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Abstract High-resolution, near-bottom vector magnetic data were collected by remotely operated vehicle
Jason over the Raven hydrothermal vent field (47°57.3′N 129°5.75′W) located north of Main Endeavour
vent field on the Endeavour segment of the Juan de Fuca Ridge. The survey was part of a comprehensive heat
flow study of the Raven site using innovative thermal blanket technology to map the heat flux and crustal
fluid pathways around a solitary hydrothermal vent field. Raven hydrothermal activity is presently located
along the western axial valley wall, while additional inactive hydrothermal deposits are found to the NW
on the upper rift valley wall. Magnetic inversion results show discrete areas of reduced magnetization
associated with both active and inactive hydrothermal vent deposits that also show high conductive heat
flow. Higher spatial variability in the heat flow patterns compared to the magnetization is consistent with the
heat flow reflecting the currently active but ephemeral thermal environment of fluid flow, while crustal
magnetization is representative of the static time-averaged effect of hydrothermal alteration. A general NW
to SE trend in reduced magnetization across the Raven area correlates closely with the distribution of
hydrothermal deposits and heat flux patterns and suggests that the fluid circulation system at depth is likely
controlled by local crustal structure and magma chamber geometry. Magnetic gradient tensor components
computed from vectormagnetic data improve the resolution of themagnetic anomaly source and indicate that
the hydrothermally altered zone directly beneath the Raven site is approximately 15×106m3 in volume.

1. Introduction

Hydrothermal circulation within oceanic igneous basement is a fundamental process at mid-ocean ridge
spreading centers responsible for the physical and chemical evolution of the crustal rocks, the deposition ofmetal-
rich, economically valuable minerals, and for the colonization by unique biological communities [e.g., Alt, 1995;
Stein and Stein, 1994;Mottl, 2003;Hannington et al., 2005; Childress and Fisher, 1995]. Themagnitude, pathways, and
extent of subsurface fluid circulation are difficult to constrain at an active mid-ocean ridge, especially where
sediment cover is minimal and direct conductive heat fluxmeasurements are not possible with conventional heat
flow probes. Moreover, it has also been difficult to determine the conductive heat flux in and around vent sites
at the resolution required for the sub-100 m scale of hydrothermal vent fields. Insight into the geometry of
subsurface hydrothermal circulation related to vent sites has been previously provided from an unlikely source.
High-resolution magnetic field mapping has revealed discrete zones of demagnetized crust associated with
hydrothermal vent deposits in basaltic-hosted seafloor inferred to represent patterns of subsurface upflow
[e.g., Tivey et al., 1993, 1996; Tivey and Johnson, 2002; Tivey et al., 2003; Tivey and Dyment, 2010; Zhu et al., 2010;
Honsho et al., 2013]. It is well established that the destruction of iron-titanium oxide minerals carrying magnetic
remanence in oceanic basalt is a direct result of hydrothermal alteration [Ade-Hall et al., 1971;Watkins and Paster,
1971; Rona, 1978; Wooldridge et al., 1990], in contrast to the more systematic and ubiquitous low temperature
alteration experienced by oceanic crust as it ages [e.g., Irving, 1970; Johnson and Merrill, 1972, 1973; Johnson and
Atwater, 1977]. Ancient analogs of hydrothermal systems in ophiolites show that discrete zones of demagnetized
crust are associated with the heavily mineralized stockworks of ore deposits producing discrete magnetic
anomalies [e.g., Richards et al., 1989; Johnson et al., 1982;Hall, 1992]. Furthermore, studies of hydrothermal systems
on land in volcanic settings show that alteration is by far the most dominant mechanism for the destruction of
magnetic minerals [e.g., Studt, 1959; Browne, 1978; Hochstein and Soengkono, 1997] compared to the transient
thermal demagnetization of magnetic minerals due to temperatures elevated above the Curie temperature.
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High-resolution seafloor magnetic mapping at the Main Endeavour Field (MEF) on the Juan de Fuca Ridge
provided the first tangible evidence of tightly constrained subsurface fluid upflow zones that are potentially
associated with hydrothermal vent systems [Tivey and Johnson, 2002]. Patterns of demagnetization suggested
that discrete and sharply defined zones of upflow were associated with the primary hydrothermal vent
structures within the MEF vent field and that both active and inactive vent sites were associated with
well-defined magnetic “burnholes,” i.e., discrete zones of reduced crustal magnetization [Tivey and
Johnson, 2002]. There are now abundant examples of similar magnetic “burnholes” present in a variety of
basaltic-hosted hydrothermal settings such as mid-ocean ridges, seamounts, and back-arc environments
[e.g., Tivey and Dyment, 2010; Zhu et al., 2010; Caratori-Tontini et al., 2012; Honsho et al., 2013].

Models of mid-ocean ridge hydrothermal fluid circulation have evolved from large-scale spreading center-scale
circulation [Phipps Morgan and Chen, 1993; Chen and Morgan, 1996;Wilcock, 1998] to more localized circulation
models that utilize high-permeability pathways provided by faults and topography [e.g., Rabinowicz et al.,
1999; Spinelli and Fisher, 2004; Lowell et al., 2012, 2013]. Recent numerical models of hydrothermal fluid
circulation show that circulation can be highly localized around vent systems with annular zones of recharge in
close proximity to the upflow zones [e.g., Fontaine and Wilcock, 2007; Coumou et al., 2008].

In the following study, we investigate the detailed magnetization of a small region associated with an
isolated vent site, the Raven vent field on the northern Juan de Fuca Ridge. The magnetic survey was
an integral part of a study of an active vent site using a novel technology designed to allow for detailed
heat flux measurements where conventional heat flow probe measurements are not possible [Johnson
and Hutnak, 1997; Johnson et al., 2010; Salmi et al., 2014]. The combination of these two detailed data
sets along with seafloor geological observations [Hearn et al., 2013] allow us to compare, for the first time,

Figure 1. Location bathymetry map of Endeavour Ridge rift valley on the Juan De Fuca Ridge in the NE Pacific showing
the location of the Raven hydrothermal field relative to theMain Endeavour vent Field (MEF) and the High Rise vent field. Inset
map shows location of Raven survey (red star) on northern Juan de Fuca Ridge.
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the geometry inferred from magnetic
subsurface crustal structure with
measured conductive heat flux patterns
and seafloor permeability data.

2. The Raven
Field-Endeavour Ridge

The 90 km long Endeavour Ridge
(Figure 1) is a mid-ocean ridge
segment of the intermediate rate
spreading Juan de Fuca Ridge system
that features an elongate volcanic
ridge with a central graben axial valley,
which hosts several major high-
temperature hydrothermal vent fields
systematically spaced several
kilometers apart [Delaney et al., 1992,
1997; Glickson et al., 2007; Kelley et al.,
2012]. These vent fields, from south to
north, include Mothra, Main
Endeavour vent Field (MEF), High Rise
vent Field, Salty Dawg, and Sasquatch
[Kelley et al., 2012]. Multichannel
seismic imaging shows that an Axial
Melt Chamber (AMC) is present
beneath the central 25 km section of
the ridge segment at a depth of 2.2 to
2.5 km [Van Ark et al., 2007; Carbotte
et al., 2012]. The AMC appears to be
subdivided along strike into three main
bodies with boundaries at 47°54.7′N,
47°56.8′N and 48°00.5′N, which is also
reflected in the overall morphology
of the ridge segment topography

[Carbotte et al., 2012; Kelley et al., 2012]. Seismic imaging of the upper crustal extrusive lava section (i.e., Layer 2A)
suggest that its thickness ranges from 330 m beneath the rift valley to 550 m on the flanks of the ridge
[Van Ark et al., 2007]. The depth of the rift valley graben correlates with the depth of the AMC, with the deepest
portion of the graben overlying the shallowest AMC. This suggests that rather than being generated by
amagmatic extension, the axial graben is formed as a response to magma withdrawal from a steady state
magma lens, subsequent dike injection, and the resultant faulting [Carbotte et al., 2006]. Supporting this model
are microseismic earthquake studies that show that the bounding axial rift valley faults extend down to the
edges of the AMC between MEF and High Rise fields [Wilcock et al., 2009].

Hydrothermal activity was initially thought to be limited to the five major vent fields, spaced 2–3 km apart
[Delaney et al., 1992; Wilcock and Delaney, 1996], but it is now recognized that hydrothermal activity is more
widely distributed with smaller and less active areas located between these major fluid emission sites
[Johnson et al., 2002; Glickson et al., 2007; Clague et al., 2008; Jamieson et al., 2013; Kelley et al., 2012]. The
Raven hydrothermal vent field (Figure 1) is an example of one of these small vent sites located ~400 m north
of MEF and ~1800 m south of High Rise Field. The Raven Field (Figure 2a) was discovered in 2001 during a
remotely operated vehicle (ROV) survey of the near bottom geology and diffuse vent flux output [Johnson et al.,
2002]. The Raven Field is comprised of a central ~10 m tall, largely inactive chimney complex directly
adjacent to the western rift valley wall, with standing and toppled sulfide chimneys extending over to
the western wall where active venting >200°C was located in 2001. Hydrothermal activity was found to
extend more than 100 m south along this western wall [Johnson et al., 2002]. In 2011, the area of >200°C

a)

b)

Figure 2. (a) High resolution ROV Jasonmultibeambathymetrymap (SM2000
[Johnson et al., 2002]) of the Raven hydrothermal field area showing the
Jason track lines (red) which collected magnetic field and bathymetry
data. Contour interval is 5 m. (b) Bathymetry map of the Raven vent field
study area showing the location of the active (white triangles) and inactive
(red triangles) hydrothermal vent sites and the major tectonic zones from
west to east: upper west wall (UWW), upper terrace (UT), lower terrace (LT),
lower west wall (LWW), valley floor (VF), broken pillow lavas (BPL), lower east
wall (LEW). Contour interval is 5 m.
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venting had died down to low-level diffuse activity, while active high-temperature venting had shifted
~100 m south along the rift valley wall [Hearn et al., 2013].

The relatively isolated nature of the Raven vent field presented an opportunity to examine a vent field system
that could be constrained by a single-field program and potentially address universal questions regarding
the geometry and extent of fluid recharge and discharge of hydrothermal systems. We report here on
the magnetic survey completed over this site as part of a larger heat flux survey [Salmi et al., 2014] and then
discuss the implications and relationship between the interrelated data sets.

3. Methods

In 2011, an R/VAtlantis research cruise (AT18-09) conducted a remotely operated vehicle (ROV) Jason II survey
of the Raven vent field area (Figure 2a). One of the primary objectives of the field program was to perform
a conductive heat flux survey of the rift valley and region immediately surrounding the Raven vent site
[Hearn et al., 2013; Salmi et al., 2014]. Another key objective was to undertake a detailed magnetic field
survey of the study area. A three-axis Honeywell HMR2300 magnetometer was mounted to ROV Jason,
and during transits, between heat flow stations, ROV Jason photographically imaged the seafloor geology
and collected underway magnetic field data of the axial valley seafloor and walls (Figure 2b). Three
ROV Jason dives (586, 590, and 591) collected multiple overlapping track lines within an area of ~700 by
450m (Figure 2a). For each ROV dive, a calibration spin of the vehicle on descent and on ascent was
performed to compute the calibration coefficients required to correct the magnetic data for the effects of

a)

c)

b)

d)

Figure 3. Panel of four maps showing the three observed magnetic field components measured along the uneven ROV survey (i.e., varying depth and height above
seafloor): (a) North, (b) East, and (c) Vertical components, corrected for the motion of ROV Jason and the vector summed (d) Total magnetic field. Contour interval is
2000 nT except for the north component which is 1000 nT.
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the vehicle. The orientation of ROV Jason (heading, pitch, and roll) is collected independent of the magnetic
data using an Octans fiber optic gyro. The vehicle attitude information is then used in the calculation of
the predicted magnetic field and in the correction of the measured magnetic field for the three magnetic
field components: i.e., the North, East, and Vertical components. The vector sum of the three components
gives the Total magnetic field.

The measured ROV magnetic field data were collected at 1Hz and merged with the Octans attitude data
based on themagnetic sensor time in addition to vehicle depth and altitude data collected by a Paroscientific
and RDI Doppler sensor, respectively. The magnetic sensor data were corrected for the induced and
permanent magnetic field effects of the ROV using the calibration approach established by Isezaki [1986],
Seama et al. [1993], and Korenaga [1995], which is available from Tivey’s website (http://deeptow.whoi.edu/
download). In this approach, the observed magnetic field, Hobs, is related to the local field plus the induced
and permanent field effects using

Hobs ¼ RPYF þ ARPYF þ Hp (1)

Where F is the ambient geomagnetic field vector, A is the induced magnetization coefficient matrix, Hp is the
permanent magnetic field vector of the vehicle, and R, P, and Y are, respectively, the rotation matrices of roll,
pitch, and yaw (heading) of the vehicle. From Korenaga [1995] equation (1) can be rewritten as follows:

βHobs � H’p ¼ RPYF (2)

where β = (A+ 1)�1 and H′p= β Hp. β andH′p are estimated from the calibration spin data using a least squares
inversion (or singular value decomposition). A and H′p are assumed to be time invariant during the course of

a) b)

c) d)

Figure 4. Panel of four maps showing the magnetic field component data continued upward to the 2070m depth level (a) North, (b) East, (c) Vertical components
and (d) the resultant Total magnetic field. Contour interval for the North and East components is 100 nT and 200 nT for the Vertical and Total field plots.
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the survey, and F can be approximated
by the regional geomagnetic field
vector estimated from the International
Geomagnetic Reference Field (IGRF).
A typical vehicle calibration spin
performed in midwater above the dive
site (~1200 m depth) gives a variation
in total field of ~4600nT, which is
reduced to ~<150nTafter the calibration
correction is applied. An example of
calibration coefficients computed for ROV
Jason dive 591 is shown below:

1. The induced field component matrix,
β is

1:01327 0:00950 0:03047

0:01313 0:98020 �0:23218

0:00798 0:17869 0:92468

2. The permanent magnetic field vector
offset, H′p in nT is

1337:95

7222:50

�5043:75

Following the calibration procedure, the
three-component magnetic field data are
merged with the navigational data.
Navigation is based on doppler sonar
positioning and ship-based Ultra-Short
Baseline acoustic fixes. During ROV
operations, the vehicle track varies its
depth and height above the seafloor, and
the magnetic field must be corrected for
these variations in depth. Using a gridded

approach, the threemagnetic field components were interpolated onto grids with a 6meter node spacing using a
minimum curvature algorithm (GMT surface function:Wessel and Smith [1998]) (Figure 3 observed magnetic data
components). The observed magnetic field shows the strongest magnetic intensity in the vertical component
(Figure 3) consistentwith the geomagnetic field at the latitude of this survey. Amagnetic low is clearly present over
the western wall and Raven vent field area in the observed vertical and total field components (Figures 3a and 3b).

Given the short time and relatively small area covered by the survey, a constant mean IGRF value for the
region was removed from the observed magnetic field to obtain the anomaly field (IGRF 2011) [Finlay et al.,
2010]. To correct for the variable depth of ROV Jason above the seafloor we upward continue the observed
magnetic field data to a level plane above the bathymetry. We used the Guspi Fourier transform upward
continuation method [Guspi, 1987] to calculate magnetic field at a constant depth (�2070 m) above the
terrain. Figure 4 shows the upward continued maps for the North, East, and Vertical components along with
the Total magnetic field anomaly. The resultant fields (Figure 4) show smoothing compared to the observed
fields (Figure 3) due to the filtering inherent in the upward continuation—we used a cosine band pass filter with
a pass band between 750m and 75m spatial wavelengths. We used the Parker and Huestis [1974] Fourier
inversion techniquemodified for three-dimensional grids (i.e., maps) byMacdonald et al. [1980] to compute the
crustal magnetization (Figure 5a) using the upward continued total magnetic field. This method assumes a

Figure 5. Contour maps of (a) the computed magnetization inversion
(contour interval 1 A/m) and (b) computed magnetization with 8 times
the annihilator added to the solution (contour interval 1 A/m). Maps have
been given a background shading based on the slope of the underlying
microbathymetry. Red and white triangles denote the location of the
inactive and active vent sites, respectively [Hearn et al., 2013].
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source layer of constant thickness with the upper surface defined by the bathymetry and magnetization
invariant with depth. A fixed magnetic direction is used (Inclination=68° and Declination=17.6°) based on the
IGRF and latitude and longitude of the study area. For this survey, we assumed a nominal 500m thick source
layer based on seismic estimates of the average thickness of Layer 2A in this area [Van Ark et al., 2007], which is
generally accepted as the primary source layer for crustal magnetization [Harrison, 1987]. Figure 5 shows the
computed crustal magnetization.

Onemeasure of the nonuniqueness of the inversion solution for crustalmagnetization is the annihilator function
—a magnetization distribution that when convolved with the bathymetry produces no lateral magnetic field
variations [Parker and Huestis, 1974]. We calculate the annihilator function following the approach ofMacdonald
et al. [1980] by forward computing the field that results from using a 1A/m source layer, inverting for crustal
magnetization and taking the difference between the inversion and constant 1A/m value. While an infinite
amount of the resultant annihilator solution can be added to the magnetization inversion solution, only
sufficient annihilator (8X) was applied to the magnetization inversion solution to make the inversion result
positive, i.e., normal polarity, over the entire region (Figure 5b). The study area is well within the recent Brunhes
normal polarity epoch, and so we expect no reversely magnetized crust for this region. The variation in
annihilator is relativelyminor so that the addition of annihilator to themagnetization only results in a shift in the
mean magnetization value (see Figures 5a and 5b). The resultant magnetization solution plotted on top of
bathymetry contours (Figure 6) shows that crustal magnetization varies between 0 and ~16A/m, which is
consistent with the magnetization of typical young oceanic crust [Harrison, 1987].

3.1. Vector Magnetic Analysis

Given that we collected vector magnetic data for this survey, we also investigated the ability and usefulness
of calculating the magnetic gradient tensor from the three component data. The magnetic gradient tensor
[Nelson, 1988; Pederson and Rasmussen, 1990] can be calculated from the spatial rate of change of the three
field components (Fx, Fy, and Fz) along three orthogonal axes. For example, the tensor gxy is the partial
derivative of the Fx component in the y direction. See supporting information for details on the magnetic
gradient tensor approach and a forward model example (Figures S1–S3) of a reduced magnetization zone
within the Raven site. We applied these tensor techniques to the measuredmagnetic field data by calculating
themagnetic gradient tensor components from the upward continued three componentmagnetic field data.
Figure 7 shows the computed magnetic gradient tensor components, gxz, gyz, gxy, and gzz over the Raven

Figure 6. Final map image of crustal magnetization with 8 times the annihilator added to the solution to make the magne-
tization all positive. Overlaid contours are bathymetry (cont. int. 2m). Red and white triangles denote the location of the
inactive and active vent sites respectively [Hearn et al., 2013]. Sun shading is from the multibeam bathymetry.
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area. As in the Raven forward model (Figure S3), the vertical gradient tensor component, gzz shows the
tightest concentration of contours around the demagnetized zone beneath the main Raven Field (Figure 7).
Also, we see that the horizontal gradient tensor component gxy shows the alternating peaks and lows of
the corners/edges/extents of the source body quite effectively with the eastern edge being more diffuse
similar to that imaged in the magnetization inversion result (compare Figures S3 and 7).

Magnetic field gradients can also be used for a simple depth estimation [Miller and Singh, 1994; Salem et al.,
2007] by using a tilt-depth method. The tilt-depth method uses a normalized ratio between the vertical, z and
horizontal components, h of the total field, F:

θ ¼ arctan
∂F
∂z

.
∂F
∂h

0
B@

1
CA; (3)

where

∂F
∂h

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂F
∂x

� �2

þ ∂F
∂y

� �2
 !vuut ⇒

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gx2 þ Gy2

p
: (4)

The resultant tilt-angle map (Figure 8) of theta computed from the upward continued field shows contours
from�90 to +90°. The edges of the source bodies are located at the 0° contour (assuming vertical boundaries)
while the depth to the body is measured by the half width between the�45 to +45° contours. As can be seen in

+

+

+

+

+

+
+ +

Figure 7. Panel of four maps showing the computed magnetic gradient tensor components for the Raven area (a) gxz component, (b) gyz component, (c) gxy
component, and d) the gzz component. Black crosses mark magnetic highs and lows that are characteristic of a discrete source body at Raven (see supporting
information for explanation). The contour interval for the gxz and gyz tensor components is 2000 nT/m, for the gxy tensor component it is 1000 nT/m, and for the gzz
tensor it is 5000 nT/m.
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the tilt-depth map (Figure 8), the 0° contour clearly outlines the Raven vent field region as imaged in both
the magnetization inversion (Figure 6) and the vertical gradient tensor, gzz (Figure 7). Although, there is
interference from nearby anomalies, the half width between the�45 and 45° contours varies between 25 and
63m, which is, in effect, ROV Jason andmagnetometer height above the seafloor. Thus, the demagnetized zone
is consistent with a fluid upflow zone region that extends downward from the seafloor beneath the vent site.
The basal depth of the zone is not resolved by this analysis.

Finally, we can estimate the volume of Layer 2A igneous crust associated with the inferred upflow zone beneath
Raven vent area using the geometry provided by the first derivative of the vertical magnetic gradient tensor
gzz (Figure 7) or the zero angle of the tilt relationship (Figure 8). This zone can be approximated by 200 m
diameter cylinder and assuming that the 500 m depth extent gives a volume of 15×106 m3 of oceanic igneous
crust that is hydrothermally altered due to upwelling hydrothermal fluid. This is likely an upper bound on the
volume estimate because the magnetization inversion is averaged over the thickness of the assumed source
layer, but the magnetization could also vary as a function of depth but that cannot be resolved in this approach
—the inversion thus reflects the average properties.

4. Results and Discussion

We can compare the computed magnetization patterns to the seafloor geology that was photographically
imaged during the same ROV Jason dives [Hearn et al., 2013]. Fromwest to east across the rift valley, Hearn et al.
[2013] define the upper west wall (UWW) (Figure 2b) of the rift valley as dominated by steep normal fault scarps
tens of meters high associated with talus and broken pillow lava flows covered by thin pockets of sediment.
At the base of the upper west wall is an uneven terrace that varies in width from south to north and is covered
by more extensive sediments overlying broken pillow flow fragments. This terrace is divided into an upper
terrace (UT) and lower terrace (LT) separated by a scissor fault (Figure 2b). The eastern edge of the lower terrace
is bounded by the lower west wall (LWW), a steep fault scarp with a throw of 20 to 40 m with extensive talus
and broken lava fragment at the base. This lower west wall is where the majority of the active hydrothermal
venting is found (Figure 2b). A relatively flat axial valley floor (VF) extends horizontally 300 m to the eastern
wall and consists of relatively complete sediment cover withminor faults, fissures, and flow fronts that interrupt
the sediment cover to reveal pillow lava. The lower eastern wall (LEW) of the rift valley is marked by talus
and broken lava on a series of successive fault ramps that step up to the east. Hearn et al. [2013] also identified

Figure 8. Tilt-angle and depth map for the Raven area computed from the ratio of the total field gradients as described in the
text. Contour interval is 15°. The 0° contour (dashed) outlines the position of the source bodies, while the distance between
the�45° and +45° contours (red lines) indicates the depth of the source body. Sun shading is from the multibeam bathymetry.
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an area of broken pillow lava (BPL) with less sediment cover than the valley floor, forming a unit in the
northeastern quarter of the rift valley (BPL zone, Figure 2b).

We can relate the tectonic and structural elements in terms of crustal magnetization (Figure 9). The upper
western rift wall (UWW) has relatively weak magnetization compared with adjacent areas. The western upper
terrace (UT) is marked by higher magnetization but with a discrete region of low magnetization that correlates
with a cluster of inactive hydrothermal deposits at 47°57.375′N 129°5.9′W. The western lower terrace (LT) is
marked by uniform higher magnetization, while the lower western wall (LWW) fault zone has markedly weaker
magnetization. A zone of reduced magnetization associated with the active hydrothermal venting is present
along the southern half of the wall (Figure 9) and extends eastward into a broader “bull’s-eye” magnetic low
that is centered directly beneath the primary Raven hydrothermal area at 47°57.3′N 129°5.725′W (Figure 9).
This low inmagnetization has a sharply defined northern edge at 47°57.35′N 129°5.725′Wbut is more diffuse to
the east and extends SE across the entire rift valley floor. In general, the rift valley floor is more strongly
magnetized with the eastern side having the highest magnetization. A well-defined magnetic high in the NE
quarter of the valley floor appears to correlate with a specific visually identified lava flow covered with broken
pillow fragments (broken pillow flow, BPL, Figure 9). The eastern rift valley wall fault zone is relatively less
magnetic, presumably reflecting the talus that dominates the area.

Overall, while the tectonically active and disrupted rift valley walls would be expected to be less magnetic
than more coherently magnetized intact flows of the rift valley and terrace area, there is clearly an additional
signal superimposed on this pattern by the hydrothermal activity. There is a clear correlation between the
distribution of active hydrothermal venting and inactive vent deposits with zones of reduced magnetization
(Figure 9). Furthermore, a distinctive SE to NW trend is discernable in both the crustal magnetization
patterns and in the distribution of hydrothermal deposits, as noted by Hearn et al. [2013] and Salmi et al. [2014].
It has been noted [Salmi et al., 2014] that this NW-SE alignment of the sulfidemineral deposits also corresponds
with a shift in the location of the AMC from east to west between MEF and High Rise Field [Van Ark et al., 2007]
as well as a change in microearthquake focal mechanisms from normal to reverse faulting at the Raven Field
just north of MEF [Wilcock et al., 2009]. This trend suggests that a form of subsurface tectonic control on
hydrothermal circulation has persisted for some time.

The general correlation between reduced crustal magnetization and hydrothermal activity in basaltic-hosted
regions has been well documented [e.g., Tivey et al., 1993; Tivey and Johnson, 2002; Tivey and Dyment, 2010;
Zhu et al., 2010; Caratori-Tontini et al., 2012; Honsho et al., 2013]. It is hypothesized that this correlation is
primarily the result of alteration of the host rock with the highly corrosive hydrothermal fluid, altering the

Figure 9. Summary map of Raven area showing the simplified geology and crustal magnetization map in color shading
with overlaid bathymetry contours (5m contour interval). Red and white triangles denote the location of the inactive
and active vent sites, respectively [Hearn et al., 2013]. Sun shading is from the multibeam bathymetry.
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magnetic mineral titanomagnetite that carries the magnetic signal in basaltic rock to less magnetic or
nonmagnetic mineral phases [e.g., Hochstein and Soengkono, 1997; Ade-Hall et al., 1971; Watkins and Paster,
1971]. Transient thermal demagnetization is also possible if the subsurface temperature beneath a vent site
approaches the Curie temperature of the mineral carrying the magnetic signal (typically 150–200°C for
titanomagnetite [Dunlop and Ozdemir, 1997], although the correlation of demagnetized zones with inactive
vent sites suggests hydrothermal alteration at elevated temperatures as the primary mechanism for the
crustal demagnetization.

4.1. Magnetics and Heat Flow

The Raven hydrothermal vent field is a relatively isolated and compact feature within the Endeavour rift valley
and provides a unique opportunity to examine questions concerning the vertical and spatial geometry of
the hydrothermal circulation system as well as the temporal relationships between present day activity and
time-averaged effects. Insight into the present-day subsurface thermal structure of the study area is provided
by the concurrent conductive heat flux study [Salmi et al., 2014]. High conductive heat flow values are found
associated with (a) the active Raven hydrothermal area, (b) along the lower west wall fault zone south of the
main Raven complex, and (c) in the NW upper west wall region where a cluster of inactive hydrothermal
deposits were observed (Figure 10a). Additionally, slightly higher heat flow is also found in the center of
the rift valley where sediment thickness is sufficient to completely blanket and seal the underlying pillow
lava (Figure 10a). Bottom water temperatures [Hearn et al., 2013] map the location of the active vent sites in
the Raven area and along the lower west wall (Figures 10b and 10d). In comparing the crustal magnetization
patterns with the heat flow and bottom water temperature maps (Figure 10), we find a strong correlation
between zones of reduced magnetization and the distribution of both active and inactive hydrothermal
deposits as noted earlier (Figure 10c). Specifically, the central Raven magnetization low is centered over the
main complex of inactive vent sites with the currently active vent site located toward the western side of
the magnetization low on the rift valley wall. The reduced magnetization extends SW along the rift valley
wall coincident with a zone of active vents and with a region of high heat flow and high bottom water

b)a)

c) d)

Figure 10. Compilation of conductive heat flux, bottom water temperature anomalies measured by ROV Jason, and
the computed crustal magnetization: (a) conductive heat flux measurements and the interpolated heat flow map
from Salmi et al. [2014]; (b) bottom water temperature anomalies from Hearn et al. [2013]; (c) crustal magnetization
map from this study superimposed on bathymetric contours, and (d) bottom water temperature with the conductive
heat flux stations superimposed. Figures 10a–10c denote the active vent sites by the red triangles and the inactive vent
deposits by the black triangles.
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temperatures (Figure 10). A zone of reducedmagnetization also coincides with the inactive vent deposits in the
NW (upper terrace) portion of the survey area, which is also an area of residual high heat flow (Figure 10). A
more diffuse SE extension of the central Raven reducedmagnetization zone extends across the axial valley and
appears to correlate with the higher heat flow found in the central rift valley floor, presumably indicating a
deeper subsurface fluid pathway that is continuing to affect both convective heat flux and crustal magnetization
(Figure 10). From these comparisons, it is clear that the bottom water temperatures document the most recent
active venting locations, while the heat flux patterns show areas of conductive heat flux associated with both
active and inactive venting areas. The heat flux map (Figure 10a) has a greater spatial variability than the
magnetization patterns (Figure 10) and thus we conclude that the heat flux measurements [Salmi et al., 2014]
reflect the currently active thermal environment beneath the axial rift valley and near-ridge flanks, while the
crustal magnetization is more representative of a time-averaged, permanent record of past hydrothermal
alteration. The horizontal displacement of the highest temperature vent at the Raven vent site (by >100m)
between the 2001 [Johnson et al., 2002] and 2011 time periods [Hearn et al., 2013] demonstrates that seafloor
and subseafloor permeability pathways can evolve relatively quickly. In contrast, the inactive vent deposits at
the central Raven vent site have been dated to be at least 2000 years old [Jamieson et al., 2013] similar to some
of the main vent fields on Endeavor (MEF, High Rise), indicating that activity at Raven field has been as
persistent at this location, similar to nearbymajor vent fields. There are some isolated inactive vent deposits not
associated with zones of reduced magnetization. The crustal magnetic response of these vent deposits may
simply be below the resolution of the magnetic imaging or they possibly could have been short-lived systems
that did not have enough time to produce significant reduced magnetization zones. Thus, in answer to one
of our questions on the temporal relationship between present-day activity and the integrated effects over
time, we conclude that reduced crustal magnetization zones are permanent features that reflect active
alteration processes occurring over thousands of years while the heat flow data and the bottom water
temperatures reflect the more transient effects that can migrate on a decadal scale.

In terms of the vertical and spatial geometry of the hydrothermal system at Raven, Salmi et al. [2014] interpret
their heat flux measurements in terms of a dual-layer system composed of a thin uppermost high-permeability
layer (seismic Layer 2A) vigorously convecting with small-dimension circulation cells and a deeper less
permeable layer (seismic Layer 2B) that convects fluid slower and over longer distances that are bounded
by the geometry of the rift valley, the bounding fault zones and the AMC geometry. Salmi et al. [2014]
model the temperature regime within the crustal section both as a thermal gradient to the top of the AMC
at 2300m depth [Van Ark et al., 2007] and as a more realistic two-layer model with shallow vigorous
hydrothermal circulation in the uppermost extrusive lava layer. In both cases, the temperature at the base
of the extrusive lava seismic Layer 2A that comprises the magnetic source region would not reach the
Curie or blocking temperatures for titanomagnetite (i.e., 300–580°C)—consistent with the conclusion
that hydrothermal alteration, and not thermal demagnetization, is the major mechanism for the crustal
demagnetization patterns. In addition to the upflow zones imaged beneath the main Raven Field, beneath
an inactive hydrothermal zone on the upper west wall and beneath the active venting along the west rift
valley wall areas, the main Raven Field is marked on its eastern side by a diffuse zone of reduced
magnetization that extends eastward across the axial valley (Figures 6 and 10c). This extended diffuse zone of
decreased magnetization strongly suggests that an across-axis pattern in fluid flow may be responsible for
this distribution. The coincidence between this diffuse zone of reduced magnetization, the NW-SE trend in
hydrothermal deposits, and the heat flux patterns (Figure 10) together suggest a deeper control on the
circulation system likely constrained by the crustal architecture and axial magma chamber geometry at
depth. As noted earlier, Raven Field is located just south of a shift in the AMC from east to west between MEF
and High Rise Field [Van Ark et al., 2007] and a change in microearthquake focal mechanisms from normal
to reverse faulting [Wilcock et al., 2009]. This across-axis geometry in fluid circulation is consistent with
Johnson et al. [2010] who also concluded that the across-axis variation AMC depth helps drive the across-axis
circulation patterns in an area just south of Raven Field. In this survey, we also find that along-axis crustal
structure may also constrain the geometry of the across-axis circulation patterns.

5. Conclusions

A survey of near-bottommagnetic anomalies of the Raven hydrothermal field within the axial valley of Endeavour
Segment of the Juan de Fuca Ridge with dense track line coverage was combined with coregistered data from
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heat flow measurements, bottom water temperature anomalies, and photographic estimates of seafloor
permeability to construct a model of subsurface pathways of subsurface hydrothermal fluid flow. The dense
grid of magnetic data acquisition allows for identification of those regions within the seismic Layer 2A upper
igneous crust that have been exposed to hydrothermal alteration at elevated temperatures. Discrete areas
of reduced magnetization of the axial valley floor and flanking valley walls are associated with both active
and inactive hydrothermal vent deposits, areas of high conductive heat flow [Salmi et al., 2014] and near-
bottom water temperature anomalies [Hearn et al., 2013]. Downward continuation of the geothermal
gradient from the conductive heat flow data [Salmi et al., 2014] suggest that the subsurface temperatures in
the zones of reduced magnetization are not sufficiently elevated to thermally demagnetize the crust on
the scale observed and that chemical alteration of the magnetic mineralogy is the primary mechanism.
Regions of the axial valley with the high magnetization normally associated with recent crustal formation
are either regions of seawater recharge for the crustal fluid cells or were sealed from any fluid transmission
by near 100% sediment cover.

The assumption of a convecting layer hosted within the volcanic extrusives of the upper crust is primarily
seismically defined Layer 2A, as the magnetic anomaly inversions do not provide unique constraints on the
lower bound. The acquisition of vector magnetic data does allow for tensor calculations to be made that
effectively provide tighter constraints on source regions of alteration within this layer. These calculations
indicate that the hydrothermally altered zone beneath the Raven Field is approximately 15 × 106m3 in
volume, which is an upper bound.

Finally, a more diffuse zone of reduced crustal magnetization extending from NW to SE across rift valley
floor from the Raven Field to the eastern valley wall (Figures 6 and 10c) is consistent with an additional
deeper circulation cell possibly below Layer 2A. This isolated limb of a deeper cross-axis cell may be
controlled by sub-Layer 2A crustal architecture on the fluid circulation patterns within the larger Endeavour
axial valley. The across-axis flow modeled by Johnson et al. [2010] for just north of MEF and by Salmi et al.
[2014] for the Raven Field is supported by the presence of the cross-axis reduced magnetization zone
(Figure 10) and may represent narrow channels of fluid circulation. Circulation in these cross-valley
channels would be driven by the thermal gradient from the tilted subsurface magma chamber that
underlies the valley and the flow constrained by isolated zones of high crustal permeability. From the
distribution of magnetization (Figure 10), these deeper cross-axis channels do not appear to be present in
the valley north of the Raven Field.
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