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[1] Resource managers need to make decisions to plan for future environmental conditions,
particularly sea level rise, in the face of substantial uncertainty. Many interacting processes
factor in to the decisions they face. Advances in process models and the quantification of
uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes
and, often, numerical instability make linking process models impractical in many cases. A
method for emulating the important connections between model input and forecasts, while
propagating uncertainty, has the potential to provide a bridge between complicated numerical
process models and the efficiency and stability needed for decision making. We explore this
using a Bayesian network (BN) to emulate a groundwater flow model. We expand on
previous approaches to validating a BN by calculating forecasting skill using cross validation
of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN
emulation was shown to capture the important groundwater-flow characteristics and
uncertainty of the groundwater system because of its connection to island morphology and
sea level. Forecast power metrics associated with the validation of multiple alternative BN
designs guided the selection of an optimal level of BN complexity. Assateague island is an
ideal test case for exploring a forecasting tool based on current conditions because the unique
hydrogeomorphological variability of the island includes a range of settings indicative of
past, current, and future conditions. The resulting BN is a valuable tool for exploring the
response of groundwater conditions to sea level rise in decision support.
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1. Introduction

[2] Decision makers rely on forecasts of system response
to future conditions to develop adaptive management strat-
egies. Future conditions—particularly those involving cli-
mate change—must be understood in the context of their
uncertainty [National Research Council, 2009]. Molina
et al. [2010] suggest that for water resources management,
two main approaches for forecasts with uncertainty are
Decision Support Systems (DSS) and process models.
Broadly, a DSS is a framework in which decision makers
are able to evaluate the potential consequences of various
choices they are faced with in managing resources [Poch
et al., 2004]. A DSS is most useful if it can explore a uni-

verse of choices involving interconnected processes, each
with associated uncertainty, without relying on the labori-
ous process of changing conditions in individual models
and rerunning them or contacting a new set of experts for
information about each choice. Process models, on the
other hand, have the ability to incorporate exhaustive sys-
tem detail but at great cost of construction, simulation run-
time, and often, stability. This dichotomy between process
models and DSSs is not a sharp one—indeed, process mod-
els are routinely used for decision making. However, there
is a gap between a process model including the necessary
detail to adequately represent complex processes and the
need for expedience in the decision-making process. The
goal of this work is to illustrate one way to emulate a pro-
cess model, preserving much of the insight obtained from
the detailed process model, in a computationally efficient
way, while still propagating uncertainty.

[3] A fully coupled process model that represents all
aspects of a natural system would be ideal, but is often dif-
ficult to develop. Progress has been made hydrologic mod-
eling creating such models by integrating surface water
with groundwater processes [Markstrom et al., 2008; Ther-
rien et al., 2012] and solute transport with groundwater
flow [Zheng, 1990; Langevin et al., 2007]. However, even
detailed process models that accurately simulate the under-
lying processes suffer from uncertainty and struggle to rep-
resent complex environmental conditions [Oreskes et al.,
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1994]. Coupled process models also often require prohibi-
tively long runtimes and often suffer from numerical insta-
bility that leads to nonconvergence problems [Doherty and
Christensen, 2011]. A transparent and efficient assessment
of salient model results with estimates of their uncertainty
is critical for transparently supporting the needs of decision
makers.

[4] In process models, the uncertainty in parameters can
be propagated to forecasts through linear methods [e.g.,
Fienen et al., 2010], conditional realizations as in
calibration-constrained Monte Carlo [e.g., Kitanidis, 1995;
Tonkin and Doherty, 2009], or nonlinear methods such as
Markov Chain Monte Carlo [e.g., Michalak and Kitanidis,
2003; Michalak, 2008; Steinschneider et al., 2012]. In pro-
cess models, all changes in stresses or conditions must be
explicitly represented in a model and the corresponding
outcome must be evaluated. To quantify forecast uncer-
tainty, propagation methods such as those discussed above
must be employed. Even in the linear case, a separate eval-
uation of uncertainty for each candidate new stress must be
performed. The computational expense incurred and nu-
merical instability experienced by these individual evalua-
tions often precludes practical inclusion of the analysis into
integrated water resources management in which the natu-
ral process response is only one component of a broader
decision-making framework.

[5] A DSS is intended to be fast and, while many proc-
esses may be included (including socioeconomic, ecologi-
cal, and physical) [Sadoddin et al., 2005; Barthel et al.,
2008; Guillaume et al., 2012], major simplifications are of-
ten made to mitigate the numerical instability and computa-
tional expense incurred when evaluating process model
responses to stresses. Examples include a simplified mass-
balance analysis [Martin de Santa Olalla et al., 2007] or
elicitation of expert knowledge without direct modeling of
the process [Stiber et al., 2004; Zickfeld et al., 2007]. In
the mass balance approach, an analytical solution of mass
balance is made to apply over an entire region lumping the
processes that are explicitly simulated with a numerical
model. Elicitation of expert knowledge provides ongoing
challenges in quantifying levels of belief and posing ques-
tions of experts in a systematic and accurate way.

[6] There is a need for a bridge between simple models—
or the reduction of the process to ‘‘expert opinion’’ only
[e.g., Morgan et al., 1990]—and exhaustive use of process
models in evaluating the uncertainty of system response to a
predicted stress. Doherty and Christensen [2011] discuss
pairing simple models with more complex models pulling
useful attributes from each for making forecasts. Rather than
relying on fluctuations about individual parameter values,
however, perhaps the natural system has already provided
the variability we need? The geometric arrangement of the
system may sample enough variability in underlying param-
eter values (in addition to proximity to various boundary
conditions and other variability that is harder to characterize
using Monte Carlo methods) to characterize the uncertainty
in forecasts through a systematic analysis of correlation.
This is particularly so when geometry dominates as in the
present case or when evaluating the interaction between
pumping wells and surface water [e.g., Jenkins, 1968].

[7] The concept of using a surrogate, simpler model is
similar to fitting a transfer function to a model rather than

to data alone and is a form of emulation [Kennedy and
O’Hagan, 2001; Castelletti et al., 2012]. Other emulation
approaches have been explored, seeking to learn associa-
tions between input parameters and associated output. For
example, artificial neural networks [Nolan et al., 2012;
Gusyev et al., 2012] can be trained on numerical model
results, or high-dimensional model reduction [Li et al.,
2001] can reduce model inputs and outputs to a simpler
high-order polynomial representation.

[8] We explore the use of a Bayesian decision network
(BN) [Jensen and Nielsen, 2001] to emulate a model of the
Assateague island groundwater flow system, propagating
uncertainty from inputs through to outputs. Long-term
changes in the land surface and water-table position on bar-
rier islands like Assateague can have a profound effect on
species diversity and ecosystem function across the barrier-
island landscape [Ehrenfeld, 1990; Najjar et al., 2000;
Scavia et al., 2002]. Resource managers, tasked with mak-
ing decisions to preserve natural habitat and recreational
use need guidance to plan for changes in both island eleva-
tion and water-table position in the context of sea level
rise, where both the drivers and responses are uncertain
[National Research Council, 2009]. The forecast consid-
ered in this work is mean depth to water; however, only
changes in water-table position are calculated by the
groundwater model. We recognize that changes in land sur-
face also affect depth to water, but the processes that affect
that surface were not considered in this analysis.

[9] The approach of using a BN for model emulation has
been applied to create DSSs from numerical models in
coastal engineering applications [e.g., Plant and Holland,
2011a, 2011b]. In this manuscript, we present an example
of emulating a numerical groundwater model using a BN.
We show that a BN generally can capture the behavior of a
numerical groundwater model using an emulation approach
and can propagate uncertainty from inputs through fore-
casts. This method provides a means for forecasting with-
out the long runtimes of the process model. If other process
models can be emulated similarly, causal links among them
can be made by combining multiple BNs into a single
object-oriented BN [Molina et al., 2010; Carmona et al.,
2011] or into a formal DSS.

[10] We also present metrics to evaluate the trade off
between fit to calibration data and forecasting power,
including sensitivity and cross validation. The resulting BN
is suitable for inclusion into a DSS evaluating the mean
depth to water response to changes in island shape due to
sea level rise and can be readily linked to BNs created
using similar techniques from other process models simu-
lating related processes.

2. Assateague Island and Barrier Island Systems

[11] Assateague Island is a well-studied barrier island
that has attracted the interests of coastal geologists and
engineers for several decades [Dean and Perlin, 1977; Hal-
sey, 1978; Leatherman, 1979; Krantz et al., 2009]. Assa-
teague Island—like all barrier islands—is shaped by
storms, washover events, inlet formation, and the recovery
afforded by longshore transport [Hayes, 1979; Leatherman,
1979; Nummedal, 1983; Davis, 1994; Oertel and Kraft,
1994].
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[12] The majority of Assateague island is under the juris-
diction of the National Park Service (NPS) or US Fish and
Wildlife Service (FWS) so there are ongoing management
efforts to maintain the island in its natural state to maintain
suitable habitat for a range of plants and animals. Of partic-
ular importance is maintaining protected and threatened
shorebird populations that use the island for breeding and
stop-overs during migration [e.g., Schupp et al., 2013]. A
wild-horse population—made famous in a popular child-
ren’s book [Henry and Dennis, 1947]—also depends on
shallow freshwater ponds connected to the groundwater
system.

[13] Key to these island ecosystems is the unique vegeta-
tion assemblage and distribution [Ehrenfeld, 1990]. Vadose
zone thickness in shallow, coastal aquifer systems is a
major determinant of the establishment, distribution, and
succession of vegetation on these migrating, low-profile
barrier islands [Hayden et al., 1995; Shao et al., 1995;
Rheinhardt and Faser, 2001; Kirwan et al., 2007; O’Con-
nell et al., 2012]. Therefore, long-term changes in the land
surface or water-table position can have a profound effect
on species diversity and ecosystem function across the
barrier-island landscape [Ehrenfeld, 1990; Najjar et al.,
2000; Scavia et al., 2002].

[14] Given the inherently dynamic nature of barrier
islands, and their unique ecosystems that are highly de-
pendent upon specific hydrologic conditions, these systems
are particularly vulnerable to the effects of sea level rise
[Ehrenfeld, 1990]. Sea level rise is a major climate change
impact that will have a profound effect on the ecohydrol-
ogy of coastal systems. Recent projections [Rahmstorf,
2007; Jevrejeva et al., 2010] suggest that sea level may be
0.6–1.5 m higher than present by 2100.

[15] The hydrologic response of coastal aquifer systems
to sea level rise is well documented [Sherif and Singh,
1999; Barlow, 2003; Masterson and Garabedian, 2007;
Werner and Simmons, 2009; Essink et al., 2010]. Increases
in sea level position result in increases in groundwater lev-
els in coastal aquifers. This response in barrier-island aqui-
fer systems with relatively thin Vadose zones (typically <1
m) increases the potential for the water table to intersect
land surface, increased groundwater discharge to surface
water, and reduces the volume of the underlying freshwater
lens.

[16] Developing forecasting tools that would allow for
the physical effects of sea level rise to be factored into
coastal planning and adaptive management efforts is a pri-
mary focus of ongoing research efforts at Assateague
island. Uncertainties in future system drivers and
responses, and interdependencies among the dynamic
island morphology, groundwater, and implications on habi-
tat motivate an integrated decision support framework.
Understanding the groundwater system and emulating it
with a BN is an important step along the path to integrated
decision support.

[17] Assateague island has varied physical dimensions,
topography, and ecology along its 60 km length. Specific
and distinct conditions can be considered archetypes of
other midlatitude barrier islands worldwide. Furthermore,
as sea level rise progresses, conditions in one barrier island
setting transition to conditions observed at other barrier
island settings. On Assateague island, the northern and

southern ends of the island are representative of the
stressed conditions that are likely to result from rising sea
level, whereas the central portions of the island represent
more stable conditions both on Assateague and other
islands. This motivates the generalization of behavior on
Assateague, distilled into salient characteristics described
below, to potentially be used to forecast response to sea
level rise in other similar settings on different islands. In
this work, such forecasts can be made by using a BN
trained to a groundwater flow model of Assateague island.

3. Groundwater Flow Model

[18] A groundwater flow model was developed for Assa-
teague island, as shown in Figure 1, to evaluate the ground-
water system response to sea level rise. The model was
simulated by using SEAWAT [Langevin et al., 2007] to
simulate both groundwater flow and salt transport. Master-
son et al. [2013] document the details of the modeling
effort summarized here. The model was constructed by
using geologic and spatial information to physically repre-
sent the island geometry and properties. A uniform lateral
grid spacing of 50 m was applied throughout the model.
Ten layers, ranging in thickness from 0.5 to 12 m, comprise
the vertical discretization to a maximum depth of 30 m.

[19] The model was calibrated to observations of
groundwater elevation and contrasts in salinity detected in
boreholes using data collected by Banks et al. [2012]. Bore-
hole data were limited to several transects across the north-
ern half of the island. As a result, the calibration was
performed by using regularization to penalize deviation
from initial property values to stabilize the inversion and to
supplement the limited data with subjective a priori infor-
mation regarding system properties. The paucity of data
precluded use of a highly parameterized hydraulic conduc-
tivity field so hydraulic conductivity was represented by
zones of piecewise constancy generally aligned with the
long axis of the island. Four categories of recharge values,
based on land use characteristics, were assigned as shown
in Figure 1. The calibration was performed by using a
Gauss-Levenberg-Marquardt parameter estimation
approach implemented in PEST [Doherty, 2010] on a dis-
tributed parallel computing cluster at the USGS Wisconsin
Water Science Center coordinated with the HTCondor run
management software [Condor Team, 2012].

[20] The first stage of calibration was to run SEAWAT
with fully coupled groundwater flow and salt transport to
‘‘flush’’ the system over a long period (1000 simulated
years) such that the salinity profiles in the wells were rea-
sonably reproduced. This outlined the extent of the fresh-
water lens atop the seawater at depth in the groundwater
system beneath the aquifer. Following this initial calibra-
tion, the freshwater-saltwater interface was pinned in place
by running SEAWAT only considering flow and not saline
transport. In this mode, variable fluid properties reflect the
concentration of salt in the water but the position of the
freshwater-saltwater interface is not able to move. At this
stage, calibration is finally achieved by systematically
adjusting hydrogeologic properties including horizontal
and vertical hydraulic conductivity in piecewise constant
zones and recharge based on land cover zonation. Prior
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values of the hydraulic parameters and head measurements
were used as the calibration constraints.

[21] The head measurements are a snapshot in time de-
spite the short-term transient nature of the system. As a
result, obtaining extremely close correspondence between
modeled values and head observations would constitute

overfitting and decrease the forecasting value of the model.
In a Bayesian sense, the parameters estimated for, and fore-
casts made with SEAWAT model are conditional upon lim-
ited data set available for calibration. Rather than striving
to reproduce the individual measurements too closely, the
goal in this work was to result in a model that reasonably

Figure 1. Site location and model overview, depicting recharge zones in the SEAWAT model.
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captures long-term steady-state behavior of the site. The
ability of the model to fulfill this goal is necessarily a
somewhat subjective result [Fienen, 2013], but the overall
goal is a simulator of sufficient quality to allow extension
to similar areas beyond Assateague island.

[22] With the calibrated model, the characteristics of the
island and groundwater system were extracted along model
rows (generally normal to the long axis of the island model)
to use for training the BN. The characteristics at each cross
section were island width, maximum island elevation,
mean depth to water, maximum water table elevation, and
mean recharge. The values corresponding to the maximum
or mean of a quantity are calculated by using all model
cells along the cross section that are considered active by
the groundwater model in the uppermost layer. As dis-
cussed in the following section, each of these characteris-
tics was expected to play a role in determining the mean
depth to water—the principal model forecast connected to
the habitat questions driving this analysis.

4. Methods

[23] A Bayesian network (BN) is a directed acyclic
graph [Korb and Nicholson, 2004], composed of nodes and
edges. Nodes represent states of parameters or outcomes
and can be Boolean or discrete bins. Continuous values of
parameters must be discretized into bins. Edges form the
connections between nodes and represent a correlated con-
nection between the properties represented by the nodes.
To create the BN, parameters that have the potential to
drive the forecast of interest are identified and sampled at
multiple locations throughout the numerical model domain.
The underlying process must be ergodic so that the statisti-
cal and correlative characteristics are constant throughout
the sample. In other words, the conditions over which the
underlying model is built must be representative of condi-
tions over which forecasts will be made with the BN. Minor
violations of the ergodic assumption are likely to be
encountered, but major violations can only be addressed by

segregating the data into locally (in time or space) ergodic
packages. Molina et al. [2013] presents an example in
which ergodicity was maintained by making BNs at succes-
sive time steps over a transient period.

4.1. Bayesian Network Structure

[24] In the case of the Assateague island SEAWAT
model, the forecast of interest is mean depth to water along
each cross section that can be determined by slicing the
model along rows of the computational grid. Assembling
both parameters and outcomes from the model in this way
resulted in 1152 samples on which to build conditional
probability tables (CPTs). The associated parameters are
maximum island elevation, island width, mean recharge,
and maximum water table elevation. Maximum water table
elevation is also a model output but was evaluated as an in-
termediate forecast in some of the analyses. Figure 2 shows
the layout of the dependencies among the parameters and
the forecast of interest. The BNs in this work were con-
structed by using Netica [Norsys Software Corp., 1990–
2012].

[25] Calculations are made using the BN based on condi-
tional probabilities using Bayes’ Theorem (adopting the
symbology of Plant and Holland [2011a])

p FijOj

� �
¼

p OjjFi

� �
p Fið Þ

p Oj

� � ð1Þ

where p FijOj

� �
is the posterior probability of a forecast

(Fi) given (conditional on) a set of observations,
Oj

� �
; p OjjFi

� �
is the likelihood function, p(Fi) is the prior

probability of the forecast, and (Fi) and p(Oj) is a normaliz-
ing constant. In the remainder of this work, ‘‘observations’’
refer to outcomes of the model rather than the initial cali-
bration data measured in the field. As discussed above, the
calibration to field measurements was necessarily loose due
to the paucity of data in both space and time. For training a
BN, it would be ideal to use direct observations of the
underlying system, but that level of information is rarely

Figure 2. Layout of the Assateague island Bayesian network. Rounded boxes indicate nodes, arrows
indicate edges, and arrow direction indicates general causal dependency direction.
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possible and the model must serve as a proxy for the real
system. In cases with sufficient data, a direct correspon-
dence between the BN ability to reproduce process model
‘‘observations’’ and the process model ability to reproduce
field observations could be assessed. The underlying pro-
cess model is required to link the observations that can be
made (such as island width and island elevation) to those
that must be inferred by using the model (such as ground-
water position and recharge). The posterior probability
reflects an updating that is achieved by considering the
entire chain of conditional probabilities of all bins con-
nected to the node representing Fi. The likelihood function
represents the probability that the observations (Oj) would
be observed given that the forecast was perfectly known.
This is a metric of the ability of the BN to function as a
forecasting device and imperfections in such forecasts are a
function of epistemic uncertainty. Epistemic uncertainty
includes uncertainty due to model imperfection, data errors,
and other sources. The prior probability of the forecast,
p(Fi), is the probability of a forecast without the benefit of
the observations and the BN (or a process model or other
experiment). p(Fi) may be calculated by using expert
knowledge, or may be assumed relatively uninformative to
make the entire process as objective as practical (similar to
an ignorance prior as in Jaynes and Bretthorst [2003]). A

common prior often used in BNs is the division of a node
into bins of equal probability. This is the approach gener-
ally followed in this work, resulting in bins of equal proba-
bility or ‘‘belief’’ although it is not exactly an ignorance
prior because the probability mass in each bin may differ
due to variable bin widths. Figure 3 shows the layout of the
Assateague island Bayesian network with prior probabil-
ities expressed like histograms as ‘‘belief bars.’’ It is possi-
ble to evaluate the contribution to all uncertainty values
calculated by the BN by expressing the uncertainty in the
prior probabilities. In this work, the model is assumed (for
the sake of proving the concept) to be perfect and the only
prior variability is a function of sampling each value and
assigning it to bins.

[26] Once a system is cast in a BN, new observations of
system state are applied and propagated through the BN
using Bayes’ theorem such that all forecasts made in the
model are contingent upon the specific observations of sys-
tem state. In other words, each forecast is associated with a
specific configuration of observations of system state.
Observations are indicated by selecting a bin and forcing
the probability of a value in the node to be 100% (Figure 4).
When this operation is performed, the Bayesian
update propagates in each direction among nodes that are
d-connected [Jensen and Nielsen, 2001], updating the

Figure 3. Prior probabilities—expressed as belief bars—for the Assateague island Bayesian network.
Mean depth to water is the response variable and the other bins correspond to system states for input.
Numbers on the left delineate bin boundaries, numbers on the right show probabilities, and the horizontal
black bars graphically show the prior probability values. The numbers at the bottom of each node,
including the 6symbol, indicate the mean value and the associated standard deviation. This arrangement
of bins within nodes is considered ‘‘optimal’’ using a combination of quantitative and qualitative metrics
as discussed below.
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probabilities regardless of causal direction. In this way,
correlations are expressed as well as causal responses. By
selecting a suite of observations of state, the BN functions
like a transfer function by providing an estimate of the fore-
cast of interest and associated uncertainty.

[27] A key piece of a priori information is the establish-
ment of edges connecting the nodes. Edges should reflect a
cascade of causality grounded in an understanding of the
underlying process being modeled. If multiple processes
from different models are to be linked, the selection of
edge relationships defines the linkage. Similarly, a BN
emulating a numerical model could be linked to a simpli-
fied BN based on expert knowledge or empirical observa-
tions representing a different process. While machine
learning can be used to teach a BN which parameters are
connected to each other and to outputs, we adopt the more
common method in which expert system understanding is
used to specify these connections through the identification
of nodes and edges. In this way, the BN honors the physical
conditions known by the modeler, incorporated as soft
knowledge.

[28] In Figure 3, arrows on the edges indicate the direc-
tion of causal dependence. When all nodes are
d-connected, the direction of the edge arrows serve no pur-
pose. However, in the context of d-separation, the direction
of causality has important ramifications on the propagation
of uncertainty from observations to forecasts.

[29] When computational conditions and problem size
permit, a conditional probability table (CPT) can be created
that directly enumerates the conditional probabilities of all
nodes in the BN. This becomes impractical rapidly, how-
ever, because the size of the CPT scales on the order of n �
dkþ1 where n is the number of nodes, d is the number of
bins, and k is the number of parents for a node. In the case,
where full enumeration is impractical due to this rapid
increase in computational expense with complexity, an iter-
ative expectation-maximization (EM) algorithm is used
[Dempster et al., 1977] to calculate approximate probabil-
ities and maximum-likelihood values for the BN without

full enumeration of the CPT. The EM algorithm iterates
between estimating the maximum log likelihood of the
function and finding the set of parameters resulting in that
maximum log likelihood.

4.2. Performance Metrics

[30] Performance metrics can be applied to evaluate the
performance of a BN and to guide in BN design.

[31] Formal sensitivity analysis evaluating the variance
reduction in forecasts due to updates of each parent node
was used to understand the influence each input variable
has on forecasts. This information can also help determine
a trade off between sensitivity and optimal bin discretiza-
tion. Sensitivity is calculated as the percent of variance
reduction in a response variable due to updating of a
finding.

Vr ¼ V Fð Þ � V FjOð Þ
V Fð Þ � 100% ð2Þ

where Vr is variance reduction, V(F) is the variance of a
forecast prior to update with a finding (observation), and
V FjOð Þ is the variance of the forecast after updating with
the observations. V(F) and V FjOð Þ are calculated as

V Fð Þ ¼
XN

j¼1

p fj
� �

fj � E fj
� �� �2 ð3Þ

V FjOð Þ ¼
XM
i¼1

XN

j¼1

p fjjoi

� �
fj � E fjjoi

� �� �2 ð4Þ

where p(fj) is the prior probability of the jth forecast, fj is
the actual value of the jth forecast, E(fj) is the expected
value (forecast by the BN) of the jth forecast, p fjjoi

� �
is the

updated (posterior) probability of the jth forecast given the
ith evidence datum, E fjjoi

� �
is the expected value of the jth

forecast given the ith evidence datum, M is the number of

Figure 4. Updated probabilities for the Assateague island Bayesian network. (a) The lowest bin for
island elevation has been selected with probability of 100%. All probabilities in the BN are updated by
using Bayes’ theorem and the updates cascade in a forecasting manner to all bins—including the
response variable (Mean Depth to Water). (b) The response variable in the highest bin is selected with
probability of 100%. After the updates, the probabilities in the BN reflect the combinations of parameters
that are most closely associated with the selected outcome. In this way, the BN acts as a descriptive tool.
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discrete evidence data, and N is the number of discrete
forecasts. Finally, the percent variance reduction is calcu-
lated as the variance calculated by using observations O
from an input node divided by the variance calculated by
updating the response variable with findings of itself. By
definition, then, Vr for the forecast node is 100%, and all
other nodes are less than or equal to 100%.

[32] To systematically evaluate sensitivity as a function
of BN complexity, we evaluated a series of BNs all trained
on the same groundwater model but using an increasing
number of bins in each node. In this systematic approach,
bin thresholds were calculated by using auto-discretization
with the goal of finding cutoffs between bins that resulted
in equal levels of belief, even though bin sizes were vari-
able. Each node was discretized into the same number of
bins. Figure 5 shows that sensitivity generally improves
with the number of bins (as a proxy for overall model
complexity). This metric is prone to overfitting so other
diagnostics discussed below—particularly metrics of fore-
casting power—are more important than sensitivity for BN
design. Despite this limitation, the sensitivity provides
some insight. For example, the relative rank of the various
input variables for forecasting mean depth to water is con-
sistent regardless of model complexity.

[33] Other aspects of complexity in the model could also
be evaluated such as the number and nature of causal con-
nections (edges) among the various nodes. In the example
of this work, the causal connections are relatively well
understood and such evaluation would be more difficult to
quantify than the number of bins as a metric of complexity.
Nonetheless, considering multiple hypotheses is generally
encouraged [Chamberlin, 1890]. When multiple conceptu-
alizations about the underlying process model are present,
a more formal—even if qualitative—assessment of model
structure is valuable [Pollino et al., 2007; Chen and Pol-
lino, 2012].

[34] In addition to sensitivity, the BN can also be eval-
uated by using diagnostics of how well it captures the
behavior of the model and the quality of forecasts made
with it. The two key diagnostic metrics used in this work

are skill and likelihood ratio [e.g., Gutierrez et al., 2011;
Plant and Holland, 2011a; Weigend and Bhansali, 1994].
Skill is calculated as

sk ¼ 1� �
2
e

�2
o

� �
� 100% ð5Þ

where �2
e is the mean squared error between observations

and BN forecasts, and �2
o is the variance of the observa-

tions. Skill expressed the correspondence between observed
data and collocated forecasts from the BN and can range
from 0 to 100%. This meaning of skill is consistent with
the Nash-Sutcliffe model efficiency coefficient [Nash and
Sutcliffe, 1970].

[35] The likelihood ratio is calculated as

LRj ¼ log 10 p Fij~Oj

� �
Fi¼O

0
j

� �
� log 10 p Fið ÞFi¼O

0
j

n o
ð6Þ

where Fi is a forecast, �Oj is a subset of observations in
the network, withholding the observations directly corre-
lated with the forecast, O

0
j is an independent observation

withheld from the forecast. LRj, then, expresses the change
in the likelihood due to the observations �Oj relative to the
prior probability of the forecast without the benefit of the
network. When LRj> 0, improvement in the forecast due to
information in the BN is indicated. Conversely, LRj< 0
indicates degradation of forecast performance due to use of
the BN [Plant and Holland, 2011a]. This calculation can be
repeated for all forecasts made with the BN and the LR val-
ues summed over each class of forecast.

4.3. K-Fold Cross Validation

[36] The diagnostics discussed above are valuable for
characterizing how well the BN summarizes the existing
data. However, like any system of variable complexity,
these diagnostics may be prone to overfitting and exagger-
ate quality of forecasts. To mitigate this problem, the diag-
nostics were also calculated in conjunction with K-fold
cross validation [e.g., Hastie et al., 2009; Marcot, 2012].
In this approach, the training data are divided evenly into
K-folds or partitions, randomly selected (without replace-
ment) from the entire training set. Each fold is made up of
n/K values where n is the total number of data points. The
sum of all folds thus constitutes the entire data set.

[37] The data are partitioned into two groups: the
retained data (n�n/K values) and the left-out fold of n/K
values. The BN is then trained to the retained data and
diagnostics are calculated only on the left-out data. This
approach is similar to partitioning a data set into a training
and validation set, but has the advantage of making the
most use of the entire data set when calibrating the selected
model for use in forecasts. In this work, we analyzed the
data using tenfolds. Diagnostics are calculated over the
entire calibration data set (leaving out one observation but
not retraining the BN, as used in equation (6)) and also
over the left out validation folds with the retrained BN. The
former is referred to as calibration diagnostics and the latter
as validation diagnostics. Table 1 shows the skill metrics as
calculated for the 4-bin, 10-bin, 30-bin, and optimal mod-
els. The selection of the ‘‘optimal’’ model is discussed

Figure 5. Bar chart illustrating the sensitivity of mean
depth to water to updates of other nodes in the BN. The
sensitivity metric is percent of variance reduction.
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below. The 4-bin, 10-bin, and 30-bin models were con-
structed such that each node was automatically discretized
into 4, 10, and 30 bins, respectively. The validation results
reflect K-fold cross validation using tenfolds. The principal
model forecast of interest is the mean depth to water, but
these metrics were also calculated for the intermediate vari-
able of the maximum water table elevation.

5. Results and Discussion

[38] Emulation of a numerical groundwater model at
Assateague island by using a BN serves two main purposes.
First, it allows forecasts to be made, including propagation
of uncertainty from inputs to forecasts, in an efficient man-
ner, obviating the runtime requirements of the full numeri-
cal model in making forecasts. Second, enabled by casting
results in terms of probability distributions, the salient char-
acteristics of the groundwater system can be coupled with
other process models in a decision support framework. The
main response variable—mean depth to groundwater calcu-
lated along cross sections transecting the island—was
selected for its potential importance in both forage habitat
control for Piping Plovers and other ecological impacts
including the presence of freshwater ponds that support a
wild-horse population and the vegetative cover of the
island [Kirwan et al., 2007; O’Connell et al., 2012].

5.1. Performance Metrics

[39] The diagnostics described in section 4 provide met-
rics on model performance both in terms of describing the
training data and evaluating the quality of forecasts outside
the training data.

[40] In areas of higher island elevation, the depth from the
surface to the water table is generally greater. The domi-
nance of island elevation in model sensitivity (Figure 5)
reflects this; the water table position is greatly impacted by
boundary conditions at the sea and bay edges of the island.
As a result, water table position does not mound in the inte-
rior areas of the island in direct connection with land sur-
face, but rather is muted because the boundaries are
dominant. As island elevation increases, then, the depth to
water is expected to also increase. Recharge (which is tied to
land cover) also impacts water table position to a lesser
extent than the boundaries so its sensitivity is similar to that
of water table elevation itself. However, the importance of
these variables remains much lower than island elevation.
Island width is the least sensitive variable in the BN. Island
width is not as directly connected to water table position and
varies somewhat independently from island height.

[41] Figure 6 shows the improvement in skill obtained
by increasing the number of bins for each node, as illus-

trated above for sensitivity analysis. For the tenfolds, sk
values are averaged over all validation folds for compari-
son with the skill over the calibration set. For consistency,
the LR values are summed. The ability of the BN to cor-
rectly assign results into bins increases rapidly at the lower
number of bins and levels off with an increasing number of
bins. Table 1 shows a subset of metrics for both calibration
and validation data. Figure 6 graphically depicts the skill
metrics over a wide range of bins. Improvement over the
calibration set continues with adding bins—at the limit of a
number of bins equal to the number of unique values in
each bin, sk over the calibration should increase to 100%.
This perfection of categorization, however, comes at a cost
in terms of forecasting power.

[42] In Figure 6, for the 2-bin and 3-bin models, forecast-
ing skill (as measured by sk over the validation set)
increases with calibration skill. With increasing model
complexity, these metrics diverge as closer adherence to
the calibration data results in poorer performance in fore-
cast. The model that best fits the calibration data is not use-
ful in making forecasts. Choosing an optimal model in
terms of complexity involves finding the model with the
optimal trade off between calibration and validation skill.
The optimal model—in the spirit of Occam’s Razor—is the
simplest model that adequately explains the data. This is
similar to seeking the minimum message length (MML) in
information theory [Wallace and Boulton, 1968]. The lon-
ger a message is, the more information it contains (less
error of description) but the more prone to error is its trans-
mission (greater error of forecast). In the MML context, the
simplest model is sought that has an acceptable trade off
between calibration and validation skills. Expressed differ-
ently, the optimal model minimizes the combination of de-
scriptive error and forecasting error. Figure 7 shows a
schematic diagram of this tradeoff. The ‘‘U’’ shaped curve
is upside-down in Figure 6 because we are measuring skill
rather than error, but the optimal point is similar.

[43] Using this preliminary result as a guide, several can-
didate bin discretization results were evaluated, starting
with auto-discretized bins of various number between 3
and 6 in each node, and adjusting bin cutoffs ad hoc. This
process resulted in six additional models which were then
evaluated by using the sensitivity and skill metrics.

[44] Figures 8 and 9 show the metrics of sensitivity and
skill calculated for the six ad hoc BNs created manually
with a level of complexity approximately commensurate
with the 4-bin BN. The performance of these BNs is simi-
lar, with model 3 outperforming the others modestly
in terms of both skill metrics and sensitivity. Using this
two-step screening approach, model 3 was selected as opti-
mal. Model 3 used auto-discretized bins ranging between

Table 1. Summary of Performance Diagnostics for the K-Fold Cross Validation of the BN

Calibration or
Validation

Response
Variable

Skill (sk)
4 Bin

Model (%)

Likelihood
Ratio (LR)

4 Bin Model

Skill (sk)
10 Bin

Model (%)

Likelihood
Ratio (LR)

10 Bin Model

Skill (sk)
30 Bin

Model (%)

Likelihood
Ratio (LR)

30 Bin Model

Skill (sk)
Optimal

Model (%)

Likelihood
Ratio (LR)

Optimal Model

Calibration Mean Depth to Water 68 336 82 854 97 1488 69 369
Validation Mean Depth to Water 64 237 55 �95 13 �22 65 204
Calibration Z Water Table Max 11 155 43 763 86 1455 12 245
Validation Z Water Table Max 7 1 6 �347 7 �6 6 �105
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four and six bins per node. All six candidate models had
similar characteristics of approximately four bins per node
and in a couple cases manual adjustment was made of bin
thresholds. Deciding among these options highlights the
value of the two-step approach using the skill and sensitiv-
ity metrics at each step.

[45] Figure 10 shows a comparison between the observed
and forecasted mean depth to water along the long axis of
Assateague island. With minor exceptions, the greatest dis-
crepancies between observed and modeled values occur
where the forecast uncertainty is the greatest. Thus, not
only is the forecasting capability optimized, but also the
forecast uncertainty reflects actual forecast errors. Figure
11 highlights the improved agreement between the
observed and forecast values. The great improvement in
the 30 bin case compared with the 4 bin case highlights the
overfitting potential with a large number of bins.

[46] The groundwater model only explicitly considers
the land surface elevation in evapotranspiration calcula-
tions. Recharge is applied at the groundwater table and is a
function of land cover, subdivided into wetlands, pine for-

est, grass, cultural, and open sand. The vegetative cover is
correlated with island elevation.

[47] Using the BN, it is possible to explore the response
of mean depth to water to any input or combination of input
conditions. For example, in Figure 12a shows the forecast
of mean depth to water where the island is wide. Compar-
ing this to Figure 4a, the low sensitivity of island width rel-
ative to island elevation, as discussed above, is noted as the
spread of the belief bars among the bins changes little from
the prior condition (Figure 3) due to updating island width.
In Figure 12b, when knowledge of both island elevation
and island width are included, the certainty of a specific
forecast (high mean depth to water) is greater than 90%,
suppressing the likelihood of a forecast in any of the other
three bins. Using the BN in this way, the response of mean
depth to water to future island morphologic changes due to
storms and sea level rise can be readily evaluated.

Figure 6. Figures showing performance diagnostics for two response variables. On the left plot, Z
Water Table Max is shown and on the right plot is Mean Depth to Water. Skill values correspond to the
leftmost (blue) vertical axis and likelihood ratio (LR) values correspond to the rightmost (green) vertical
axis. In the legend, ‘‘Calib.’’ and ‘‘CV’’ refer to calibration and validation, respectively.

Figure 7. Schematic diagram of the minimum message
length (MML) concept showing the optimal tradeoff
between calibration error and forecasting error.

Figure 8. Bar chart illustrating the sensitivity of mean
depth to water to updates of other nodes in the BN. The
sensitivity metric is percent of variance reduction.
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5.2. Bin Selection

[48] Our analysis with respect to complexity relies heav-
ily on autodiscretization of bins because the only motiva-
tion for bins was the discretization of a continuous
variable. However, in many cases, natural thresholds (dis-
continuities) are evident from the physical environment in
which the problem is set and explicit consideration of these
thresholds can be extremely important [e.g., Fienen et al.,
2004, 2009]. Management decisions may also be based on
specific thresholds and, in such cases, bin selection is moti-
vated by those thresholds.

5.3. Implications for Sea Level Rise

[49] Waves and currents associated with future sea level
rise will impart clear morphological changes on the island,

including changes in width and elevation that we identify
here as principal controls on Vadose zone thickness. Some
areas will become narrower as the ocean-side shoreline
erodes, and where marsh growth is not sustained [e.g.,
Cahoon et al., 2009]. Others may become wider as storm
overwash and ephemeral tidal inlets move sediment across
the island and into the backbarrier lagoon. Island height
may increase or decrease depending on sediment availabil-
ity, and changes in storm climatology that determine the
length of time over which features like dunes can become
established [FitzGerald et al., 2008; Gutierrez et al.,
2009].

[50] As the sensitivity analysis presented above shows,
the depth to water is less sensitive to island width than to
island elevation. These relationships are based on an

Figure 9. Figures showing performance diagnostics for two response variables for six scenarios
focused around 4–6 bins in each node. On the left plot, Z Water Table Max is shown and on the right
plot is Mean Depth to Water. Symbology is the same as Figure 6.

Figure 10. Comparison of observed and forecast mean depth to water along the long axis of Assa-
teague island from North (left) to South (right). The uncertainty of forecasts is also depicted showing 75,
97.5, and 99% confidence intervals. Comparisons are made over the calibration data set (hindcast) with
(a) four auto-discretized bins in each node and (b) 30 auto-discretized bins in each node.
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ergodic assumption. This assumption may be violated in
some ways. For example, in addition to recharge changing
from one current category of land cover to another, the
recharge within those categories may change due to climate
variability. Given a significant enough departure from the
current characteristics, a BN would need to be built on a
model incorporating those changes that stray beyond the er-
godic range of current variability captured by sampling var-
ious parts of the island. Nonetheless, the power of the BN
to forecast future conditions is enhanced at Assateague
island because areas of the island reflect various stages in
barrier island evolution. Therefore, our BN is well suited
for sampling potential past, current, and future conditions,
thus widening the ergodic range. Incorporating more detail
about hydrogeomorphic response will enhance the ability
of the BN to forecast a wider range of potential conditions
reacting to rising sea level. Specifically, this holistic deci-
sion support system can serve as a management tool for
predicting vegetative and other habitat responses to sea
level rise in which depth to groundwater is an important
element.

[51] An important aim of this work is to validate the
emulation of a model for which intuitive confirmation

would be possible. If the behavior of a numerical model
can be successfully emulated with this approach, it pro-
vides confidence that more complicated processes may also
be emulated in this way.

6. Conclusions

[52] The BN for Assateague island captures the numeri-
cal groundwater model with descriptive (calibration) skill
of 69% and forecasting skill of 68% for forecasts of mean
depth to water. K-fold cross validation was implemented to
parse forecasting skill from descriptive skill and to guide
selection of an appropriate level of complexity for the BN.
Indeed, as complexity increases, descriptive skill will con-
verge on perfection (100%) but at great cost to forecasting
skill. The estimated uncertainty of forecasts made using the
BN is consistent with forecast errors.

[53] The level of forecasting power achieved in this
work makes it possible to evaluate groundwater responses
to changes in island morphology and recharge characteris-
tics within the ergodic range upon which the model was
based. With the ultimate goal of forecasting groundwater
responses to sea level rise, the island width and elevation

Figure 11. Plot of observed versus forecast mean depth to water. The solid line indicates one-to-one
correspondence between observed and modeled results.

Figure 12. Example scenario evaluation using the optimal Assateague island Bayesian network: (a)
the response to the greatest island width is evaluated and (b) this condition is further refined by also
selecting the greatest island elevation.
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are expected to show the most dramatic and rapid changes
(decreases in both) with the rising of sea level around the
island. The island elevation was the most sensitive parame-
ter in forecasting depth to water using the BN.

[54] The high sensitivity of island elevation for forecast-
ing depth to water highlights the importance of island mor-
phology to assessing responses to future conditions.
Assateague Island—like all barrier islands—is shaped by
storms, washover events, and sea level rise. This is just one
example of the feedbacks among processes that have im-
portant linkages to be considered for a holistic forecasting
model that can include geomorphic and climate changes.
By representing multiple process models with BNs, they
can be linked using edges connecting their nodes in the
same way nodes are connected within each individual pro-
cess BN. Using a BN in this way bridges the gap between
the full detail (and computational expense) of a process
model and the efficiency and interconnections with deci-
sion metrics and other processes needed in a DSS.

[55] Assateague island provides an opportunity to sample
conditions representative of current, past, and future condi-
tions. Similar barrier islands throughout the world are mor-
phologically similar to conditions found on Assateague
island. As a result, a BN trained to conditions on Assa-
teague island is extensible to a wide range of barrier island
systems. Nonetheless, long-term forecasts including both
climate change and sea level rise will eventually leave the
ergodic range on which the current model was built. For
example, changes in temperatures, precipitation, and land
cover will impact evapotranspiration and recharge in the
groundwater model. The nature of storms including fre-
quency and intensity may also change in the future, impact-
ing the hydrogeomorphic processes. Running each process
model with loose coupling will address the ergodicity issue
such that the various models exchange their mutual feed-
backs at specified intervals over time. This can be done
using explicit connections and casting the entire set of pro-
cess models as a directed acyclic graph. The suite of
results, ultimately, will be represented by a linked BN pro-
viding an integrated forecasting tool considering all the rel-
evant processes and their uncertainties.
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