to first process the image to correct for such defects and also 



to enhance the contrast to accentuate features of interest in the image for subsequent analysis.  In 
section II, we introduce various image transformation and spatial filtering techniques that can be 
used for this purpose. 
 
2)  Having corrected artifacts and enhanced contrast in the images, we can apply various 
computational techniques to extract features and patterns from the images.  In the following section, 
we describe various tools of morphological image processing and image segmentation that can be 
used for this purpose.   
 
3)  After biological important features have been segmented from images, we can then derive 
quantitative information from these features and objects.  MATLAB provides a set of tools that can 
be used to measure the properties of regions; the matrix representation of images in MATLAB also 
allows for easy manipulation of data and calculation of quantities from microscopy images. 
 
Here is an outline of the process: 
 

1) Correct image 
acquisition artifacts, 
by contrast 
adjustment and 
spatial filtering 

2) Extract features using 
segmentation and 
morphological operations 

3) Quantify image 
data, measure 
properties of image 
features 



Layout of this tutorial 
The goal of this tutorial is to take you through the aforementioned process of extracting data from 
raw microscopy images in MATLAB.  In Section I, you will learn to load and save images and 
convert between data types in MATLAB.  You will also go through a simple example of 
segmentation and data extraction from segmentation, using as an example an image of rice grains 
over a dark background. 
 
The simple example of segmentation covered in Section I will highlight some image artifacts and 
imperfections that will prevent accurate extraction of data from raw images.  Sections II-IV cover 
various techniques that can correct for defects in either raw images or segmented images.  Section II 
describes techniques of contrast adjustment, which can be used to improve the contrast of features 
of interest to facilitate the segmentation process.  Section III discusses the basic principles and some 
simple applications of spatial filtering.  Spatial filters serve many different purposes in image 
anaylsis, from smoothing to sharpening boundaries to detecting edges.  Section IV discusses 
morphological image processing, which is a powerful technique for correcting defects in segmented 
images.  Each section discusses both the basic math and ideas behind these techniques, and also 
gives practical implementation of the tools in MATLAB. 
 
Section V describes two additional segmentation techniques – 1) segmentation based on edge 
detection, and 2) segmentation by the watershed algorithm.  These techniques are complementary to 
threshold-based segmentation and may become useful for different types of images.  Section V then 
closes with a set of problems based on biological images that give you the opportunity to review all 
the techniques you have learnt and also integrate them in a simple image processing routine.  They 
are not easy, but you are strongly encouraged to try them and perhaps bang your heads against the 
wall in the process!  They will probably give you a good taste of what a real-life image anaylsis 
problem is like.  Good luck! 
 



2) Basics 

 
In this section we present the basics of working with images in Matlab. We will see how to read, 
display, write and convert images. We will also talk about the way images are represented in 
Matlab and how to convert between the different types. 
 
The Matlab command for reading an image is 
 
imread('filename') 
 
Note that we suppress the output with a semicolon, otherwise we will get in the output all the 
numbers that make the image. 'filename' is the name of a file in the current directory or the 
name of a file including the full path. Try 
 
>> f = imread('chest-xray.tif'); 
 
We now have an array f where the image is stored 
 
>> whos f 
  Name      Size                    Bytes  Class 
 
  f       494x600                  296400  uint8 array 
 
Grand total is 296400 elements using 296400 bytes 
 
f is an array of class uint8, and size 494x600. That means 494 rows and 600 columns. We can 
see some of this information with the following commands 
 
>> size(f) 
ans = 
 
   494   600 
 
>> class(f) 
ans = 
 
uint8 
 
We will talk later on about the different image classes. 
 
Sometimes it is useful to determine the number of rows and columns in an image. We can achieve 
this by means of 
 
>> [M, N] = size(f); 
 
To display the image we use imshow 
 



>> imshow(f) 
 
You will get a window similar to this 
 
 

 
 
Note that in the figure toolbar we have buttons that allow us to zoom parts of the image. The syntax 
imshow(f, [low high])displays all pixels with values less than or equal to low as black, 
all pixels with values greater or equal to high as white. Try 
 
>> imshow(f,[10 50]) 
 
Finally, 
 
>> imshow(f,[]) 
 
sets the variable low to the minimum value of array f and high to its maximum value. This is 
very useful for displaying images that have a low dynamic range. This occurs very frequently with 
16-bit images from a microscope. 
 
We can also display portions of an image by specifying the range 
 
>> imshow(f(200:260,150:220)) 
 
Another matlab tool available to display images and do simple image manipulations is imtool. 
Try 
 
>> imtool(f) 

 
In the figure window we have now available the following tools: overview, pixel region, image 
information, adjust contrast and zoom. Try them. 
 



Images can be written to disk using the function imwrite. Its format is 
 

imwrite(f, 'filename') 

 
with this syntax, filename must include the file format extension. Alternatively 

imwrite(f, 'filename', format) 

saves f using format. For example 
 
>> imwrite(f, 'test', 'jpeg', 'quality', 25) 
 
In the help you can find more information about available formats and their options. 
 

Image types, data classes and image classes 

 
There are different image types and image classes available in MATLAB.  The two primary image 
types you will be working with are as follows  

• Intensity images 
o uint16 [0, 65535] (CCD cameras on microscopes)  
o uint8[0, 255]   (From your standard digital camera) 
o double [-10308, 10308] 

• Binary images (black and white) 
o logical, 0 or 1 

 
Raw images typically come in the form of an unsigned integer (uint16 denotes 16-bit unsigned 
integer, and uint8 denotes 8-bit unsigned integer).  However floating-point operations 
(mathematical operations that involve a decimal point, such as log(a))  can only be done with 
arrays of class double.  
 
Hence, to work on a raw image, first convert it from uint16 or uint8 to double using the 
double function: 
 
>> f = imread('actin.tif'); 
>> g = double(f); 
 
Now type  
 
>> whos; 
 
to see the different data types associated with each variable.  Note that while the data type changes, 
the actual numbers after the conversion remain the same.   



 
Many MATLAB image processing operations operate under the assumption that the image is scaled 
to the range [0,1].  For instance, when imshow displays an double image, it displays an intensity 
of 0 as black and 1 as white.  You can automatically create a scaled double image using 
mat2gray:  
 
>> h = mat2gray(g); 
 
Question:  How would you write a function to manually scale a double image? 
Certain image processing commands only work with scaled double images. 
 
Finally, we can convert an intensity image into a binary image using the command im2bw(f, 
T), where T is a threshold in the range [0, 1]. Matlab converts f to class double, and then sets 
to 0 the values below T and to 1 the values above T. The result is of class logical. See the 
following example. 
 
We wish to convert the following double image 
 
>> f = [1 2; 3 4] 
f = 
 
     1     2 
     3     4 
to binary such that values 1 and 2 become 0 and the other two values become 1. First we convert it 
to the range [0, 1] 
 
>> g = mat2gray(f) 
g = 
 
         0    0.3333 
    0.6667    1.0000 
 
We can convert the previous image to a binary one using a threshold, say, of value 0.6:   
 
>> gb = im2bw(g, 0.6) 
gb = 
 
     0     0 
     1     1 
 
Note that we can obtain the same result using relational operators 
 
>> gb = f > 2 
 
gb = 
 
     0     0 
     1     1 
 



Binary images generated by thresholding often form the basis for extracting morphological features 
in microscopy images.  In the next section, we will extract some basic quantitative information 
about objects in an image by first using thresholding to generate a binary image and then using the 
regionprops command to extract quantitative information from the binary image. 
 
Question:  How might you represent a color image? 
 

Basic Segmentation using Thresholding 

 
Many biological images comprise of light objects over a constant dark background (especially those 
obtained using fluorescence microscopy), in such a way that object and background pixels have 
gray levels grouped into two dominant modes.  One obvious way to extract the objects from the 
background is to select a threshold T that separates these modes: 
 

g(x,y)  = 1 if f(x,y) > T 
   = 0 otherwise 
 
where g(x,y) is the thresholded binary image of f(x,y).  We can implement the thresholding 
operation in MATLAB by the following function:  

g = im2bw(f,T) 

The first argument f gives the input image, and the second argument T gives the threshold value.   

Image histograms  

We need to choose a threshold value T that properly separates light objects from the dark 
background.  Image histograms provide a means to visualize the distribution of grayscale intensity 
values in the entire image.  They are useful for estimating background values, determining 
thresholds, and for visualizing the effect of contrast adjustments on the image (next section).  The 
matlab function to visualize image histograms is imhist 

>> f = imread('chest-xray.tif'); 
>> imhist(f); 
 
The histogram has 256 bins by default. The following command makes 20 bins 
 
>> imhist(f,20); 
 

 

 



 

 

A good value for T can be obtained by visually inspecting the image histogram obtained using the 
imhist command: 

>> im = imread('rice.png'); 

 

>> imhist(im); 

Based on the histogram, pick a grayscale value manually that separates the light rice grains from the 
dark background.  Then threshold the image and display the results. 

MATLAB provides a function graythresh that automatically computes a threshold value: 

T = graythresh(im) 

where im is the input image and T is the resulting threshold.  graythresh calculates the 
threshold value by essentially maximizing the weighted distances between the global mean of the 
image histogram and the means of the background and foreground intensity pixels. 
 
 
EXAMPLE 
 
In this example, we threshold the image of rice grains opened above: 

>> im = imread('rice.png'); 
>> im = mat2gray(im); 

Calculate the threshold value: 



>> level = graythresh(im); 

and create a new binary image using the obtained threshold value: 

 
>> imb = im2bw(im,level); 

Note that the thresholding operation segments the rice grains quite well.  However, a problem in 
this image is that the rice grains near the bottom of the image aren’t segmented well – the 
background is uneven and is low at the bottom, leading to incorrect segmentation.  We’ll see a way 
to correct for this uneven background using image processing later. 
 
Using the binary image, we can then calculate region properties of objects in the image, such as 
area, diameter, etc…  An object in a binary image is a set of white pixels (ones) that are connected 
to each other.  We can enumerate all the objects in the figure using the bwlabel command: 

 [L, num] = bwlabel(f) 

where L gives the labeled image, and num gives the number of objects.  To label the binary image 
of the rice grains, type: 
 
>> [L, N] = bwlabel(imb); 
 
Now look at the labeled image L using imtool.  What are the values of the objects in the pixels?  
Adjust the contrast to see the range of intensity values in the image.  
Once the image has been labeled, use the regionprops command to obtain quantitative 
information about the objects: 

D = regionprops(L, properties) 

There’s a lot of useful statistical information about objects that can be extracted using 
regionprops.  Here’s a list: 
 
'Area' 'EulerNumber' 'Orientation' 

'BoundingBox' 'Extent' 'Perimeter' 

'Centroid' 'Extrema' 'PixelIdxList' 

'ConvexArea' 'FilledArea' 'PixelList' 

'ConvexHull' 'FilledImage' 'Solidity' 

'ConvexImage' 'Image' 'SubarrayIdx'

'Eccentricity' 'MajorAxisLength'  

'EquivDiameter' 'MinorAxisLength'  

 
 



Extract the area and perimeter of individual objects in the labeled image as follows: 
 
>> D = regionprops(L, 'area', 'perimeter'); 
 
 
NOTE: 
 
 The information in D is stored in an object called a structure array.  A structure array is a variable 
in MATLAB that contains multiple fields for storage of information.  You can access the field 
information in D as follows: 
 
>> D 
 
D =  
 
151x1 struct array with fields: 
    Area 
    Perimeter 
 
Access an individual element in the structure array by referring to its index in parenthesis: 
 
 
>> D(1) 
 
ans =  
 
         Area: 145 
    Perimeter: 58.2843 
 

Access an individual field within in the structure array by referring to its name after a dot (.) .  For 
instance: 
 
>> D(1).Area 
 
You can assign values to structure arrays using the assignment operator (=): 
 
>> z = D; 
>> z(1).Area = 888; 
 
And define new fields by using a new field name during assignment: 
 
>> z(1).test = 1 
 
To get an array of the areas from the structure D, type:  
 
>> w = [D.Area] 
 
You can get the mean, standard deviation and the full histogram of the Areas from w as follows: 



 
>> meanarea = mean(w) 
>> stdarea = std(w) 
>> hist(w) 
 
Now look at the histogram.  Did the histogram look the way you expected?  How do you account 
for the features in the histogram? (Why are there so many values less than 50? Why are there values 
around 450? Why is there a spread of values between 50 and 200?) 
 
 

Metamorph Stack Files  
 

One popular format for microscopy movies produced by Metamorph are .stk files, which are 
similar to tiff files, but contain additional information like the exposure time, timestamp, stage 
position, etc. François Nedelec has created a matlab function called stkread extracts the 
information from the files (found in the materials directory). Try this: 
 
>> S = stkread('yeastcdc42.stk') 
S =  
 
1x31 struct array with fields: 
    filename 
    NewSubfiletype 
    width 
    height 
    bits 
    photo_type 
    info 
    x_resolution 
    y_resolution 
    resolution_unit 
    software 
    datetime 
    MM_private1 
    MM_stack 
    MM_wavelength 
    MM_private2 
    data 
 
S is a structure array with the number of elements equal to the number of frames in the stack. The 
images are stored in the field data. To see the first frame we can do 
 
>> imshow(S(1).data,[]) 
 
the image acquisition times (in ms) are stored in the field MM_stack. We can extract it for all 
frames using 
 
for index = 1:length(S) 



   S(index).timestamp=S(index).MM_stack(4)-S(1).MM_stack(4); 
end 
 
 

EXERCISES 
 
1. Load the images pollen.tif and bone-scan-GE.tif. Display them with imtool. Look 
at the pixel values in some area. Convert them into double. Display and look at the values again.  
 
2.  Use thresholding and regionprops to count the nuclei in the following images:  
 

nuclei.tif 
nuclei2.tif 

 
How many nuclei are there in the picture? 
What is the average area of a nucleus? 

 
Which image was easier? Why? How can the segmentation be improved?  We’ll see 
different ways shortly. 

 
Try to write your programs in a generic fashion. 
Comment and maybe even include functions. 
We will expand the program you are writing now in future exercises. 
Good habits now will make changing the program later easy! 
3a. Eliminate “bad” rice granules from the rice.png picture. 
Use regionprops to identify the rice you want to eliminate. 
Use the find function to change eliminate these grains from the labeled image. 
(You will probably want to write a loop that goes through each object in the labeled file) 
Compare the original image to your new image (imshow and hist). 
How well did you do?  Qualitatively, how many real grain got eliminated/how many bad grains 
remain? 
b. Relabel your resulting image from 3a so that your objects are label 1 to total objects.  
Compare the mean and std of the area of these object versus the original objects. 
c. Now calculate the total intensity of each rice grain.  You will have to use a combination of 
the original rice image and your new labeled image. 
 
 



3) Contrast adjustments 

 
Often, images have a low dynamic range and many of its features are difficult to see. We will 
present different intensity transformations that will improve the appearance of the images.  
Improving the appearance of an image does not merely serve an aesthetic role – often, it can help 
improve the performance of image segmentation algorithms and feature recognition.  
 
During contrast adjustment, the intensity value of each pixel in the raw image is transformed using 
a transfer function to form a contrast-adjusted image.  The most common transfer function is the 
gamma contrast adjustment: 
 

 
 
Here low_in and low_high give the low and high grayscale intensity values for the contrast 
adjustment, and gamma gives the exponent for the transfer function. 
 
The basic matlab function for contrast adjustment is imadjust. It has the syntax: 
 
g = imadjust(f,[low_in high_in],[low_out high_out],gamma) 
 
Without the optional arguments (g = imadjust(f)), the output image has 1% of the data in f 
is saturated at low and high intensities. 
 
Try the following commands (negative image) 
 
>> f = imread('chest-xray.tif'); 
 
>> imshow(f) 
 
>> g1 = imadjust(f); 
 
>> imshow(g1) 
 
>> g2 = imadjust(f, [0 1], [1 0]); 
 
>> figure,imshow(g2) 
 



How does changing the value of gamma affect the image?  What types of images are different 
values of gamma good for? 
 
EXERCISE 
 
Check out the DNA and tubulin staining of these mammalian cancer cell lines: 
 

U2OS Tubulin.tif 
U2OS Dapi.tif 

 
Find also the maximum and minimum of the images, and try to apply different gamma adjustments 
to the images.  What features of the images are accentuated during each transformation? 
 
 
The negative of an image can be obtained with 
 
>> g = imcomplement(f); 
 
Try these other commands 
 
>> g3 = imadjust(f, [0 0.2], [0 1]); 
>> figure,imshow(g3) 
>> g4 = imadjust(f, [ ], [ ], .2); 
>> figure,imshow(g4) 
 
Two other useful intensity transformations are the logarithmic and contrast-stretching. They can be 
implemented in matlab with the functions: 

g = c*log(1+double(f))  
g = 1./(1+(m./(double(f) + eps)).^E) 

In the following figure we can see the shape of the contrast-stretching transformation.  The value of 
the threshold given by m and the steepness of the threshold is given by E 

 
 
In the limiting case of E >> 1, the image is thresholded at the intensity m. Try the following 
commands 
 
>> f = imread('spectrum.tif'); 



 
>> imshow(f) 
 
>> g = im2uint8(mat2gray(log(1+double(f)))); 
 
>> figure, imshow(g) 
 
 
EXERCISES 
 
1. Create a function that does a contrast stretching transformation for different values of m and E. 
Apply it to spectrum.tif.  Also try a logarithmic transformation. 
 
2. Load the images pollen.tif and bone-scan-GE.tif.  Display them with imtool. 
Transform the images and display them again. 
 
 



4) Spatial Filtering 

A large variety of image processing tasks can be accomplished by a technique called spatial 
filtering.  Spatial filtering involves a mask, consists of an array of values (a-i) and has a center 
(gray): 
 

a b c
d e f 
g h i 

 
The mask is placed on the image of interest: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and translated across all possible pixel positions on the image.  A new (filtered) image is produced 
by replacing the intensity value at the center by a linear combination of the intensity values of the 
center pixel and all neighboring pixels covered by the mask.  The coefficients (a-i) in the mask 
array give the weights of each pixel in the linear combination.  Here is an example: 

MASK 



 
Filters can perform many different functions.  The function of the filter is essentially determined by 
the value of the mask coefficients (a-i).  In this tutorial, we consider primarily two classes of filters:  
1) Smoothing filters, which reduce noise in an image, and 2) edge detection (or derivative) filters, 
which can detect object borders. 
  
The basic command in matlab is: 
 

g = imfilter(f, w) 
 
The toolbox supports a number of predetermined 2-D linear spatial filters. The command to 
generate them is fspecial: 
 

w = fspecial(type, parameters) 
 



 
 
The best way to get an idea for what a given filter is doing is to look at its shape.   
 

Smoothing filters 

 
The following is a 3x3 average filter: 
 

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

 
which can be obtained using the following command: 
 



>> fspecial('average',3) 
The average filter replaces a value at the center of the mask by an average of all grayscale intensity 
values in the mask. 
 
The average filter tends to smooth out sharp image features smaller than the size of the filter.  It is 
important to pick a filter size that smooths out the noise in your image, but at the same time 
preserves the features of interest.   
 
In the following example we will apply an average filter of size 31 to a pattern and see the results of 
using different options.  
 
>> f = imread('original_test_pattern.tif '); 
>> f2 = im2double(f); 
 
>> imshow(f2) 
>> w = ones(31); 
>> gd = imfilter(f2, w); 
>> figure,imshow(gd, []) 
 
Note the presence of blurring at the image boundaries.  When the filter reaches a boundary, it does 
not have enough pixel information to filter near the image boundaries.  By default, MATLAB pads 
the boundaries of the image with zeros and runs the filter across this expanded image, giving rise to 
the blurring observed.  It is possible to specify alternate padding conditions.  For instance,  try the 
options ‘replicate’ or ‘symmetric’ in the filtering: 
 
>> gd2 = imfilter(f2, w, 'symmetric'); 
>> figure,imshow(gd2, []) 
 
A Gaussian filter is one that has peak at the center of the mask, and has a Gaussian decay away 
from center.  Check out, for instance: 
 
fspecial(‘gaussian’, 10, 5) 
 
The Gaussian filter also performs averaging, but performs a weighted average to give more 
emphasis on pixels near the center of the mask.  The Gaussian filter is more commonly used for 
smoothing than the average filter; it is radially symmetric and is hence less likely to introduce 
image artifacts such as sharp directional discontinuities. 
 
GENERAL RULE #1:  In general, the sum of all values in mask for a smoothing filter must equal 
one.  Why? 
 
 

Edge detection filters 

 
Let’s take a look at the Prewitt filter: 
 
 



>> f = fspecial('prewitt') 
 

1 1 1 
0 0 0 
-1 -1 -1

 
What does it do?  Where does it give maximum contrast?  Try out the filter on the rice grain 
example of Section I.  Where is the grayscale intensity maximum?  minimum?  zero?  
 
GENERAL #2:  Generally speaking, a filter provides maximum contrast in regions of the image 
that resemble itself. 
 
Now flip the filter around 90 degrees by transposition: 
 
>> f = f’ 
 
Try applying this filter to the rice grain example again. 
 
The Prewitt filter and the Sobel filter belong to a class of filters called ‘first-derivative’ filters, 
which essentially calculate the slope of grayscale intensities in an image in a given direction.  They 
give a maximum value (or minimum value) at regions with discontinuities in grayscale values and 
are frequently used in edge detection.  In section V, we will combine use edge detection as a means 
to recognize closed boundaries of objects in an image, and use that information to segment the 
image. 
 
GENERAL RULE #3:  In general, the sum of all values in mask for a smoothing filter must equal 
zero.  Why? 
 

Laplacian filter 

 
>> f = fspecial('laplacian',0); 
 
The Laplacian filter looks like this: 
 

1 1 1 
1 -8 1 
1 1 1 

 
What features does this filter pick up?  The sum of all values in this mask is zero.  What does this 
mean?  Run this filter on moon.tif.  Where do the regions of maximum contrast / minimum 
contrast occur? 
 
The Laplacian filter mathematically calculates the local curvature of grayscale intensities in an 
image and serves as a method for picking up edges that is independent of edge orientation.  Use the 



imtool command to examine the edges of the filtered image of moon.tif.  Note that when you 
approach a the edge of a bright object from the outside, the pixel intensity values first increase, then 
decrease.  This change reflects the change in curvature expected along a discontinuity between a 
bright object and a dark background. 
 
Now form a new image by subtracting the laplacian filtered image from the original image of 
moon.tif.  How does the resultant image differ from the original?  This combination of filtering 
operations is a commonly used technique and is referred to as an ’unsharp mask’.  Why does it 
produce this effect?  HINT:  Think about what happens along an edge when you do the image 
subtraction. 
 
 

Median filter 

 
All the previous filters are called linear, because the final pixel value is the result of a linear 
combination of pixel values from the original image. Nonlinear filters, on the contrary, assign 
nonlinear combinations of the pixel values to the filtered image. MATLAB has functions to 
implement nonlinear filters, but we won’t study them in detail. We consider, an important nonlinear 
filter, the median filter, which has its own implementation in matlab. Matlab also has a function to 
generate noise in an image. We will see in the following example how to corrupt an image (with 
imnoise) and how to try to restore it with a median filter. 
 

g = medfilt2(f, [m n]) 
 
Try the following 
 
>> f = imread('ckt-board-orig.tif'); 
>> imshow(f) 
>> fn = imnoise(f, 'salt & pepper', 0.2); 
>> figure, imshow(fn) 
>> gm = medfilt2(fn); 
>> figure, imshow(gm) 
 

EXERCISES 

 
1. Try adding different types of noise to ckt-board-orig.tif. Look in the help for the 
different options in imnoise.  Then choose the appropriate filter to remove the noise. 
 
2. Repeat for pollen.tif. 
 



 

5) Morphological image processing 

Mathematical morphology is a powerful tool that can be used to extract features and components 
from an image.  It is often used to pre-process or post-process images to facilitate analysis.  In 
morphology, a small shape (structuring element) is translated across the image during the course of 
processing.  Certain mathematical logic operations are performed on the image using the structuring 
element to generate the processed image. 
 
In this section, we first introduce dilation and erosion, two fundamental operations in mathematical 
morphology.  We then describe more complex morphological operations obtained by combining 
erosion and dilation.  We describe a handful of morphological tools that are especially useful in 
image analysis.   
 

Dilation 

Dilation is an operation that grows objects in a binary image. The thickening is controlled by a 
small structuring element. In the following figure you can see the structuring element on the right 
and the result after applying dilation on a rectangle. 
 
 



 
 
Try the following example 
 
>> A = imread('broken-text.tif'); 



>> B = [0 1 0; 1 1 1; 0 1 0]; 
>> A2 = imdilate(A, B); 
>> imshow(A), figure, imshow(A2) 
 
 
1. Generate different structuring elements and apply them to broken-text.tif. Try also 
applying several dilations consecutively. 
 
The strel function can be used to build structuring elements in a variety of shapes. They are 
stored in a special format that makes use of decompositions of the elements into simpler structuring 
elements. Its syntax is: 

se = strel(shape, parameters) 

See the table for possible structuring elements. 
 
>> se = strel('diamond', 5) 
 
 

EXERCISE 
 
1. Load 'broken-text.tif'. Dilate the image with different structuring elements. And see the 
different results. 
 
2. Do the same with noisy-fingerprint.tif 



 
 



Erosion 

 
Erosion shrinks or thins objects in a binary image. After erosion the only pixels that survive are 
those where the structuring element fits entirely in the foreground. 
 

 
 
In the following example one can see how different erosions affect the features of an image 
 
>> A = imread('wirebond-mask.tif'); 
>> imshow(A) 
>> se = strel('disk',10); 
>> A2 = imerode(A,se); 



>> figure,imshow(A2) 
 
Try disks of radius 5 and 20. 
 
 

EXERCISE 
 
1. Load noisy-fingerprint.tif and broken-text.tif. Apply different erosions. 
 

Opening and closing 

 
Combinations of morphological operations can be very useful and help remove many artifacts 
present in images. This will become very useful after segmenting an image. 
 
The first operation we will see is opening, which is an erosion followed by dilation. Opening 
smoothes object contours, breaks thin connections and removes thin protrusions. After opening, all 
objects smaller than the structuring element will disappear.  
 
Closing is a dilation followed by erosion. Closing smoothes object contours, joins narrow breaks, 
fills long thin gulfs and fills holes smaller than the structuring element. 
 
The following example will show the utility of opening and closing. 
 
>> f = imread('shapes.tif'); 
>> imshow(f) 
>> se = strel('square',20); 
>> fo = imopen(f, se); 
>> figure, imshow(fo) 
>> fc = imclose(f, se); 
>> figure, imshow(fc) 
>> foc = imclose(fo, se); 
>> figure, imshow(foc) 
 
 

EXERCISE 
 
1. Reopen rice.png 
Use imopen to eliminate all the rice grains. 
Convert all numbers so that they are between 0 and 1 
Use mesh  to view image (see details of ‘mesh’ command in help section) 
Use this new array to modify the original rice.png.  Plug this back into your code from exercise 3 
(the previous rice grain exercise).  Is it easier or harder to correctly pick all the rice grains.?  How 
does the quantitation compare?   



 
2. Load and apply opening and closing to noisy-fingerprint.tif and broken-
text.tif. 
 

Additional useful image processing tools 

 
A very useful morphological transformation to subtract the background from an image is the so 
called tophat. Tophat is the subtraction of an opened image from the original. One can do opening 
in gray images, removing all features smaller than the structuring element. In the following example 
we will show its usefulness 
 
>> I = imread('rice.png'); 
>> imshow(I) 
>> background = imopen(I,strel('disk',15)); 
>> figure, imshow(background) 
>> figure 
>> surf(double(background(1:8:end,1:8:end))),zlim([0 255]); 
>> set(gca,'ydir','reverse'); 
>> I2 = imsubtract(I,background); 
>> figure, imshow(I2) 
 
The same result can be obtained using 
>> I2 = imtophat(I, strel('disk',15)); 
>> figure, imshow(I2) 
 
What happens when you change the size of the structuring element? What criteria should you use to 
choose the appropriate size? 
 

Filling holes 
 
Frequently, after some morphological operation we need to fill the holes in a binary image. For 
example, we detect the boundary of a cell and want to obtain an object which is filled and covers 
the cell. In this example we will see its effect in text. 
 
 
g = imfill(f, 'holes') 
 
>> f = imread('book-text.tif'); 
>> imshow(f) 
>> f2 = imfill(f, 'holes'); 
>> figure, imshow(f2) 
 
 



Clearing border objects 
 
After segmenting an image there are usually objects touching the border of the image. Since we can 
not obtain complete information about them it is usually the best to remove them. 
imclearborder is the matlab function to remove objects touching the border. 
 
g = imclearborder(f) 
 
>> f = imread('book-text.tif'); 
>> imshow(f) 
>> f2 = imclearborder(f); 
>> figure, imshow(f2) 
 
 

6) Image Segmentation 

 
Segmentation refers to the process in which an image is subdivided into constituent regions or 
objects.  These objects can be further processed or analyzed for the extraction of quantitative 
information.  Biological image data is usually messy and noisy, and as a result difficult to segment 
properly.  Multiple image processing steps are often required in the process of segmentation.  We 
often combine segmentation with various morphological processing and filtering techniques 
described above to achieve accurate and robust segmentation of an image. 
 
We looked at a basic segmentation technique earlier – thresholding.  In this section, we look at 
other complementary segmentation techniques that may be useful in different situations. 
 
 

Edge detection 

 
One way to find boundaries of objects is to detect discontinuities in intensity values at the edge of a 
region.  These discontinuities can be found by calculating the first and/or second order derivatives 
of an image.  The first derivative of choice in image processing is the gradient, defined as the 
vector: 
 

grad  f = [Gx Gy] 
 

where Gx = df/dx and Gy
 = df/dy  are the partial derivatives in the horizontal and vertical directions 

of the image.  The magnitude of this vector is 
 

|grad f| = (Gx
2 + Gy

2)1/2 

 



The gradient vector points in the direction of steepest ascent.  The angle of steepest ascent is given 
by: 
 

a(x,y) = tan-1(Gy/Gx) 
 
We can estimate the derivatives Gx and Gy digitally by linearly filtering the image with the 
following 3 by 3 kernels:   
 

 
 
 
The Prewitt and Sobel operators are among the most used in practice for computing digital 
gradients.  The Prewitt masks are simpler to implement than the Sobel masks, but the latter have 
slightly superior noise-suppression characteristics. 
 
To gain an intuition for what a gradient image looks like, try opening some grayscale images into 
im and creating a gradient image as follows: 

>> h = fspecial('sobel'); 
>> Gy = imfilter(im, h); 
>> Gx = imfilter(im, h'); 

We can also visualize the magnitude of the gradient: 

>> G = (Gx.^2 + Gy.^2).^(1/2) 



Note that the magnitude of the gradient is high at an edge, where the intensity of a pixel changes 
rapidly between neighboring pixels.  A thresholding operation is then applied to the image G to 
segment the boundary pixels.  Objects can then be identified by filling in the holes of detected 
closed contours using the imfill function (see previous section) 
 
 
MATLAB provides a general edge detection command that is sensitive to horizontal or vertical 
edges or both.  The general syntax for this function is 

g = edge(f,’method’, parameters) 

Where f is the input image, method gives to the edge detection algorithm used, and 
parameters gives the parameters that accompany the algorithm.  g is binary image where edges 
have a value of 1.   
 
EXAMPLE 
 
Let’s apply edge detection to the segmentation of actin filaments: 

>> im = imread(‘actin2.tif’) 

First try to use thresholding (in the first section) to segment the actin filaments. 
 
Let’s run the two edge detectors on the microtubules image for comparison: 

>> edge_sobel = edge(im, 'sobel'); 
>> edge_prewitt = edge(im, 'prewitt'); 

The most powerful edge detector is the Canny edge detector provided by the function edge.  The 
Canny edge detector incorporates information about the direction of the image gradient in 
determining whether a given pixel is an edge pixel.  It also has two thresholds, a weak threshold T1 
and a strong threshold T2 > T1.  Pixels above the weak threshold count as an edge only if there are 
pixels above the strong threshold adjacent to them.  The Canny edge detector gives good edge 
detection for biological images, which are typically noisy and have less well-defined edges. 

BW = edge(I,'canny',THRESH,SIGMA) 

Where THRES is a two element vector in which the first element is the low threshold, and the 
second element is the high threshold.  SIGMA is the standard deviation of a Gaussian filter that is 
applied to the image prior to edge detection.  Try applying the canny edge detector the microtubule 
image, and play around different values of the threshold and smoothing. 
 
Edge detection can be used in conjunction with hole filling (imfill) to recognize and segment 
objects with well defined boundaries. 
 



Morphological Watersheds 

 
In the previous sections, we discussed segmentation based on 1) detection of discontinuities in an 
image, and 2) thresholding.  Morphological watersheds provide a complementary approach to the 
segmentation of objects.  It is especially useful for segmenting objects that are touching one 
another. 
 
To understand the watershed transform – we view a grayscale image as a topological surface, where 
the values of f(x,y) correspond to heights: 
 
 

 
 
Consider the topographic surface on the right.  Water would collect in one of the two catchment 
basins.  Water falling on the watershed ridge line separating the two basins would be equally likely 
to collect into either of the two catchment basins.  Watershed algorithms then find the catchment 
basins and the ridge lines in an image. 
 
The algorithm works as follows:  Suppose a hole is punched at each regional local minimum and 
the entire topography is flooded from below by letting the water rise through the holes at a uniform 
rate.  Pixels below the water level at a given time are marked as flooded.  When we raise the water 
level incrementally, the flooded regions will grow in size.  Eventually, the water will rise to a level 
where two flooded regions from separate catchment basins will merge.  When this occurs, the 
algorithm constructs a one-pixel thick dam that separates the two regions.  The flooding continues 
until the entire image is segmented into separate catchment basins divided by watershed ridge lines. 
 
The watershed algorithm is implemented in the MATLAB image processing toolbox as: 

L = watershed(f) 

where f is the input image and L is a labeled matrix image having positive integer values at 
different regions and 0 at the watershed ridge lines.     
 
The key behind using the watershed transform for segmentation is this: Change your image into 
another image whose catchment basins are the objects you want to identify.  In the following 
examples, we consider different ways to pre-process images to make them amenable to watershed 
segmentation. 
 
 
EXAMPLE – watershed segmentation by the distance transform 



Consider the task of separating two touching objects circles in this binary image.  

>> im = imread('circles.tif'); 

 

How can we modify this image so its catchment basins are two circular objects?  To do this we'll 
use another new tool in the Image Processing Toolbox: bwdist, which computes the distance 
transform. The distance transform of a binary image is the distance from every pixel to the nearest 
nonzero-valued pixel, as this example shows. 

 
A small binary image (left) and its distance transform (right). 

Calculate the image distance transform of image: 

>> A = bwdist(im) 

This image is not very useful, because there is only one catchment basin spanning the entire image. 
Instead, try computing the distance transform of the image's complement: 

>> B = bwdist(~im);  

This image is closer, but we need to negate the distance transform to turn the two bright areas into 
catchment basins. 

>> C = -B 

Now there is one catchment ba sin for each object, so we call the watershed function.  



>> L = watershed(C); 

L is called a label matrix, and it contains positive integers corresponding to the locations of each 
catchment basin. We can use the zero-valued elements of L, which are located along the watershed 
lines, to separate the objects in the original image. 

>> BW(L == 0) = 0; 
 

EXAMPLE – oversegmentation 
 
Consider the following microscopy image of steel grains: 

>> im = imread('steel.tif') 

 

try running the watershed algorithm on the complement of this image: 

>> L = watershed(imcomplement(im)); 

As you can see, there are too many watershed ridge lines that do not correspond to objects in which 
we are interested.  Oversegmentation is common problem when using watersheds.  One way to 
counter the problem of oversegmentation is to remove the minima that are too shallow using the 
following command: 

g = imhmin(f, H) 

which takes an input image f and suppresses the minima whose depth is less than H.  Try this:   

>> im2 = imcomplement(im); 
>> im3 = imhmin(im2,20);  
>> L = watershed(im3); 

The result is much improved. 
 



EXERCISES 

 
1. Quantum dots.  Devise a segmentation strategy to segment the following image of quantum 

dots (quantumdots.tif): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Extract the following parameters from the image:  1) number of dots, 2) histogram of areas 
and 3) histogram of integrated intensities 

 
2. DIC images of cells. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Find the boundary of this cell using any of your favourite image segmentation techniques.  
(dic_cell.tif) 

 
3. Actin filaments 

 
Devise an image processing strategy to obtain the distribution of filaments from this image, 
and subsequently calculate 1) the mean filament length, 2) the variance in filament length, 



and 3) the number of filaments.  Note:  
image segmentation may be 
complicated by the low light levels in 
the image.  (actin.tif) 
 
 
 
 
 
 
 

 
 
 
 

4. Fixed cells.  Here are some cells that are fixed and stained for actin (red), tubulin (green) 
DNA (blue), and a histone marker (not shown).  Devise an image processing strategy to 
segment the cells.  You may operate on any of the color channels in the image (or a multiple 
of them).  This problem is especially tricky because many of the cells are touching.  

(4color_cells.stk) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. Additional Exercises.   Develop a criteria to distinguish between the DNA and tubulin 
morphologies of these cells treated with different drugs: 

 
U2OS DAPI Taxol.tif                                            
U2OS DAPI VX680.tif                                            
U2OS DAPI.tif                                                  
U2OS Tubulin Taxol.tif                                         
U2OS Tubulin VX680.tif    

 
6. Measuring transferrin endocytosis 
 



The images in the \transferrin\ directory are in matched pairs. The first image shows DAPI 
staining and the second image shows staining of transferrin that has been endocytosed. Write a 
program to segment the cells (most likely taking advantage of the nuclei staining) and quantify how 
much transferring is being endocytosed. Your quantification can be just the sum of the total amount 
of transferring endocytosed or take into account the number/qualities of individual vesicles (more 
advanced). 
 
 
7. Finding cell borders in a sheet: 
 
The images in the \sheet\ directory are in matched pairs of DAPI and membrane staining. Write 
a program to identify each cell and its borders. 
 
 
 
 
 



 

7) Analysis of motion in biological images 

 
The previous sections focused on extracting information from individual images using a variety of 
filtering, morphological processing and segmentation techniques.  In this section, we turn our 
attention to the analysis of dynamics and motion in a movie, which comprises a sequence of images 
taken at successive time intervals.  From the movies, we can extract information about dynamical 
processes in biology, from the kinetics of biochemical reactions to the movements of proteins and 
cellular structures. 
 
We begin by describing ways of visualizing motion in a sequence of images.  A common approach 
to visualizing dynamics involves converting the dimension of time in a series of images into a 
spatial dimension.  Kymographs are essentially two-dimensional plots with time running along one 
of the dimensions.  We next discuss ways of extracting quantitative information by performing 
mathematical manipulations between images in a stack.  Cross-correlation and projection operations 
fall into this category.  Finally we discuss various techniques for tracking particles and their 
movements over time.  
 
 

Designing Graphical User Interfaces in MATLAB 

 
Before learning how to analyze motion in microscopy movies, we will first learn how to create 
graphical user interfaces (GUIs) in MATLAB, which will make it easier to interact with your 
functions and change and test parameters.  It will also make it easier for other people to use the 
image processing routines that you have written. 
 
We here go through the process of a creating a GUI for viewing Metamorph stacks.  You can easily 
customize and extend this GUI to incorporate the image processing routines that you developed. 
 
The basic MATLAB interface for creating GUIs in MATLAB is the GUI developer’s environment, 
which is run by the command guide: 

>> guide 

Create a new Blank GUI (Default) by pressing OK.  You will see something like this: 
 



 
 
Here are the key components: 
 

1. The GUI Backdrop is the background on which you add GUI components such as buttons, 
text, axes, text boxes and all sorts of other bells and whistles. 

2. The Commands allow you to add various bells and whistles to the Backdrop. 
3. Once you have designed the basic layout for your GUI, you can attach various functions to 

your GUI components by pressing the button to Edit your M-file. 
4. Once everything is complete, run the GUI by pressing the Run button! 

 
Before adding any GUI components onto the backdrop, let’s first take a look at the M-file behind 
the GUI.  Press the button ‘M-file editor’ to edit your M-file.  When prompted, save the GUI file as 
‘mygui’. 
 
When the file opens, scroll down to: 
 

function mygui_OpeningFcn(hObject, eventdata, handles, varargin) 
 
This is the function that executes before the GUI is made is visible.  Any initialization code is 
added below here.  For the meantime, let’s add a variable that acts as a flag as to whether a stack is 
loaded: 
 

handles.loaded = 0; 
 

Backdrop for 
adding buttons, 
axes, etc… 

Commands 
for adding 
stuff to the 
backdrop. 

RUN the 
GUI 

Edit the 
M-file for 
your GUI 



Handles is a structure that acts a global variable that can be seen by all functions inside the GUI M-
file.  To save the changes to handles made by a function, we run the following line: 
 

guidata(hObject, handles); 
 
So the value handles.loaded = 0 can now be seen by all components inside the GUI. 
 
When you add components to your GUI, new functions will appear in your M-file.  Let’s add a 
button for loading a Metamorph stack image into MATLAB.  Add a Push Button onto the 
backdrop.  Double click on it to edit its properties.     
 
Set the ‘Tag’ of the Push Button to loadstack.  A unique tag identifies each component in the GUI, 
and the tag will appear in the names of GUI component functions in the M-file. Also, set the string 
to ‘Load Stack’ and set its tag as loadstack. 
 
Check the MATLAB help for explanations of the properties of GUI components. 
 
Go to the editor for the M-file.  You should see the following function appear: 
 

function loadstack_Callback(hObject, eventdata, handles) 
 
As you can see, the name of the function is determined by its tag.  The callback function executes 
whenever the button is pressed.  Add the following lines of code: 
 

% Call up a GUI to load to choose the Metamorph stack 
CurrentDir=pwd; 
[filename, path] = uigetfile('*.stk', 'Choose stack:'); 

   
%load the stack, if it exists 
if(filename) 
    [stk,stacklength]=stkread([path filename]); 
    handles.stk = stk;                          % entire stack structure written by metamorph 
    handles.loaded = 1; 
else 
    cd(CurrentDir); 
    return 
end 
 
figure(1); imshow(stk(1).data,[]); 
 
guidata(hObject, handles); 

 
The code calls up uigetfile to retrieve the filename of the Metamorph stack file to be read, and 
reads the stack using the command stkread.  The stack is then added to the handles structure, 
which is then saved using the command guidata(hObject, handles).  We also set the flag handles.loaded = 1 
to show that a file has been loaded. 
 



Now let’s add a slider to the backdrop that can be used to cycle through different planes in the 
stack.  Add a slider.  The slider has arrow buttons and a box that can be moved, and is set to 
assume the value of the current image plane. 
 
Now double click on the slider to modify its properties.  Set: 

‘Tag’  = planeslider 
‘Min’  = 1 
‘Max’  = 10 
‘Value’  = 1 

The above commands initialize the minimum, maximum and current values of the slider.  The 
current value gives the current image plane that is to be displayed in the figure window.  When we 
load a Metamorph stack, we will set the maximum value of the slider to equal the number of image 
planes in the stack. 
 
The following function appears in the M-file: 
 

function planeslider_Callback(hObject, eventdata, handles) 
 
The function executes whenever the slider is touched in the GUI.  The lower value of the slider is 1 
and the upper value of the slider is N, which is the number of planes in the stack.  We can set these 
values after loading the stack by adding this to loadstack_Callback: 
  

set(handles.planeslider,'Min',1,'Max',stacklength); 
 
Note that the handles structure also holds information regarding the status of various GUI 
components, which can be get or set in the manner shown above.  For instance, the current position 
of the slider can be obtained as follows: 
 

get(handles.planeslider, 'Value'); 
 
To get a comprehensive list of GUI component properties that can be get or set, refer to the 
MATLAB help.  We now add the following code to planeslider_callback, to basically update the image 
in the figure window every time the slider is moved:  
 

if (handles.loaded == 1)  
% get the value of the current plane 
slideval = get(handles.planeslider, 'Value'); 
plane = round(slideval); 

          
% retrieve image from stack and find minimum and maximum for contrast 
% adjustment 
im = handles.stk(plane).data; 
imin = min(min(im)); 
imax = max(max(im)); 

        
% display image (optimized to prevent flickering) 
figure(1) 



imagesc('cdata', handles.stk(plane).data, 'erasemode','none', [imin imax]);  
colormap('gray');  
children = get(gca,'children'); 
delete(children(end)); 
xlabel(['plane ' num2str(plane)]); 

end 
 
This code retrieves the current value of the slider, retrieves the image from the stack and displays 
the image in figure(1).  So by pressing the arrows in the slider, we can scroll through all the planes in 
the stack. 
 
There are many features that can be added to the above GUI.  For instance, we can add text boxes to 
display the plane number or the timestamp of the current frame of the movie inside the GUI.  We 
can further extend this basic GUI by adding image processing buttons and functions for processing 
images and stacks and to save the results of the image analysis.  We can even add edit text boxes to 
allow us to vary the segmentation parameters easily.  Efficient GUI design can enhance 
productivity and allow for other people to use your routines more easily. 
 



Kymographs 

 
One way to visualize dynamical behavior is to plot time along a spatial axis.  Time traces are one-
dimensional graphs are one dimensional plots where time t is placed on a single axis and a 
dynamical tracked F(t) is tracked over time.  Kymographs are a two-dimensional analog of time 
traces, where time t occupies one axis, space along a one-dimensional contour x occupies another 
axis, and the dynamical variable F(x,t) is visualized as an image. 
 
Kymographs provide a fast and convenient way to visualize motion and dynamics in microscopy 
images.  Load the following image of a spindle labeled with speckle amounts of tubulin using the 
GUI you just created. 

>> stk = stkread('fluxingspindle.stk'); 

 

 
 
 
 
 
 
 
 
 
 
 
Play the movie a few times.  Note that the tubulin speckles flux towards the both spindle poles.  
One way to measure the rate of flux is to create a kymograph along a straight line that runs from 
one spindle pole to the other. 
 
We start off by creating a scan of intensities along a straight line connecting the spindle poles.  One 
way to do this in MATLAB is to use to use the command improfile, which returns the pixel-
value cross-sections along line segments:  

c = improfile(I,xi,yi) 

where I, the input image, and xi, yi, which are equal-length vectors specifying the spatial 
coordinates of the endpoints of the line segments.  To find the x and y coordinates for the endpoints, 
we can use the command 

[y,x,p] = impixel  

 



which allows the user to interact with the current figure with the mouse to obtain coordinate values.  
Each mouse-click adds an coordinate value to x and y and a right mouse click terminates the 
interactive part of the command.  
 
We take the intensity profiles along the line segment for all images in the plane, and then 
concatenate all the intensity profiles to form a two dimensional image: 
 
stk = handles.stk; 
imshow(stk(2).data,[]);    % display image 
[y,x,p] = impixel;         % use impixel to interactively find endpoints of the spindle 
  
% build kymograph 
  
kymo = [];  
% loop through all image plans, find the linescan, and concatenate to form 
% the kymograph 
for i = 1:length(stk) 
    im = im2double(stk(i).data); 
    c = improfile(im, x, y); 
    kymo = [kymo c];            % concatenation 
end 
% transpose kymograph 
kymo = kymo' 
 
Note that the resultant image has many diagonal lines.  These lines correspond to moving tubulin 
speckles, and the velocity of motion is given by the slope of these lines.  Note that image analysis 
can be performed on the kymographs for the extraction of quantitative information, just like any 
other regular image. 
 
EXERCISES 
 

1. Add the kymograph as an additional tool in the GUI you created above.  Provide a means to 
save the kymograph into a file. 

 
2. Instead of simply taking an intensity profile along a line, it is common to take an average (or 

maximum) of intensities of the image in the direction orthogonal to the line segment when 
making a kymograph.  How would you implement this? 

 
3. Implement a kymograph that takes intensity values along the circumference of a circle of a 

given radius and center.  Can you think of any biological situations when this might be 
useful? 

 
 

Difference Images, Maximum Intensity Projections 
 
It is often possible to visualizing dynamics in image stacks by performing mathematical 
manipulations involving neighboring images in a stack, or even by performing manipulations on the 



entire stack.  In this section, we discuss two possible manipulations; difference images and 
maximum intensity projections. 
Difference Images 
 
A difference image of successive frames in a movie is given by: 
 
   Dj (x,y)  = Ij+1(x,y) – Ij(x,y) 
 
where D is the difference image, and j is a given plane in the stack.  Difference images highlight 
features of the image that change rapidly over time, much in the same way  
 that a spatial gradient enhances contrast around an edge.  The change is usually brought about by 
movement of an object in the image, or by a kinetic process that has not reached steady-state (like 
photobleaching). 
 
EXERCISE 
 

1. Photobleaching of CDC-42.  Load yeastcdc42.stk.  Take difference images 
between successive frames.  What do the peaks and troughs in intensity correspond to? 

 
Maximum Intensity Projections 
 
A maximum intensity projection of an entire image stack is given by 
 

M(x,y) = maxj(Ij(x,y)) 
 
The maximum on the right hand side is the maximum in intensity value at a given pixel value over 
all stacks in an image.  Maximum projections collapse the entire dynamics of the stack onto a single 
plane, and is especially useful for visualizing entire trajectories of moving particles on a single 
plane. 
 
 
EXERCISE 
 

1. Visualizing listeria trajectories.  Listeria  is an intracellular pathogen that moves inside 
the cell by polymerizing actin at its rear surface.  Load listeriacells.stk and 
use a maximum intensity projection to visualize the entire trajectory of the moving bug.  
Can you apply image processing tools to trace and segment the trajectory?   

 
 
 
 
 
  
 



Image Cross-correlation 
 
A common way to detect motion of objects over successive frames in a movie is to perform a 
correlation of successive images with one another.  When there is concerted motion between two 
image frames, the cross-correlation of the two images will exhibit a peak at a non-zero location, and 
the offset of the peak from zero will then give the distance of movement over the period of time. 
 
Cross-correlation is most effective when there is concerted motion over large regions of the 
microscopy image.  In this section, we first go through an example of registering an image using 
cross-correlation.  We then cover some biological examples where cross-correlation may be useful 
in extracting dynamical information in the system of interest. 
 
First, let’s load the image  
 
>> im1 = imread('cells1.tif'); 
>> im2 = imread('cells2.tif'); 
 
The images are out of register: 

 

 

 

 

 

 

 

 

 
 
Create a superimposed color image of the two images to simultaneously visualize both images.  The 
command cat is used to concatenate matrices in the third dimension and can be used to create 
RGB color images: 
 
>> blank = zeros(size(im1)); 
>> cim = cat(3, mat2gray(im1), mat2gray(im2), blank); 
>> imshow(cim,[]); 
 

As you can see, the two images are translated with respect to each other.  To determine how much 
one image is translated with respect to the other, you can perform a cross-correlation on the two 
images.  MATLAB has a command for performing a normalized cross-correlation: 



>> b = normxcorr2(im1,im2); 
 
Now visualize the cross-correlation function using the mesh command: 

>> figure; mesh(b); 
 
The output of this cross-correlation function is a matrix b that is the sum of the size of the two input 
images.  b has a single maximum, which is offset from the center of the matrix by a small amount.  
This offset corresponds to the translation of im1 with respect to im2.  To determine the location of 
this peak, we use the find command, which returns the locations of nonzero indices in a given 
matrix.  We can couple this command to conditional statement to find the maximum point of this 
matrix: 
 
>> [y,x] = find(b == max(b(:))); 
 
Note that, in matrix subscript notation, rows (y) are addressed before columns (x).  Now we 
determine the offset of these positions from the origin of the matrix: 

>> [yc,xc] = size(im2); 
>> yoff = y - yc; 
>> xoff = x - xc; 
 
Now let’s create a large color image to visualize the superposition of the two frames: 

>> cim2 = zeros( yc+yoff, xc+xoff, 3); 
>> cim2(yoff:(yc+yoff-1), xoff:(xc+xoff-1), 1) = mat2gray(im1); 
>> cim2(1:yc, 1:xc, 2) = mat2gray(im2); 
>> imshow(cim2); 
 

EXERCISES 

 
1. Perform cross-correlation between successive frames of the spindle image  

fluxingspindle.stk.  Cross-correlate the first image (2) with images that are further 
apart in time.  What does the cross-correlation plot look like?  What does this tell us about 
the biology? 

 
2. A common way of extracting flows in fluid dynamics is to perform cross-correlation on 

subregions of a movie to obtain a flow vector field.  Write a program that calculates flow 
vector fields by performing cross-correlation in a localized region near the vector to be 
calculated.  Treat the size the neighborhood as a free parameter and test the program on 
fluxingspindle.stk 

 



Particle Tracking 
 
In particle-tracking, we attempt to extract the trajectories of moving point-like objects from a stack 
of images.  There are two main steps: 
 

1) Segmentation.  We first need to identify the particles in all of the images.  The 
segmentation techniques taught in the previous sections can be used to segment these 
particles and extract their locations in the microscopy images. 

 
2) Motion correspondence.  Given the locations of segmented particles in successive 

microscopy images, we need to know which particles in one frame correspond to which 
particles in a frame taken a small time-interval later.  We essentially need to match particles 
at given time t with particles at a time t+dt later, and do this for all image frames:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is often the case in image acquisition that the time interval between successive frames is 
so small that these moving particles move only small distances during this time interval.  In 
such a case, it is often adequate to match particles with the closest ones nearby.  In such a 
case, we find a matching that minimizes a cost function determined by the distance traveled 
by particles.  A cost function that works well for diffusive motion is given by the sum of 
squares of the distances: 
 

C = Σ di
2 

  
Here the summation is over all matched particles and the cost function is minimized over all 
possible matching pairs.  In practice it is computationally too expensive to go through all 
possible matching pairs to find the minimum.  One typically imposes a threshold distance 
beyond which no pair of particles in successive frames can be matched. 
 

t
t+dt



A particle tracker in MATLAB that solves the motion correspondence problem for the 
above cost function can be found at: 
http://www.deas.harvard.edu/projects/weitzlab/matlab/tutorial.html 
There are other problems and difficulties that may arise when solving the motion 
correspondence problem.  For instance, particles and appear or disappear from the field of 
view during the course of the movie.  Moreover, particles may become temporarily 
occluded from the field of view.  It is important to modify the motion correspondence 
algorithms to address such potential problems. 
 

Given a set of particles in a stack of segmented images and a correspondence between particles in 
successive images, it is possible to obtain a set of trajectories that describe the motion of these 
individual particles. 
 
EXERCISES 
 

1. Kinetochores.  In a spindle, microtubules attach to chromosomes through structures 
called kinetochores.  In the stack kin.stk,  kinetochores are labeled with a fluorescent 
marker.  Write a particle tracking algorithm to track the movement of individual 
kinetochores.  Is there anything you can say about their dynamics? 
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