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Measurements of the performance of acoustic transducers, as well as ordinary measurements made

with the same, may require discriminating between the farfield, where the field is spherically

divergent, and the complementary nearfield, where the field structure is more complicated. The

problem is addressed for a planar circular piston projector, with uniform normal velocity

distribution, mounted in an infinite planar rigid baffle. The inward-extrapolated farfield pressure

amplitude pf is compared with the exact nearfield pressure amplitude pn, modeled by the Rayleigh

integral, through the error 20 log jpf /pnj. Three sets of computations are performed for a piston with

wavenumber-radius product ka¼ 10: normalized pressure amplitudes and error versus range at

angles corresponding to beam pattern losses of 0, 10, 20, and 30 dB; error versus angle at three

ranges, a2/k, pa2/k, and 10a2/k, where k is the wavelength; and range versus angle for each of two

inward-bounded errors, 1 and 0.3 dB. By reciprocity, the results apply equally to the case of a

baffled circular piston receiver with uniform sensitivity over the active surface. It is proposed that

proximity criteria for measurements of fields associated with circular pistons be established by like

modeling, and that a quality factor be assigned to measurements on the basis of computed errors.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4895701]
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I. INTRODUCTION

The farfield of an acoustic transducer used as a projec-

tor, to transmit sound, is that spatial region where the direct-

path pressure amplitude varies inversely with distance from

the transducer. By reciprocity, this also applies to an acoustic

transducer used as a receiver of sound, in which the direct-

path pressure amplitude at the transducer varies inversely

with the distance to the acoustic source.1 The nearfield is the

spatial region that is complementary to the farfield. Its extent

is often gauged as a multiple of a characteristic transducer

dimension or a multiple of the square of that dimension di-

vided by the acoustic wavelength. These measures reflect the

dependence of the nearfield-farfield transition distance on

both amplitude and phase.

This understanding is quite general, but there is evident

disagreement, sometimes admitted dissatisfaction, with the

numerical values of the multipliers, not to mention their pos-

sible dependence on angle relative to the acoustic axis of the

transducer. While this matter might appear to be mainly of

academic interest, it has practical importance in many appli-

cations. It is also amenable to analysis, illustrated here for an

idealized planar circular piston transducer, with uniform

normal velocity distribution, or sensitivity, over the active

acoustic surface, mounted in an infinite planar rigid baffle.

A. Nearfield2farfield transition distance in review

The following comments, if not otherwise qualified,

apply to statements made specifically about the baffled

circular piston transducer operating harmonically, expressed

in terms of the piston radius a and acoustic wavelength k.

General distances are denoted by the range r; along the trans-

ducer axis, by z.

In an early work, Stenzel2 defined the axial farfield by

the dual conditions z� a and z� pa2/k. Rschevkin3 quoted

Stenzel’s second condition. Skudrzyk4 acknowledged

Stenzel’s work, but on the basis of a Huygens zone construc-

tion, with difference in distances from an axial field point to

the center of the piston and to the rim of the piston, gave the

axial transition distance as a2/k, also expressing this more

accurately as a2/k – k/4.

Williams5 gave a single measure for the axial transition

distance, namely, a2/k, citing an analogy with radiation from

a planar piston and that from a Fresnel aperture, but also not-

ing “several approximations of uncertain validity.” Beyer

and Letcher6 referred to Fresnel and Fraunhofer diffraction,

with “a dividing line” between nearfield and farfield at

z¼ a2/k. Zemanek7 referred to the same diffraction phenom-

ena, but based on a numerical investigation established “a

firm boundary between the near- and farfield.” If a/k< 13.3,

measurements could be made at r< 10a; if a/k> 13.3, meas-

urements would have to be made at r> 10a. Pierce8 also

referred to Fresnel and Fraunhofer diffraction regions

according to Fresnel-Kirchhoff diffraction theory from

optics,9 describing the farfield by the dual conditions r � a
and r � 2pa2/k. Beranek10 gave similar conditions r � 2a
and r � pa2/k. Also referring to Fresnel diffraction,

Stansfield11 derived a condition for the nearfield�farfield

transition distance, r¼ 4a2/k, but allowing that this could be

“unnecessarily conservative.”

In several well-known textbooks published in multiple

editions, measures for the nearfield�farfield transition
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distance have evolved. In their first edition, Kinsler and

Frey12 recognized spherical divergence beyond r¼ 2a2/k. In

the third edition, Kinsler et al.13 gave the transition distance

as a2/k, but with the qualification “roughly.” In the fourth

edition,14 the same distance, r¼ a2/k, was cited, but without

qualification. Urick15 referred indirectly to the transition dis-

tance in the first edition of his textbook through a plane-

wave parameter required for measurements at r< pa2/k.

This was repeated in the second edition,16 but in the third

edition,17 calibration of a projector was stated as being

“always made in the farfield beyond [pa2/k].” Clay and

Medwin18 referred to a critical range for the transition dis-

tance, r¼ pa2/k, as being “arbitrarily decided” by the

American National Standards Institute (ANSI). In their sec-

ond edition, Medwin and Clay19 simply stated that the far-

field begins at r¼pa2/k.

More recently, Blackstock20 defined the farfield as

r>pa2/k and r � a, but also noted that the quantity pa2/k
“roughly marks the end of the nearfield… and the beginning

of the farfield,” and that the underlying model “is a gross

oversimplification and must not be taken too literally.”

Comments on the off-axis field imply a greater complexity.

Sherman and Butler21 also commented on the off-axis field,

through the beam pattern, gauging the beginning of the far-

field as r� 2a2/k. They added, a “more accurate condition…

is sometimes necessary,” describing this as r� 4a2/k.

A very different approach was taken by Bobber,1 who ini-

tially addressed the on-axis case by computing errors associ-

ated with customary small-argument approximations of the

exact nearfield expression. These analytically treated errors

also prescribed conditions to be applied to axial field measure-

ments at finite distances. Bobber then quoted standard criteria

for a circular piston with uniform velocity distribution, namely,

z� pa2/k and z� a, but gave his own proximity criteria, relat-

ing these to errors incurred by the mentioned approximations.

For maximum errors of 0, 0.35, and 0.90 dB due to replace-

ment of the sine of an angle by the angle, the respective criteria

were that z should equal or exceed 2pa2/k, pa2/k, and 2a2/k.

For a maximum on-axis error of 0.5 dB, Bobber gave proxim-

ity criteria with respect to phase and amplitude thus: z� 4a2/k
and z� 2a, characterizing these as “conservative criteria.” Off-

axis errors were bounded with respect to the endfire orienta-

tion, confirming the phase-proximity criterion but increasing

the amplitude-proximity criterion to r� 20a. This second crite-

rion was modified by considering the effect of tapering of the

Fresnel zone areas from the central zone, supporting the less

stringent condition, r� 10a.

All of the foregoing criteria apply to the case of a point

receiver when a projector is being used or, by reciprocity, a

point source when a receiving transducer is being used,

including assumption of a uniform normal velocity distribu-

tion, or sensitivity, on the active acoustic area.

Bobber1 recognized other practical effects too, such as

those of finite-size receiving transducers when projectors, or

transmitting transducers, are being measured, as well as non-

uniform distributions of velocity, or sensitivity, on the

acoustically active transducer surface. Sabin22 provided

guidelines for on-axis measurements when both transducers

are circular pistons oriented normally to the line connecting

their centers. Bobber and Sabin23 and Sorokin24 considered

the analogous case when both transducers are finite-length

cylindrical transducers approximated as finite lines. The case

of non-uniform velocity, or sensitivity, distribution on the

acoustically active surface of the transducer being measured

was first treated by Stenzel2 and subsequently by

Greenspan25 and Aarts and Janssen.26

The nearfield�farfield transition distance is also treated

in the standards literature. In IEC 60565,27 the main separa-

tion distance between two transducers was defined for two

specified errors. For a circular piston projector and point

receiver, the minimum axial distance needed to limit the error

to 0.3 dB was defined by the criteria z> 4a2/k and z> 10a.

For an error of 0.2 dB, these separation distances were

increased by 20%. For measurement of the beam pattern, the

respective separation distances were to be doubled. In ANSI/

ASA S1.20–2012,28 the criteria were stated as r> pa2/k and

r> a, without specification of an error, citing Ziomek.29

B. Importance of the nearfield

The transducer nearfield is important in many applica-

tions and uses of sound. In biophysical studies and medical

uses of ultrasound, e.g., diagnostic imaging and therapeutic

hyperthermia, subject tissues may lie within the nearfield.

Even if such tissues are in the transducer farfield, other, inter-

vening tissues will be exposed to sound in the nearfield.30 The

magnitude and location of peak pressures will be of concern if

causing unwanted radiation effects, e.g., cavitation, which

also limits radiated transducer power.31 It is also important

for understanding interactions with biological media.

In fisheries acoustics, the transducer nearfield is gener-

ally avoided, but the entire trend of the field is toward maxi-

mal exploitation of technology in the quantification of

organisms of all types and environment too. The transducer

nearfield thus represents an opportunity to increase the

acoustic sampling volume,32 but with proper allowance

made for the detailed structure of the nearfield. In the case of

a parametric sonar used to measure herring (Clupea
harengus) in situ in the Norwegian Sea,33 it was impossible

to avoid the nearfield. Admittedly, the array was virtual,

existing in space away from the transducer, as the formation

of an exceptionally directional beam at very low frequencies

depends on the cumulative effect of the nonlinearity inherent

in the medium on the propagating and interacting primary,

high-frequency waves.34 A scheme for quantification of

parametric sonar echoes has been developed,35,36 drawing on

a computational model for the difference-frequency nearfield

of the parametric sonar, i.e., the nearfield.37,38

In some underwater geophysical investigations, meas-

urements are inevitably made in the nearfield, for example,

with high-frequency sidescan sonars operating at short

ranges. The method of dynamic focusing is used to restore

phase coherence to echoes by shading—adjusting amplitude

and phase—of elements in the sidescan sonar array. The

same is true of multibeam sonar.

Microphones and loudspeakers in air also have near-

fields, and consideration of these is a factor in their perform-

ance measurement. A case in point is calibration of
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microphones with circular membranes by the reciprocity

method, which requires free-field conditions and avoidance

of the nearfield.10

Common to all of these applications is knowledge of the

nearfield�farfield transition. Apropos of measurements, this

knowledge is essential for data interpretation. The same

knowledge is essential in measurements of transducer per-

formance, which are typically made according to protocols,

with conditions imposed on the measurement distance rela-

tive to the transition distance.1,27 In these cited cases, it is

recommended that the performance measurements be made

in the transducer farfield. In some other cases, such as those

involving very large transducers and arrays, special facilities

have been built and configured to effectively simulate

farfield conditions while operating in the nearfield.39–41

C. Rationale and organization of study

The amount of attention that the nearfield has received

in the literature witnesses to its importance. Many trans-

ducers, whether used as projectors or receivers of sound, in

air or water, are circular, with an approximately constant

normal velocity distribution, or sensitivity, and mounting in

a baffle that is effectively large and stiff. In such cases, mod-

eling the transducer as a planar circular piston with uniform

normal velocity distribution and mounting in an infinite pla-

nar rigid baffle is reasonable.

The radiation field of a baffled circular piston transducer

as described here is modeled by the Rayleigh integral. This

field is evaluated in the nearfield and compared with the

inward-extrapolated farfield. The error in the extrapolated

farfield relative to the nearfield is quantified for a piston with

wavenumber-radius product ka¼ 10 with the aim of eluci-

dating the nearfield�farfield transition. Criteria on the field

position for measurement of and with such transducers are

stated for this case, but with generalizations too.

The choice of the relative transducer size ka¼ 10 is

expedient but also representative of circular piston trans-

ducers in use. The value for ka is sufficiently low that the

numbers of sidelobes and nulls are small, avoiding obscuring

the nearfield wave-interference phenomena being studied. At

the same time, the value ka¼ 10 is well within the range of

circular piston transducers that are being used. Three exam-

ples are cited. (i) The Panametrics V391 0.5-MHz transducer

has a diameter of 29 mm, with operating frequency range

100–1000 kHz, hence with ka in the nominal range 6–60. (ii)

A Piezo Composite Transducer Ltd. custom-made piston

transducer is divided into a central circular area of diameter

100 mm and contiguous annulus of effective outer diameter

135 mm. Given the operating frequency range 20–500 kHz,

the respective ka-ranges are roughly 4–105 and 6–140. (iii)

An Ultran WS150–0.25 transducer has a diameter of 30 mm.

Its reported operating frequency bands are 200–300 and

150–350 kHz, with respective ka ranges of 13–19 and 9–22.

II. RADIATION FIELD OF A BAFFLED CIRCULAR
PISTON

The subject is a planar circular piston transducer, with

uniform normal velocity distribution on the acoustically

active surface, mounted in an infinite planar rigid baffle. For

convenience, this is imagined to be an active source, i.e., a

projector of sound. As noted, by reciprocity the field struc-

ture applies equally to the case that the transducer is used as

a receiver of sound emanating from a point source at the

field point.1

A general expression for the pressure field associated

with a planar acoustic source mounted in an infinite rigid

baffle is available through the Rayleigh integral,8,42

described by Sherman and Butler21 as “one of the most

frequently used equations in acoustics.” It is given here

essentially in the form derived by Pierce8 for pressure p
at field position r for a harmonic wave of angular fre-

quency x,

p rð Þ ¼ �ixq0

2p

ð
v r0ð Þ � n̂ R�1 exp ikRð ÞdS; (1)

where q0 is the mean mass density of the immersion me-

dium, vðr0Þ is the velocity of the piston at position r0 on the

acoustically sensitive surface S, n̂ is the unit normal to S at

r0, with n̂ � r > 0, R ¼ jr � r0j is the distance from a point on

the piston surface to the field point, k¼x/c0 is the wave-

number, and c0 is the speed of sound in the medium,

assumed constant. This is equivalent to other expressions of

the Rayleigh integral for harmonic waves, e.g., Ref. 21, but

with the useful reminder through the term � ixv that the

radiation of sound is due to acceleration of the piston sur-

face,20 not velocity per se.

For a uniform normal velocity vðr0Þ � n̂ ¼ v0,

pðrÞ � pnðrÞ ¼ A

ð
R�1 exp ðikRÞdS; (2)

where A¼�ixq0v0/2p¼�ip0/k, p0¼q0c0v0 is a pressure

amplitude,20 and k is the wavelength. The subscript attached

to p designates the nearfield solution, but the expression is

general with respect to the field at r.

Farfield: At very large distances r,

lim
r!1

p rð Þ � pf rð Þ ¼ A pa2 2J1 ka sin hð Þ
ka sin h

exp ikrð Þ
r

; (3)

where h is the angle between the transducer axis, with

unit vector ẑ in rectangular coordinates, and direction r̂
to the field point, i.e., h¼ arccos(ẑ � r̂), and J1(f) is the

Bessel function of order 1 and argument f. The direc-

tional part of the farfield amplitude is typically expressed

through the beam pattern b(h)¼ 20 log j2J1(ka sin h)/
(ka sin h)j.

Axial field: On the transducer axis r¼ (0,0,z), and

pax zð Þ ¼A
4p
k

sin k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
� z

h i
=2

n o

� exp ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p
þ z

h i
=2

n o
: (4)

In the limit that z becomes very large, this reduces to Apa2

exp(ikz)/z, which is equivalent to the value obtained from

Eq. (3) for h¼ 0.
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III. NUMERICAL ISSUES

A. Finite-element representation of a circular piston

Description of the nearfield at arbitrary field positions

requires numerical evaluation of the integral in Eq. (2). This

is done through a Riemann summation in which the circular

piston is represented by small finite elements that exactly

cover the active acoustic area. The circular area is subdi-

vided into equal-area curvilinear elements, with six in the

central circular area, denoted j¼ 1, and 6(2j � 1) quadrilat-

eral curvilinear elements in annulus j. For n annuli, the total

number of elements is 6n2.

For a transducer of relative size ka and n¼ 100, the

number of elements of radial dimension Da per wavelength

is k/Da¼ 200p/ka. For ka¼ 10, k/Da¼ 20p � 63. This

exceeds the criterion given by Lockwood and Willette43 that

this number be at least 10.

The vector position r0 of each element is required in the

finite-summation form of the integral in Eq. (2). The respec-

tive centroid of each element is used.

B. Benchmarking

Numerical code used to evaluate pn(r) in Eq. (2) is writ-

ten for the general field position r. To benchmark the code,

the result of evaluating Eq. (2) along the piston axis is com-

pared with the exact axial solution given in Eq. (4). The

number of finite elements used to represent the circular area

is sufficient to ensure convergence in both real and imagi-

nary components to within 1% in amplitude in the worst

evaluated case, z¼ 0.01a2/k. The error decreases with

increasing z; it is within 0.001% by z¼ 4a2/k.

Other benchmarking is available, for example, through

analytic evaluations of pf(r,h) in Eq. (3) and pax(r,h) in Eq.

(4) in Refs. 3, 8, 20, and 21, among other prominent texts.

These evaluations include the positions of maxima and

minima in the farfield angular patterns and along the near-

field axis.

C. Error characterization

Errors can be characterized in a number of ways.

Consistent with Bobber’s use,1 the error e is defined thus

e ¼ 20 log jpf ðr; hÞ=pnðr; hÞj; (5)

where pn and pf are evaluated as described above. It is noted

that while the expression for pf was developed in the limit of

very large r, it is applied at all field positions with finite r,

described as an inward extrapolation.

IV. RESULTS AND DISCUSSION

A. Nearfield2farfield transition

The axial field of a circular piston projector with uni-

form normal velocity distribution is known exactly, as stated

in Sec. II. It has been published often; indeed, it is a textbook

illustration of basic wave-interference phenomena, with an

optical analogy too. This is exemplified by the occurrence of

bright—diffraction—spots in the shadow behind an illumi-

nated disk.9 A single example of the axial field of a circular

piston transducer is given here in Fig. 1(a) for the

wavenumber-radius product ka¼ 10.

Less well known is the off-axis field, whose range de-

pendence is illustrated in Fig. 1(b)–1(d) for three fixed angles,

15.9, 20.0, and 21.6 deg for the same circular piston, with

ka¼ 10. These angles correspond to values of the beam pattern

b(h)¼�10, �20, and �30 dB, respectively. As the magnitude

of the beam pattern value increases, so does the difference in

inward-extrapolated farfield and exact nearfield values. This

difference is quantified through the error e in Eq. (5).

Another way of illustrating the nature of the departure of

the inward-extrapolated farfield from the exact nearfield is

FIG. 1. (Color online) Dependence of

the nearfield amplitude jpn(r,h)j,
inward-extrapolated farfield amplitude

jpf(r,h)j, and error 20 log jpf /pnj on

range r for a perfectly baffled planar cir-

cular piston transducer, with uniform

normal velocity distribution and

wavenumber-radius product ka¼ 10,

where r is measured from the transducer

center to the field point, for each of four

angles h measured from the piston axis

to the vector field position. (a) h1¼ 0,

on axis. (b) h2¼ 15.9 deg, for which the

one-way beam pattern b(h2)¼�10 dB.

(c) h3¼ 20.0 deg, for which

b(h3)¼�20 dB. (d) h4¼ 21.6 deg, for

which b(h4)¼�30 dB.
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shown in Fig. 2. Here, the angular dependence of the error e is

shown for each of three fixed ranges: a2/k, pa2/k, and 10a2/k.

The nearfield and farfield amplitudes evidently display

convergence with increasing range, with the significant

exception of the troublesome null regions, referring to min-

ima in b(h). For a circular piston transducer, the nulls occur

at the zeroes of J1(f), namely, f � 3.8317 and 7.0156. Since

f¼ ka sin h and ka¼ 10, h¼ 22.5 and 44.6 deg.

Admittedly, the scales in Figs. 1 and 2 are coarse, prevent-

ing both quantification of the degree of convergence and com-

parison of the kinds of error-related proximity criteria

prescribed in Refs. 1 and 27. A third set of computations was

performed, therefore, to increase the fineness of the discrimina-

tion in nearfield and inward-extrapolated farfield amplitudes. In

Fig. 3, the range beyond which the error in inward-extrapolated

farfield amplitude relative to the exact nearfield amplitude is

less than 1 or 0.3 dB is given as a function of angle h.

In the specific case of an error bound of 0.3 dB, in Fig.

3(b), the inward-bounded range exceeds 20a2/k¼ 100a/p
�32a for ka¼ 10 over a cumulative angular span of 5.5 deg,

or about 6% of the total span of h. This result rather gives

the lie to the notion of simple, short-range criteria for the

end of the nearfield and/or beginning of the farfield, the

more so when an error bound is stated or is implicit. This

analysis is repeated in Sec. IV B for specific error-related

proximity criteria given in Refs. 1 and 27.

The present analyses have been repeated for a circular

piston transducer of relative size ka¼ 20. The nearfield

structure is more complicated, which is to be expected from

the greater size relative to the wavelength. However, the

results are quantitatively similar with respect to the phase-

based proximity criterion and at least qualitatively similar

otherwise. On axis, for example, the transition distance for a

1-dB error is 2.1a2/k¼ 3.3a for ka¼ 10 and 2.0a2/k¼ 6.3a
for ka¼ 20. Also on axis, but for a 0.3-dB error, the transi-

tion distance is 3.8a2/k¼ 6.1a for ka¼ 10 and 3.6a2/k
¼ 11.4a for ka¼ 20.

It is clear from the computational results in Figs. 1–3, for

ka¼ 10, that there are angular regions where measurements

are contraindicated, even when strictly observing error-

related amplitude- and phase-based proximity criteria, as in

Refs. 1 and 27. Given that measurements of transducer per-
formance are still needed, and the available measurement

volume may be limited, two tactics are evident: (i) derivation

and application of compensation functions, or corrections, as

illustrated by Bobber,1 and (ii) assignment of quality factors,

or tolerances, to measurements made at ranges violating

the basic error criteria. This statement is equally true of ordi-
nary measurements made with transducers in their nearfields.

B. Comparison with published error-related proximity
criteria

Several sets of error-related proximity criteria for the

perfectly baffled circular piston were cited in Sec. I A. Two

FIG. 2. Dependence of the error 20 log jpf / pnj on angle h for a perfectly

baffled planar circular piston transducer, with uniform normal velocity dis-

tribution and wavenumber-radius product ka¼ 10, at each of three fixed

ranges r. (a) r1¼ a2/k. (b) r2¼pa2/k. (c) r3¼ 10a2/k.

FIG. 3. Dependence of the range r beyond which the error in the inward-

extrapolated farfield amplitude jpf(r,h)j, relative to the exact nearfield ampli-

tude jpn(r,h)j, is less than two values of the error e¼ 20 log jpf /pnj. (a)

e1¼ 1 dB. (b) e2¼ 0.3 dB.
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of these sets are now examined according to the Rayleigh-

integral model used to describe the nearfield.

For off-axis measurements, Bobber1 derived these am-

plitude- and phase-criteria for an error bound of 0.5 dB:

r� 10a and r� 4a2/k. Assuming the equality, the first of

these is the more stringent. In a detailed computation of the

type shown in Fig. 2 but computed for the range

r¼ 10a¼ 2pa2/k for ka¼ 10, it was found that the 0.5-dB

error bound was exceeded over the angular ranges 18.9–27.3

and 40.4–46.3 deg, i.e., cumulatively 14.3 deg or about 16%

of the total span of h.

Also for off-axis measurements, IEC 6056527 gives

these amplitude- and phase-criteria for an error bound of

0.3 dB: r> 20a and r> 8a2/k. Again, assuming that the

equality applies, justified by the continuity of the nearfield

pressure amplitude, the amplitude-criterion is the more strin-

gent. In a computation analogous to that described above for

Bobber’s case, performed for r¼ 20a¼ 4pa2/k for ka¼ 10,

it was found that the 0.3-dB error bound was exceeded over

the angular ranges 20.0–25.5 and 42.4–45.8 deg, i.e., cumu-

latively 8.9 deg or about 10% of the total span of h.

C. Other effects

As earlier noted, the present work addresses the problem

of the nearfield�farfield transition for a planar circular pis-

ton, with uniform normal velocity distribution and with

mounting in an infinite, rigid planar baffle, for measurement

by an idealized point receiver. For a finite-size receiver, the

problem would have to be addressed anew, as appreciated

and practiced in Refs. 22–24 and 27, although for special

aperture configurations in each of these cases.

Assumptions made about baffling are apparently

extreme, but effectively achievable with finite physical baf-

fles at higher frequencies. Methods exist for their quantifica-

tion, beginning with Nichols.44 Keele45 has made

measurements of loudspeakers with and without baffling,

noting changes in the response function due to frequency-

dependent effects of diffraction and directionality. These

effects will also be present in the case of unbaffled acoustic

piston transducers used underwater.

The assumption of a uniform normal velocity distribu-

tion on the piston surface also raises questions about applic-

ability, given the nature of mountings of acoustically active

materials, e.g., piezoelectric crystals.6 The assumption is

nonetheless reasonable and useful in many cases, especially

at higher frequencies. It is possible to treat cases of non-

uniform normal velocity distributions through the Rayleigh

integral, but in other ways too, e.g., analytically for certain

distribution functions.2,25,26

Non-planar radiating surfaces have also been studied.45

In the case of loudspeakers with a conical membrane, or pis-

ton, Keele raised the question of the applicability of standard

planar-piston theory but without answering this.

In general, on the subject of assumptions about baffling

and normal velocity distributions, Beyer and Letcher have

commented,6 “It is therefore a stroke of good fortune that

the results of the analysis… [based on the Rayleigh integral

evaluated for such an idealized baffled circular piston trans-

ducer]… have been quite accurately verified.”

V. SUMMARY AND CONCLUSIONS

The nearfield of a planar circular piston, with uniform

normal velocity distribution and mounting in an infinite pla-

nar rigid baffle, is indeed complicated, but amenable to mod-

eling by the Rayleigh integral. The particular error analyses

performed in this work, by numerical evaluation of the

Rayleigh integral, have quantified departures in the inward-

extrapolated farfield solution from the essentially exact near-

field solution of the harmonic wave equation. These error

analyses have illustrated a method that can be applied much

more generally to discriminate the nearfield�farfield transi-

tion of suitably baffled, planar acoustic transducers with

known normal velocity distribution.

Current amplitude- and phase-based proximity criteria

for the nearfield�farfield transition are limited in applicabil-

ity. It is recommended that compensation functions, or cor-

rections, be derived by modeling with the Rayleigh integral

and applied to measurements made of the performance of

acoustic transducers, as well as to measurements made with

the same, in their nearfields. It is also suggested that quality

factors, or tolerances, be assigned to measurements made at

nearfield positions.

It is remarked that the Rayleigh-integral method does

not distinguish between amplitude- and phase-based proxim-

ity criteria. Indeed, for circular piston transducers the two

are linked by the equality a¼ 2p(ka)�1a2/k.

The present results and conclusions also apply to the

reciprocal cases of measurements made of the performance

of acoustic transducers and ordinary measurements made

with such devices, when acting as receivers of sound ema-

nating from a point source. The principle of reciprocity,

which is invoked, applies strictly to the same conditions of

baffling and acoustic sensitivity.
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