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Characterizing the eddy field in the Arctic Ocean halocline
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Abstract Ice-Tethered Profilers (ITP), deployed in the Arctic Ocean between 2004 and 2013, have pro-
vided detailed temperature and salinity measurements of an assortment of halocline eddies. A total of 127
mesoscale eddies have been detected, 95% of which were anticyclones, the majority of which had anoma-
lously cold cores. These cold-core anticyclonic eddies were observed in the Beaufort Gyre region (Canadian
water eddies) and the vicinity of the Transpolar Drift Stream (Eurasian water eddies). An Arctic-wide calcula-
tion of the first baroclinic Rossby deformation radius Rd has been made using ITP data coupled with clima-
tology; Rd � 13 km in the Canadian water and �8 km in the Eurasian water. The observed eddies are found
to have scales comparable to Rd. Halocline eddies are in cyclogeostrophic balance and can be described by
a Rankine vortex with maximum azimuthal speeds between 0.05 and 0.4 m/s. The relationship between
radius and thickness for the eddies is consistent with adjustment to the ambient stratification. Eddies may
be divided into four groups, each characterized by distinct core depths and core temperature and salinity
properties, suggesting multiple source regions and enabling speculation of varying formation mechanisms.

1. Introduction

Ocean eddies have significant influence on the lateral transport of heat, momentum, chemical tracers,
nutrients, biological species, and anomalous water properties [see Carton, 2010]. In the Arctic Ocean, eddies
have been observed at all depths and in all regions. Halocline eddies may be especially important in that
they can reduce the stability of the highly stratified halocline, which isolates warmer deeper waters from
the surface ocean in contact with sea ice. Eddies have been observed in large numbers throughout the
halocline; a multitude of past studies are cited below. Manley and Hunkins [1985], for example, estimated
that halocline eddies may cover �25% of the Beaufort Sea (by area) and are a significant source of kinetic
energy in the halocline.

In this paper, we analyze Ice-Tethered Profiler data to catalog and characterize halocline eddies across the
Arctic Ocean. The Arctic halocline, spanning depths from around 50 to 250 m, between the base of the sur-
face mixed layer and the Atlantic water layer (AWL), is characterized by a strong increase in salinity (and
potential density) and varying temperature structures. The Canadian and Eurasian waters have distinct halo-
cline structures (Figure 1), and their approximate division in the northern Canada Basin has been shown to
vary over time [e.g., Steele and Boyd, 1998; Bjork et al., 2002]. The cold Eurasian water halocline derives from
modification of the surface waters by inflowing Atlantic water (including by sea-ice melt when Atlantic
water first enters the Arctic Ocean), as well as by river input, sea-ice growth/melt cycles, and air-sea
exchange [Rudels et al., 1996]. The Canadian water halocline is incised by warm interleaving layers associ-
ated with water of Pacific Ocean origin. Further, some profiles exhibit a shallow temperature maximum
immediately below the surface mixed layer, the near surface temperature maximum (NSTM), which is
formed by solar absorption during summer, that is then trapped by the summer halocline formed when ice
melts [e.g., Jackson et al., 2011]. Below the NSTM there can be a temperature minimum near the freezing
temperature associated with the remnant winter mixed layer (rWML) formed from the previous winter’s
mixed layer. Below these layers in the Canadian water halocline lies the Pacific Summer Water layer (PSW),
believed to be derived from Pacific inflows that are modified by surface buoyancy fluxes over the Chukchi
Sea in summer [e.g., Steele et al., 2004; Timmermans et al., 2014]. The temperature minimum underlying the
PSW characterizes the Pacific Winter Water layer (PWW)-Pacific origin water modified over the Chukchi Sea
in winter [e.g., Coachman and Barnes, 1961; Jones and Anderson, 1986].
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Halocline eddies are observed
across all Arctic basins, with
anticyclonic eddies over-
whelmingly dominant [e.g.,
Aagaard et al., 1981; Manley
and Hunkins, 1985; Timmer-
mans et al., 2008]. Eddies can
be both warm core and cold
core, with the latter found in
most cases [e.g., Manley and
Hunkins, 1985]. Most past stud-
ies focus on eddies in the Can-
ada Basin, where the eddies
are concentrated in the halo-
cline. These eddies are found
to have core depths in the
range of 30–300 m, azimuthal
velocities in the range of 0.1–

0.3 m/s, diameters on the order of the Rossby deformation radius (10–20 km) and lifetimes from months to
years [e.g., Hunkins, 1974; Manley and Hunkins, 1985; D’Asaro, 1988; Padman et al., 1990; Muench et al., 2000;
Pickart et al., 2005; Plueddemann and Krishfield, 2007; Spall et al., 2008; Pickart and Stossmeister, 2008; Tim-
mermans et al., 2008]. Eddies are believed to be generated by baroclinic instability of boundary currents,
intense surface buoyancy fluxes, or frontal instabilities.

In one comprehensive study of halocline eddies, for example, Plueddemann and Krishfield [2007] analyzed
velocity data from Ice-Ocean Environmental Buoys (IOEBs) operating in the Canadian Basin between 1992
and 1998 (a total of 44 months of buoy drift) and found 81 eddies, with 90% of them being anticyclones.
These buoy velocity measurements were mostly from the periphery of the Beaufort Gyre, where eddies
were found to be concentrated in the region of the Chukchi Plateau and southern Canada Basin. The major-
ity of eddies were in the upper halocline centered around 140 m depth with azimuthal speeds of about
0.1–0.35 m/s, and diameters from 4 to 16 km. The faster eddies were typically taller and larger in diameter
than the slower eddies. The shallowest and weakest eddies were observed over the Chukchi Plateau, with
deeper and faster eddies sampled in the southern Canada Basin. Plueddemann and Krishfield [2007] suggest
that the eddies they observed in the southern Canada Basin were predominantly generated by baroclinic
instability of Beaufort Shelfbreak boundary currents.

In this paper, we analyze Ice-Tethered Profiler (ITP) measurements to develop an Arctic-wide assessment of
halocline mesoscale eddies. To complement this study and assess the characteristic length scale for meso-
scale flows (i.e., flows with horizontal scales on the order of the first baroclinic deformation radius, �10 km
in the Arctic Ocean), we use ITP data (coupled with climatology to extend ITP measurements to the full
depth of the water column) to compute the first baroclinic Rossby deformation radius Rd. Measurements
are introduced in section 2. In section 3, we calculate Rd across the Arctic Ocean. Section 4 outlines methods
for detecting and characterizing the eddies. Eddy distributions, main characteristics, dynamical properties,
and possible origins are presented in section 5. In section 6, we summarize and discuss our results in con-
text with past studies.

2. Measurements

2.1. Ice-Tethered Profiler Measurements
ITPs consist of a surface buoy that sits on top of the sea ice, below which a wire-rope tether extends into
the ocean. A profiling unit climbs up and down the tether measuring temperature, salinity, pressure, and in
some cases velocity from a few meters below the base of the sea ice to about 750 m depth, returning 2–6
profiles per day. Measurements are transferred via satellite to servers at the Woods Hole Oceanographic
Institution [see Krishfield et al., 2008, www.whoi.edu/itp; Toole et al., 2011]. A GPS unit in the surface buoy
logs the location of the ITP every hour. Vertical data resolution is nominally 25 cm for a 1 Hz sampling rate
and a profiling speed of about 25 cm/s. Given typical ice drift velocities of � 10 km/d, and ITP returns of
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Figure 1. Representative potential temperature, salinity, and potential density in the upper
Arctic Ocean, measured by ITPs. Red: Eurasian Water (ITP 14, 87:9

�
N, 17:0

�
W, October 2007);

blue: Canadian Water (ITP 6, 76:7
�
N, 149:0

�
W, October 2007).
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two profiles or more per day, horizontal distances between adjacent vertical profiles are on the order of a
few kilometers (Figure 2a).

The significant spatial coverage and horizontal CTD profile resolution, sufficient to detect scales at the small
deformation radius of the Arctic Ocean, means ITP measurements enable an Arctic-wide assessment of the
mesoscale eddy field. Due to year-round sea-ice cover over a significant fraction of the Arctic Ocean, satel-
lite altimetry data (commonly used to examine the eddy field in the midlatitude ice-free oceans [e.g.,
Chaigneau et al., 2011]) are not available, nor do satellite data allow study of the vertical structure of eddies.
Eddy vertical structure may be studied using moored measurements, but spatial coverage is restricted. Fur-
ther, typical hydrographic station spacings from ice breaker surveys have horizontal resolutions of several
tens of kilometers between CTD profiles, not sufficient to resolve mesoscale eddies.

The first ITP was deployed in August 2004, and ITPs have been deployed every year since then, across the
Arctic Ocean (Figure 2b). Each ITP is labeled with a distinct number, with low numbers indicating early
deployments and the highest numbers referring to the more recent deployments. This paper investigates
ITP data from the first measurement in 2004 through 31 December 2013; more than 46,000 profiles from 66
ITP systems are analyzed here (Figure 2c). For the first 5 years of the ITP data analyzed here, the fully proc-
essed data (i.e., including sensor response corrections, calibrations, and removal of erroneous profiles) are
used. For the remaining years, ITP level 2 data are analyzed (see www.whoi.edu/itp/data); these are not the
final processed data. We do not expect the level of processing to affect the results here as an examination
of mesoscale eddies does not require detailed sensor lag corrections (i.e., temperature-salinity fine structure
is not being analyzed) and spurious profiles are excluded.

2.2. Beaufort Gyre Exploration Project CTD Data and Climatology
Hydrographic survey data from the Beaufort Gyre Exploration Project (BGEP) are also used in this study. The
calculation of the Rossby deformation radius requires CTD measurements extending the full water-column
depth. BGEP CTD surveys (extending to the ocean bottom) were made over the Canada Basin every fall
between 2003 and 2013 [see Proshutinsky et al., 2009, www.whoi.edu/beaufortgyre/]. We compare the deep
water column properties in BGEP CTD data to deep properties in the Environmental Working Group (EWG)
Joint U.S.-Russian Atlas of the Arctic Ocean climatology for the decades 1950–1980 to show that it is

 150oW 
 120

o W 

  9
0

o W
 

  6
0o W

 

  30 oW
 

   0 o
    60

o E 

  9
0

o E 

 1
20

o E
 

 150 oE 

 180 o
W 

  80 oN 

distance between adjacent profiles [km] (bin-size: 0.5 km)

PD
F

 

 

0 5 10
0

0.1

0.2

0.3

0.4
Canadian Water
Eurasian Water

nu
m

be
r o

f p
ro

fil
es

 

 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

2000

4000

6000

8000
CW
EW

a) b)

c)

Figure 2. (a) PDF of ITP profile spacing [km]. Red: Eurasian Water (EW); blue: Canadian Water (CW). (b) Map showing location of ITP profiles
from 2004 to 2013. (c) Number of ITP profiles in a given year.
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reasonable to use EWG climatology to extrapolate ITP profiles (with a maximum depth of around 750 m) to
the bottom.

3. Calculation of the First Baroclinic Rossby Deformation Radius

The first baroclinic deformation radius is the dominant length scale for baroclinically unstable waves in a
stratified flow and the natural horizontal scale of mesoscale instabilities, fronts, and eddies [e.g., Gill, 1982;
Chelton et al., 1998]. The Arctic-wide calculation of Rd not only provides an estimate of the horizontal scale
of mesoscale eddies, it also dictates the model grid scale required to resolve mesoscale eddies in the Arctic
Ocean.

A 1.5-layer model is often assumed for the calculation of Rd in the Arctic Ocean, with the two layers approxi-

mated to be separated by the halocline, Rd �
ffiffiffiffiffi
g0h
p

f , where g05 Dq
q0

g is the reduced gravity for an upper layer

of thickness h (above a lower layer much deeper than h), Dq is the density difference between the two
layers, q0 is a reference density, and f is the Coriolis parameter. Approximating h to be 100 m for both the
Canadian water and Eurasian water, Dq to be 2.2 and 1.2 kg/m3, and q0 to be 1025.5 and 1026.5 kg/m3 for
the Canadian water and Eurasian water respectively, this yields Rd � 13 km for the Canadian water and
�8 km for the Eurasian water.

Chelton et al. [1998] solved the quasi-geostrophic equations for a given stratification to produce a nearly
global map of Rd. Chelton et al. [1998] used the National Oceanographic Data Center (NODC) climatological
average hydrographic product, but with a spatial range only extending to 65

�
N=S. Motivated by the absence

of Rd estimates for the Arctic Ocean, Nurser and Bacon [2013] used the OCCAM global 1=12� model output
[Marsh et al., 2009] to calculate the deformation radius for the Arctic following the same method as Chelton
et al. [1998]. Nurser and Bacons’s [2013] analysis shows differences of up to 4 km between Rd computed
from model output and Rd from limited CTD data in the central Arctic regions, with model output giving
larger values due to model salinities being too fresh in the upper 300 m. Here, ITP measurements distributed
over the central Arctic basins are combined with EWG climatology to produce an Arctic-wide map of Rd.

Our calculation of Rd follows the method of Chelton et al. [1998], and we refer the reader to that paper for
details. In this calculation, the continuously stratified ocean (with N2ðzÞ52

g
q0

@q
@z) is taken to have a number

m of discrete layers, corresponding to m normal modes. The baroclinic Rossby deformation radius of each
mode is the wavelength of the corresponding internal gravity wave. m 5 0 corresponds to the barotropic
mode and m 5 1 the first baroclinic mode and first baroclinic Rossby deformation radius Rd. We consider an
f-plane and a rigid lid and flat bottom ocean of depth H.

Again, following Chelton et al. [1998], we also calculate Rd using the WKB approximation assuming stratifica-
tion variations are small compared to the background stratification. In this case, the Rossby deformation
radius for mode m is given by

RWKB
dm

5
1
jf jmp

ð0

2H
Nðz0Þdz0 m � 1: (1)

Although the WKB assumption is not appropriate in most cases due to the strong stratification at the base
of the mixed layer, it is useful to show how Rd is influenced by the interplay between stratification, rotation,
and the water column depth, important for understanding the geographical variation of Rd. The Arctic
Ocean is effectively an f-plane and Rd is proportional to the vertical integral of N(z). Because the deep basins
are very weakly stratified, there is a near-linear relationship between Rd and water column depth in these
regions. In shallow regions, stratification becomes more important in determining Rd. As we will show, varia-
tions in Rd between two regions of comparable depth can be attributed to differences in the strength of the
halocline stratification between the two regions.

3.1. Extrapolating ITP Profiles to Full Depth
The calculation of Rd requires a density profile from the top to the bottom of the ocean; most ITP profiles
extend between �7 and 750 m depth. Given that mixed layer depths are mostly deeper than 15 m (e.g.,
Toole et al. [2010] who found mixed layer depth �16 m in summer and �24 m in winter in the Beaufort
Gyre region), we use all ITP profiles with the shallowest measurement less than 15 m and take N2ðzÞ50
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from the shallowest measurement to the surface. If the shallowest measurement is deeper than 15 m, the
profile is not used in the calculations.

ITP density profiles must be extrapolated to the ocean bottom, and for this we assume that deep water
properties are relatively unchanging on long time scales. Even on decadal time scales, we verify that the
gradient in density below the core of the Atlantic Water Layer to the bottom can be considered time invari-
ant for the purposes of our study (i.e., spatial patterns in this gradient observed in climatology can be used
to extrapolate ITP profiles to the bottom). To illustrate this, we begin by comparing BGEP CTD data (those
casts that extend to the bottom) to EWG climatology in the Beaufort Gyre region. For each BGEP CTD cast
(from 2003 to 2013), we find the closest EWG grid point and compare density values through the deep
water column (�750 m). For each profile, there was some small (�0:02kg=m3) density offset (between EWG
and CTD), but no consistent spatial pattern to this offset. However, the density gradient between 750 m
and the ocean bottom shows good agreement between BGEP CTD and EWG climatology (Figure 3a), and so
it is reasonable to use the nearest EWG grid point profile to extrapolate each ITP profile to the bottom. For
each deep EWG profile that is used to interpolate an ITP profile, we first apply an offset to the entire profile
such that it matches the ITP density at 700 m. Note that EWG levels are at 700 and 750 m while many ITP
profiles stop several meters shallower than 750 m. Therefore we chose 700 m as the matching level
between EWG climatology and ITP profiles. In this way, a top to bottom N(z) is computed from each extrap-
olated ITP density profile to solve for Rd using either the full calculation or WKB approximation.

3.2. Results
Across the Arctic Ocean, from the Canadian water to the Eurasian water, Rd decreases, following a similar
pattern as found by Nurser and Bacon [2013] (Figures 4a and 4b). Nurser and Bacon [2013] attribute this pat-
tern to the increase in the surface salinity (density) from the Canadian to Eurasian basins, resulting in a
decreasing stratification trend. Within basins where the stratification varies little (e.g., the Canada Basin), the
distribution of Rd largely follows the bathymetry, showing the influence of water column depth revealed in
(1). Rd shows negligible seasonal variation, at least as indicated from one ITP (ITP 5) that drifted in the cen-
tral Canada Basin over the deep abyssal plain with geographically close profiles over one year (not shown
here). The seasonal variation of Rd is around 1 km: from a maximum of around 14.3 km in January to a mini-
mum of around 13.4 km in September. There are not sufficient data to check the interannual variability of
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Rd across the Arctic Ocean. Rd of the Canadian water is about 13 km (12 km), and in the Eurasian water
about 8 km (9 km) for the full eigenvalue problem (WKB approximation), similar to the result of the 1.5-layer
approximation (Figure 4d). In the Canadian water, Rd from the full calculation is larger than that computed
using the WKB method, while in the Eurasian water, the opposite holds (Figure 4c). In the Beaufort Gyre
region, where Nurser and Bacon’s [2013] model data appear to better represent their CTD data, our com-
puted values of Rd are comparable to their values, while in the central Arctic Ocean, the region of highest
discrepancy between their model data and their CTD measurements, our computed Rd are around 3 km
smaller than Nurser and Bacon’s [2013] values from model output, but similar to their calculations from CTD
measurements.

4. Eddy Detection and Characterization

In this section we outline how mesoscale eddies are detected based on isopycnal displacement anomalies
in the extensive ITP data set. ITP measurements allow for the detection of mesoscale eddies because the
horizontal scale of mesoscale eddies (on the order of 10 km) is sufficiently greater than the horizontal reso-
lution of the majority of ITP profiles (�2 km; Figure 2b). Typical ITP drift speeds (about 12 cm/s in the Eura-
sian Basin and 9 cm/s in the Canadian Basin) are faster than typical eddy advection speeds (assuming they
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are advected passively in the Transpolar Drift Stream or Beaufort Gyre, flows with typical speeds of a few
cm/s); in this respect, ITP measurements of mesoscale flows may be considered to be effectively synoptic.
Further, the lifetimes of mesoscale eddies (on the order of several weeks to years) are much longer than the
time taken for an ITP to transect an eddy (on the order of days).

Anticyclonic eddies are identified by convex-shaped isopycnal displacements in ITP density sections, and
concave displacements for cyclonic eddies (Figure 5). Potential temperature is a useful additional indicator,
with a clear, relatively uniform temperature anomaly (relative to the ambient water) in the center confirm-
ing the presence of an eddy. For eddy identification in the present study, both anomalous isopycnal dis-
placements as well as anomalous core temperature are required to be present. An apparent eddy is only
confirmed if the ITP drift track does not reverse direction during its transect—otherwise isopycnal displace-
ments associated with an intrusion or a baroclinic front (for example) may appear to be an eddy (a ‘‘false’’
eddy). To conservatively identify a feature as an eddy, we require at least four profiles in a relatively straight
drift track showing anomalous isopycnal displacements (and potential temperature). Here we are assuming
that all features that meet the stated criteria are closed vortices, although we cannot rule out the possibility
that the sampled feature is a meander.

From August 2004 to December 2013, 127 eddies were detected, 5 cyclonic, and 122 anticyclonic. Of these
anticyclonic eddies, 7 had warm cores while 109 were cold-cored; the others exhibited combination core
temperature structures (Figure 6). The remainder of this paper focuses on the cold-core anticyclonic eddies.
In contrast to cold-core anticyclones, the limited number of warm-core anticyclones does not allow for a
statistical analysis.

Once the cold-core eddies were identified, eddy core positions were estimated to be at the center of the
convex-shaped isopycnal displacements (Figure 7a). Eddy core depths are defined to be the depth of the
minimum temperature through the eddy core (Figure 7b), and eddy thicknesses are defined by the depth
difference between the two buoyancy frequency maxima above and below the core (Figure 7c). Eddy diam-
eters are defined as the distance between the bands of maximum azimuthal flow (see discussions to follow)
on either side of the core (Figure 7d). The estimation of eddy core position and diameter may be biased
when the ITP track does not transect the actual core of an eddy but rather skirts an edge. We estimate the
error in both eddy core position and diameter as follows. Given our requirement for eddy detection of four
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profiles (in a straight drift track) measuring anomalous water properties, a typical length scale that will be
measured is �8 km (considering the typical profile spacing of �2 km, Figure 2a). We anticipate that eddy
horizontal length scales will be of the order of Rd � 10 km. In fact, examination of typical diameters (Figure
13b) shows this to be true. Comparing the lower bound (�8 km) to Rd � 10 km gives an error in the diame-
ter of �20%, and a core position uncertainty of 3 km (although this leads to minimal discrepancies in
reported core properties given the solid-body core structure). Of course, there are cases when an eddy is
detected with horizontal length scale smaller than 8 km (i.e., when ITP drift was slow). In these cases, errors
will be larger. We estimate, however, that 72% of the eddies sampled have diameter errors within 20% of
Rd, and so inferred diameter errors less than 20%.

Eddy azimuthal velocities are calculated assuming the eddies are in cyclogeostrophic balance

2
1
q
@p
@r

1
v2

r
2fv50; (2)

where the first term is the pressure gradient force per unit mass, the second term is the centrifugal accelera-
tion, and the third term is the Coriolis acceleration. v is the azimuthal velocity, and r is the distance from the
eddy core (taken to be at r 5 0). Geostrophic velocity vg between two ITP profiles is computed as

Figure 6. Representative potential temperature (color) and potential density (referenced to the surface) [kg=m3, contours] of all eddy types.
(a) A cold-core eddy (ITP 3, 76:1

�
N, 136:0

�
W, December 2005); (b) a warm-core eddy (ITP 5, 76:1

�
N, 144:9

�
W, February 2007); (c) a

combination-temperature-core eddy (ITP 64, 78:8
�
N, 141:0

�
W, October 2012); (d) a cyclonic eddy (ITP 1, 79:1

�
N, 140:6

�
W, November 2005).
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fvg5
DD
Dx

; (3)

where DD is the difference of dynamic height (D5
Ð p2

p1

dp
q , where p1, p2 are the pressures at the level of no

motion and at the point of interest, respectively) between two adjacent upgoing ITP profiles, and Dx is the
horizontal distance between the two profiles. Because the CTD sensors are located at the top of the ITP
profiling unit, downgoing profiles can be influenced by its wake. Therefore, only data from ITP upgoing
(odd profile numbers) are used in this calculation because small differences between up and downgoing
profiles in the dynamic height field (calculated from temperature, salinity, and pressure) can result in spuri-
ous geostrophic velocities. For characterization of all other eddy properties, both up and downgoing pro-
files are used as other properties are not influenced by the small discrepancies between the two. For an
anticyclone, the cyclogeostrophic velocity at a distance r from the eddy core can then be expressed as
v5 r

2 ðf 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 22 4

r fvg

q
Þ, with a theoretical maximum velocity of fr

2.

To compute dynamic heights, we assume a level of no motion of 300 m for most eddies, except for those
profiles where deepest ITP measurements were shallower than 300 m, in which case the maximum depth is
taken to be the level of no motion. Varying the choice of the level of no motion from 100 to 700 m (Figure
8d) suggests that its value is not a major influencing factor as long as this level is at least a few tens of
meters deeper than the base of the eddy.

It is useful to compare ITP measured velocity (from the ITP-V) [see Cole et al., 2014] with calculated cyclogeo-
strophic velocities as an ITP-V system transected a mesoscale eddy. Comparison between measured and cal-
culated velocity (Figures 8a–8c) indicates that the cyclogeostrophic balance is an appropriate representation.
In this case, the ITP-V measured velocity at 150 m depth was used in the integration (i.e., instead of assuming
a level of no motion). These measured velocities were very small, about 0.03 m/s (the average value in profiles
indicating the eddy, Figure 8e), much smaller than the eddy azimuthal velocities. Cyclogeostrophic velocities
calculated through all eddy cores indicate that the observed anticyclones approximate a Rankine Vortex
model (i.e., the eddy core is in solid body rotation with azimuthal velocity proportional to distance from the
core, while outside the core the azimuthal velocity decays as 1

r , e.g., Figure 8d).

Rossby numbers are computed to characterize the approximate dynamical balance of the eddies, with Ro

� 1 indicating an eddy in cyclogeostrophic balance and Ro � 1 consistent with a quasi-geostrophic bal-
ance. Eddy Rossby numbers are calculated according to Ro5f=f , where f is the maximum relative vorticity,
and R is the eddy radius. In cylindrical coordinates, f5 dv

dr 1 v
r , can be scaled as 2U

R considering the eddy is in
solid-body rotation [see, e.g., Manley and Hunkins, 1985; D’Asaro, 1988; Plueddemann and Krishfield, 2007;
Timmermans et al., 2008], where U is the maximum calculated azimuthal velocity through an eddy core.
Therefore, the eddy Rossby number is appropriately defined as Ro5 2U

fR .

5. Results

5.1. Eddy Distribution
Of the 109 cold-core anticyclonic eddies detected between 2004 and 2013, most were located in the Beau-
fort Gyre region and in the vicinity of the Transpolar Drift Stream, although there is likely some bias due to
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the higher ITP profile density in these regions (Figure 9). Eddies are classified as Canadian water eddies or
Eurasian water eddies depending upon the ambient water stratification in which they were found. Canadian
water eddies may be divided into two groups: shallow (Figure 10a) and middepth (Figure 10b), as can Eura-
sian water eddies: shallow (Figure 10c) and middepth (Figure 10d). Different classes of eddies are character-
ized by different temperature and salinity properties, indicating they may have different source waters
(Figure 11). Most shallow Canadian water eddies (eddy core depths< 80 m) were found in the northeast
part of the Canada Basin, while middepth eddies (eddy core depths> 80 m) were mainly confined to the
southwestern Canada Basin. We find that the distribution of eddies indicated no apparent relationship to
season, although the data set is not yet large enough to make definitive conclusions.

Between 2005 and 2013, an ITP encountered around one eddy every �1000 km (cumulative along-track dis-
tance, Figure 12), far fewer than the number detected by Plueddemann and Krishfield [2007] (they found
around seven eddies every 1000 km). The IOEB drift analyzed by Plueddemann and Krishfield [2007] was
mostly over the Chukchi Plateau and southern Canada Basin in the vicinity of boundary currents, which are
eddy-generation regions. It may also be that direct measurements of velocity (analyzed by Plueddemann
and Krishfield [2007]) are a better indicator of eddies than density measurements.
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motion of 150 m corresponding to the deepest measurements sampled by the ITP-V; (b) measured velocities for the same eddy (from the
velocity sensor on ITP-V 35); (c) azimuthal velocities through the eddy core; black: calculated cyclogeostrophic velocity with a level of no
motion of 150 m; cyan: calculated cyclogeostrophic velocity using the measured velocities (at 150 m); blue: measured velocities; red
dashed: theoretical maximum cyclogeostrophic velocity; (d) calculated cyclogeostrophic velocity through a different eddy to that shown
in Figures 8a–8c (sampled by ITP 3, 76:0

�
N, 136:0

�
W, December 2005) assuming different levels of no motion: blue, 700 m; green, 500 m;

pink, 300 m; red, 100 m). (e) Measured velocities (from ITP-V 35) at the level of no motion (150 m, blue line, with red indicating eddy
regions) and at a level corresponding to core depths of sampled eddies (79 m, green line) (positive u: eastward velocities; positive v: north-
ward velocities).
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5.2. Eddy Properties
Probability density functions (PDFs) of primary eddy parameters (core depth, diameter, azimuthal velocity,
and Rossby number) document the general properties of the observed eddies (Figure 13). Canadian water
eddy core depths have a bimodal distribution, centering around 50 m and 110 m (Figure 13a). The mode of
50 m is consistent with shallow eddies studied by Timmermans et al. [2008], while the 110 m mode is con-
sistent with eddies studied by Plueddemann and Krishfield [2007] who, using direct velocity measurements,
defined the eddy center depth to be the median depth of the maximum velocity in each profile. Eurasian
water eddy core depths have a mode around 70 m, indicating that the majority of these eddies were
located just beneath the Eurasian water mixed layer.

The diameter of observed eddies (Figure 13b) shows modes centered around 14 and 8 km for Canadian
water eddies and 9 km for Eurasian water eddies. Eurasian water eddies and one mode of Canadian water
eddies have horizontal scales comparable to Rd and consistent with larger deformation radii in the Canadian
water compared to the Eurasian water. There is also a class of Canadian water eddies with smaller horizontal
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scales, and varying core depths. The inferred smaller scales may result because the ITP transected the outer
edge of those eddies. There is likely not a lower mode present for Eurasian water eddies because it may be
even harder to detect a mesoscale eddy in the Eurasian water given the relatively smaller Rd in Eurasian
water (horizontal profile resolution is about the same in each of the two basins). The diameter distribution
for the Canadian water 110 m-core depth eddies (i.e., those middepth Canadian water eddies) shows a
mode around 13 km (not shown), almost twice as large as eddies detected by Plueddemann and Krishfield
[2007] (with the same definition for eddy diameters), who reported a mode around 7 km. Further, the range
of diameters observed here (between 7 and 24 km) is approximately 5 km larger than the diameter range
found by Plueddemann and Krishfield [2007].

Azimuthal velocities (Figure 13c) for Canadian water eddies have a trimmed mean value (eliminating the
upper and lower 5%) of about 0.14 m/s, consistent with modes around 0.11 and 0.19 m/s. Eurasian water
eddies have weaker azimuthal velocities, around 0.06 m/s. The azimuthal velocity distribution for the Cana-
dian water 110 m-core depth eddies shows a mode of about 0.2 m/s (not shown), somewhat weaker than
eddies found by Plueddemann and Krishfield [2007] (about 0.25 m/s); weaker velocities computed here
might be caused by discrepancies between calculated cyclogeostrophic azimuthal velocities and directly

Figure 10. Potential temperature (�C; colors) and salinity (white contours) sections for each of the five eddy-types (numbers at the top of
each panel correspond to the numbers indicated in Figure 9). (a) A shallow Canadian water eddy (ITP 1; 29 July 2006; the eddy core resides
above the warm Pacific summer water (the band of warm water in the potential temperature section between 60 and 80 m depth). (b) A
middepth Canadian water eddy (ITP 69; 5 September 2013; the eddy core resides in the Pacific water layer). (c) A shallow Eurasian water
eddy (ITP 7; 25 August 2007; the eddy core resides above the warm Atlantic Water Layer (the band of warm water in the potential temper-
ature section below 250 m depth). (d) A middepth Eurasian water eddy (ITP 38; 11 July 2010; the eddy core resides near the warm Atlantic
Water Layer).
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measured velocities.
Combined with
larger diameters of
our eddies, it could
also be that eddies
measured by Plued-
demann and Krish-
field [2007]
predominantly found
in the Chukchi Pla-
teau and Southern
Canada Basin regions
in the vicinity of the
boundary currents,
were closer to their
origins, and there-

fore younger and more energetic than the eddies observed here (in the interior Canada Basin) which may
have experienced some dissipation [e.g., Muench et al., 2000; Ou and Gordon, 1986]. Eddy Rossby numbers
(Figure 13d) for both Canadian and Eurasian water eddies have modes around 0.25 and 0.7, suggesting that
most Eurasian water eddies and about half of Canadian water eddies are near geostrophic, while other
eddies are in cyclogeostrophic balance. Overestimates of Ro occur when an ITP skirts the edge of an eddy.
The distribution of Ro suggests a boundary between high and low Ro eddies around Ro50:5, with the high
Ro (i.e., cyclogeostrophic) eddies displaying a clear positive relationship between diameter and azimuthal
velocity (Figure 14a), consistent with eddies studied by Plueddemann and Krishfield [2007] (this relationship
is less well defined for low Ro eddies).

It is of note that the deeper eddies are thicker, consistent with a decrease in the stratification with depth in
the Arctic halocline (Figure 14b) [see Carpenter and Timmermans, 2012]. Carpenter and Timmermans [2012]
showed how eddies adjust their vertical structure to the ambient stratification and derived an expression
for eddy scale height on an f-plane, assuming quasi-geostrophic potential vorticity conservation. They
derived a relationship between eddy thickness dH, eddy diameter D, and the ambient stratification N
(defined as the stratification adjacent to an eddy where the eddy azimuthal velocity decays to zero):

dH50:7
fD
2N

; (4)

as the height over which the velocity decays to 10% of the eddy velocity at its center depth. The distribu-
tion of eddy thickness measurements as a function of ambient stratification corresponds well with the theo-
retical prediction, showing that the vertical and horizontal scales of eddy adjustment are consistent with
the ambient stratification (Figure 14c). When an eddy moves to a more weakly stratified environment, if its

diameter remains unchanged,
the eddy grows taller in an effi-
cient vertical transfer of
momentum, with higher Ro

eddies generally taller than
predicted by the theory and
vice versa for low Ro eddies.

5.3. Possible Eddy Origins
5.3.1. Canadian Water Eddies
Shallow Canadian water eddies
(e.g., Figure 10a) concentrate in
the eastern Canada Basin and
have properties most consistent
with the shallow eddies studied
by Timmermans et al. [2008],
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who suggested that these features are generated by ageostrophic baroclinic instability of a surface zonal
front separating Canadian and Eurasian water. SCICEX data from 2000 show this front located around 78

�
N

[Timmermans et al., 2008], with colder and saltier water on the northern side; the position of the front shows
significant interannual variability [e.g., Timmermans et al., 2011]. ITP data show the front near 80

�
N in 2007,

and near 83
�
N in 2009. Water masses on both sides of the front showed a freshening tendency, �1.5 over

these years; temperatures are around freezing. The freshening on the south side of the front is associated
with an intensification of the anticyclonic Beaufort Gyre circulation and freshwater accumulation [see Proshu-
tinsky et al., 2009]. The shallowest Canadian water eddies observed here show a similar core freshening from
2004 to 2008 with salinities decreasing from �30.8 to �28.5. These eddies are restricted to the eastern side of
the basin. Nearly half of the Canadian water eddies are consistent with formation by baroclinic instability of
this front, implicating the front as an important dynamical feature in the Arctic Ocean, transferring changes in
surface-ocean properties to the halocline.
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After 2009, we did not observe any shallow eddies with core temperature near freezing. Further, the eddies
observed in 2009–2013 were all at the deeper end of the range for shallow eddies, located near the central-
southern part of the basin, and had saltier core properties (S � 31). Their presence is consistent with forma-
tion by baroclinic instability of the Chukchi-Beaufort shelfbreak jet or possibly with origins in coastal poly-
nyas [e.g., Pickart et al., 2005; Pickart and Stossmeister, 2008; Chapman, 1999].

Middepth Canadian water eddies (e.g., Figure 10b) are mainly distributed in the southwestern Canada Basin
and have similar properties as the eddies modeled by Spall et al. [2008] and observed by Pickart et al.
[2005], Pickart and Stossmeister [2008], and Plueddemann and Krishfield [2007], implying a similar formation
mechanism—baroclinic instability of boundary currents in the Chukchi-Beaufort Sea. Spall et al. [2008]
showed observations to be consistent with numerical experiments indicating that baroclinic instability of
the spring configuration of the shelfbreak jet can be a source of these middepth Canadian water eddies.
Pickart et al. [2005] sampled four anticyclonic cold-core eddies originating from the Beaufort/Chukchi shelf-
break jet of winter-transformed Bering Seawater from summer 2002 measurements. The eddies Pickart et al.
[2005] observed had core potential temperatures around 21.7�C, and salinities around 33, somewhat colder
and saltier than the eddies of comparable core depths sampled here. The source water properties imply
that these eddies may be formed during the time period when winter-transformed Chukchi/Bering water is
advected into the basin. This same middepth Canadian water eddy type was also observed between 1992
and 1998 by Plueddemann and Krishfield [2007], with the difference being that the eddies observed in our
study generally have larger diameters and slower azimuthal velocities (note that Plueddemann and Krishfield
[2007] did not have temperature and salinity information). Eddies detected here are further away from their
inferred origins at the Chukchi/Beaufort shelfbreak jet. They have moved to the basin interior (although
eddy advection or propagation mechanisms are unclear), having experienced some amount of spin-down
and mixing with their ambient waters along their path, weakening their distinctive core properties and
velocities.

Both warm and cold-core middepth anticyclonic eddies are observed in the Pacific Layer in the Canadian
water (five warm-core anticyclones were observed in the Pacific Layer, e.g., Figure 6b). Cold-core eddies likely
have origins in Pacific Winter Water boundary currents (e.g., boundary currents containing winter-transformed
Bering/Chukchi water), while warm-core eddies are likely formed by instability of Pacific Summer Water
boundary currents (e.g., boundary currents containing summer-modified Bering/Chukchi water) [Pickart and
Stossmeister, 2008]. Not only do the core properties of these eddies allow for some inferences as to the vari-
ability in properties of their originating boundary currents, but they are also important in the connection
between coastal regions and the basin interior, contributing to transporting biological and chemical material,
such as nutrients, organic carbon, and zooplankton [e.g., Mathis et al., 2007; Watanabe, 2011; Nishino et al.,
2011; Watanabe et al., 2014]. It is of further interest that knowledge of the changing properties of boundary
currents may allow us to put bounds on lifetimes of eddies generated by these currents.

5.3.2. Eurasian Water Eddies
Most past studies of Arctic eddies focus on Canadian water eddies; our ITP analysis indicates that the Eura-
sian halocline is also rich in eddies. Most Eurasian water eddies documented here (e.g., Figure 10c) were
positioned immediately below the base of the mixed layer with weaker azimuthal velocities than Canadian
water eddies. To our knowledge, previous observations of halocline Eurasian water eddies were limited to
just a few examples. For example, Polyakov et al. [2012] present moored measurements of an ‘‘eddy-like
structure’’ in the upper �150 m over the Laptev Sea Slope in late December 2003 to early January 2004.
Woodgate et al. [2000] found warm Atlantic Water eddies and cold middepth Eurasian water halocline
eddies in moored measurements between 1995 and 1996 near the Lomonosov Ridge. Woodgate et al.
[2000] attributed these eddies to baroclinic instability of fronts generated from coastal polynyas (as studied
by Chapman [1999]). The generation of eddies by surface buoyancy forcing was also studied by Bush and
Woods [2000] in both laboratory experiments and numerical/theoretical models. They outlined the genera-
tion of anticyclonic vortices at the base of the mixed layer as a response to convection in a lead. Numerical
estimates by Bush and Woods [2000] using characteristic values of mass and momentum fluxes in a lead of
width 100 m indicate that eddies formed in this way reside in the upper haloline (at the base of the mixed
layer). Their characteristic diameters range from 4 to 20 km, in agreement with eddy scales reported here.

Middepth Eurasian water eddies are limited in numbers, and all of them locate in the vicinity of ridge fea-
tures and in shelf regions. Their presence is consistent with formation either from instability of boundary
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currents or topographically steered flows in the vicinity of midbasin ridges. Note that even deeper eddies
(i.e., below the halocline) have been studied in both the Eurasian water and the Canadian water [e.g., Car-
penter and Timmermans, 2012; Aagaard et al., 2008].

6. Summary and Discussion

Mesoscale eddies are prevalent in the Arctic halocline and here are observed in the Beaufort Gyre region
(Canadian water eddies) and in the vicinity of the Transpolar Drift Stream (Eurasian water eddies). Eddy
properties are analyzed to obtain an Arctic-wide synthesis of the mesoscale eddy field over a decade of ITP
measurements. Table 1 shows a summary of properties of the different types of eddies observed here.

We calculate Rd across the Arctic Ocean and show it is largest in the Canadian water (>13 km), with lower
values characterizing the Eurasian water (�8 km) because the fresher (lower density) surface Canadian
water results in a larger stratification. Changes in Rd in regions where the stratification varies little mainly fol-
low the bathymetry (with deeper regions characterized by larger Rd). Our calculations of the deformation
radii from ITP profiles (coupled with EWG climatology) across the Arctic fills in regions where Rd was not
well estimated by model output and produces a reliable map of the deformation radius across the Arctic for
further use in dynamical and modeling studies.

The eddies observed here have horizontal scales comparable to Rd, with Canadian water eddies larger than
Eurasian water eddies, except for a group of smaller Canadian water eddies, which may be biased small
because the ITPs did not transect the eddy cores. Eddies are in either near-geostrophic or cyclogeostrophic
balance, with larger cyclogeostrophic eddies being stronger. The comparison between calculated azimuthal
velocities and measured velocities (by an ITP-V) shows good agreement. Eddy velocities are well approxi-
mated by a Rankine Vortex. Vertical and horizontal scales of eddy adjustment are shown to be consistent
with the ambient stratification.

We find eddies can be grouped into four types (two types of Canadian water eddies and two types of Eura-
sian water eddies) mainly distinguished by their core depths. Canadian and Eurasian water eddies have
either shallow (<80 m) or middepth (>80 m) core depths. Different classes of eddies show different charac-
terizing core temperature and salinity properties, suggesting different source waters.

The range of eddy core depths, locations, and core temperature-salinity properties found here are consist-
ent with eddies observed in past studies, and origins and formation mechanisms for some eddies can be
inferred from these. In the Canadian water, the shallowest eddies, likely generated by instability of a surface
front, appear to be concentrated on the eastern side of the basin, and have near freezing core tempera-
tures. Eddies likely generated by the instability of boundary currents in the Canada Basin concentrate on
the southwestern side, with saltier core water and a range of core temperatures. Eurasian water eddies
locate predominantly in the vicinity of ridge features and in shelf regions. Their presence is consistent with
formation from instability of boundary currents or possibly with origins in coastal polynyas (more likely for
shallower eddies).

Important topics for future study relate to understanding eddy formation, advection, spin-down processes,
and lifetimes. Ocean eddy lifetimes are typically estimated from either biological and chemical tracers, or
using the distance from the inferred origin region and assuming that the eddy translates with some known

Table 1. Mean Properties of Different Cold-Core Anticyclone Eddy Typesa

Water Mass Eastern CW Southwestern CW EW EW

Possible origin Surface front Boundary currents Surface buoyancy flux Boundary currents
Number 30 40 34 5
Ro 0.54 6 0.24 0.47 6 0.27 0.35 6 0.28 0.39 6 0.23
Core depth (m) 53 6 8.7 135 6 47.2 63 6 9.9 116 6 32.7
Mean velocity (m/s) 0.14 6 0.05 0.15 6 0.06 0.10 6 0.05 0.14 6 0.08
Mean diameter (km) 9.5 6 3.8 12.3 6 4.1 10.5 6 3.7 10.1 6 2.2
Mean thickness (m) 48 6 11.3 150 6 53.4 56 6 14.1 125 6 39.1
Mean core T (�C) 21.53 6 0.04 21.51 6 0.22 21.74 6 0.06 21.81 6 0.03
Mean core salinity 29.9 6 0.6 32.3 6 0.7 32.5 6 0.7 33.6 6 0.7

aTrimmed mean (eliminating the upper and lower 5%) and standard deviation are given.
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mean flow [e.g., Manley and Hunkins, 1985; Kadko et al., 2008; Timmermans et al., 2008]. Eddy lifetime can
also be estimated with some knowledge of the spin-down process. Eddy spin-down due to surface friction
(in the sea ice-ocean boundary layer) has been studied theoretically by Ou and Gordon [1986] and Chao and
Shaw [1996]. Ice-ocean friction causes an Ekman divergence above an anticyclonic eddy (in the Ekman layer
adjacent to the sea ice). This leads to upwelling inside the eddy, and a lateral convergence toward the eddy
bottom, generating cyclonic velocities which ultimately spin down the eddy. Ou and Gordon [1986] relate
this spin-down time to the flattening of isopycnals, and obtain an expression for eddy spin-down time as a
function of stratification, upwelling rate, eddy core depth and ice-ocean relative motion. In their theory,
eddy velocities decrease with increasing diameters as the spin-down process proceeds. Using their expres-
sion (applicable for small Ro), we estimate lifetimes of the small Ro eddies observed here (that reside near
the base of the mixed layer) to be in the range of 0.9 years to about 5 years.

Eddy spin-down can also take place in the absence of any sea ice influence but due to the vertical and hori-
zontal velocity shear associated with the eddy and ambient flow, although this can be a small effect. Nonne-
gligible radial velocities may also play a role, and these can lead to horizontal flow convergence/divergence
which generate vertical compensating flows and lead to exchange of eddy core waters with surrounding
waters. For example, for one eddy detected by the ITP-V, radial velocities of the order of a few cm/s were
observed inside the eddy. If we assume that the associated net horizontal divergence and the eddy horizon-
tal scale remains unchanged, we estimate that it would have taken about 7 months for the eddy to
exchange its waters completely with its surroundings. In addition, combined with the presumed generation
site of the eddy (near the shelfbreak jet, around 157�W, 72�N) and assuming a mean background flow of
around 0.02 m/s translating the eddy, the eddy was generated at least 14 months before being sampled by
the ITP-V. Therefore, this eddy may have a lifetime of at least 21 months, in agreement with previous esti-
mates of eddy lifetimes.

Further study of the rarer warm-core anticyclonic eddies and cyclones is also of interest. Theoretical studies
suggest that eddies can sometimes form in a dipole, i.e., a cyclone-anticyclone pair [e.g., Manucharyan and
Timmermans, 2013]. Understanding seasonal and interannual variability of the eddy field is important for
estimating seasonal influences (such as sea ice) on eddy production, and varying heat and salt fluxes related
to eddies, which can have an impact on the entire Arctic climate system.
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