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Abstract Geochemical enrichment of lavas in the northern Lau Basin may reflect the influx of Samoan-
plume mantle into the region. We report major and trace element abundances and He-Sr-Nd-Hf-Pb-
isotopic measurements for 23 submarine volcanic glasses covering 10 locations in the northern Lau and
North Fiji Basins, and for three samples from Wallis Island, which lies between Samoa and the Lau Basin.
These data extend the western limit of geochemical observations in the Basins and improve the resolution
of North-South variations in isotopic ratios. The Samoan hot spot track runs along the length of the
northern trace of the Lau and North Fiji Basins. We find evidence for a Samoan-plume component in lavas
as far West as South Pandora Ridge (SPR), North Fiji Basin. Isotopic signatures in SPR samples are similar to
those found in Samoan Upolu shield lavas, but show a slight shift toward MORB-like compositions. We
explain the origin of the enriched signatures by a model in which Samoan-plume material and ambient
depleted mantle undergo decompression melting during upwelling after transiting from beneath the thick
Pacific lithosphere to beneath the thin lithosphere in the northern Lau and North Fiji Basins. Other lavas
found in the region with highly depleted isotopic signatures may represent isolated pockets of depleted
mantle in the basins that evaded this enrichment process. We further find that mixing between the two
components in our model, a variably degassed high->He/*He Samoan component and depleted MORB, can
explain the diversity among geochemical data from the northern Lau Basin.

1. Introduction

Understanding how the upper mantle flows beneath the oceanic lithosphere is critical to deciphering man-
tle melting, the movement of tectonic plates, and the distribution and long-term evolution of geochemical
reservoirs in the shallow mantle. The direction and rate of mantle flow is difficult to constrain, but spatial
variations in the isotope geochemistry of oceanic lavas may provide hints for certain mantle flow patterns
as well as the distribution of geochemical reservoirs in the mantle over time [e.g., Zindler and Hart, 1986;
Hofmann, 1997; White, 2010].

Owing to the juxtaposition of the Tonga Trench and the Samoan hot spot (Figure 1), the Lau and North Fiji
Basins provide a unique environment for the study of upper mantle flow around a subducting slab [Hart
et al., 2004]. A wealth of both geochemical and geophysical evidence suggests that material from the
Samoan hot spot is leaking southward into the adjacent Lau Basin, making this area ideal for mapping
mantle flow on a regional scale [e.g., Giardini and Woodhouse, 1986; Volpe et al., 1988; Gill and Whelan,
1989b; Poreda and Craig, 1992; Pearce et al., 1995; Ewart et al., 1998; Turner and Hawkesworth, 1998; Smith
et al.,, 2001; Lupton et al., 2009; Escrig et al., 2012]. First, the Samoan hot spot has various distinctive geo-
chemical fingerprints (including high *He/*He [up to 33.8 Ra, or ratio to the atmospheric value of 1.38 X
1078, Jackson et al., 2007a] or high 87Sr/8Sr [up to 0.72163, Jackson et al., 2007b, 2009]), which are readily
recognizable from the isotopically distinct ambient mantle (e.g., low *He/*He (8 Ra, ratio to atmosphere)
and unradiogenic 8Sr/%%Sr) present beneath the Lau Basin [e.g., Wright and White, 1987; Volpe et al., 1988;
Farley et al., 1992; Poreda and Craig, 1992; Turner and Hawkesworth, 1998; Workman et al., 2004; Kelley et al.,
2006; Langmuir et al., 2006; Falloon et al., 2007; Jackson et al., 2007a, 2007b; Escrig et al., 2009, 2012].
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Figure 1. Map of the study region with locations of the samples analyzed in this study. Abbreviations: FSC, Futuna Spreading Center; NWLSC, Northwest Lau Spreading Center; PegR,
Peggy Ridge; N, Niua fo’ou; MTJ, Mangatolu (King’s) Triple Junction; NELSC, Northeast Lau Spreading Center; FRSC, Fonualei Rift and Spreading Center; LETZ, Lau Extensional Transform
Zone; CLSC, Central Lau Spreading Center; ELSC, Eastern Lau Spreading Center. Base map was created using GeoMapApp (http://www.geomapapp.org) with topographic and bathy-
metric data from SRTM_PLUS (Becker et al., 2009, v. 5.0)

Second, the density and distribution of young volcanism within the Lau Basin provides excellent spatial
sampling of the shallow upper mantle.

Isotopic evidence for the distribution of Samoan-plume mantle beneath the Lau Basin takes several forms.
Elevated *He/*He ratios (up to 28 Ra; Lupton et al. [2009]) that are rarely found in back arc basins [Macpher-
son et al., 1998; Shaw et al., 2004] have been observed in the northwest region of the Lau Basin (e.g.,
Rochambeau Bank, Rochambeau Rifts, and the Northwest Lau Spreading Center). These high-He/*He
ratios strongly suggest the presence of plume material in the region [Poreda and Craig, 1992; Honda et al.,
1993; Lupton et al., 2009; Tian et al., 2011; Hahm et al., 2012; Lytle et al., 2012]. If the Samoan plume is the
source of the He-isotopic anomaly, the northern, southern, and eastern extent of Samoan-plume incursion
into the Lau Basin can be mapped from the spatial distribution of igneous rocks with high *He/*He [Poreda
and Craig, 1992; Hilton et al., 1993; Honda et al., 1993; Lupton et al., 2009].

However, high-*He/*He (>20 Ra) signatures are rare, even in Samoan lavas. Therefore, other geochemical
signatures unique to Samoan lavas, including highly radiogenic 8’Sr/%°Sr and telltale EM2 Pb-isotopic com-
positions [e.g., Wright and White, 1987; Farley et al., 1992; Workman et al., 2004; Jackson et al., 2007a,
2007b] in lavas with low *He/*He can also be useful for detecting a Samoan component [e.g., Volpe et al.,
1988; Gill and Whelan, 1989a; Poreda and Craig, 1992; Wendt et al., 1997; Ewart et al., 1998; Pearce et al.,
2007; Falloon et al., 2007; Regelous et al., 2008; Escrig et al., 2009; Jackson et al., 2010; Lytle et al., 2012; Escrig
et al., 2012], if it exists in the region. Owing to a paucity of geochemical and isotopic data for lavas from
the northwestern Lau and northern North Fiji Basins, the western boundary and distribution of Samoan-
plume material in the region is not well known. While the flow may be characterized by a narrow, finger-
like intrusion, as proposed by Turner and Hawkesworth [1998], it could also take the form of a broad anom-
aly more consistent with simple lateral spreading of ponded Samoan-plume mantle at the base of the
lithosphere [e.g., Sleep, 1996]. The Samoan hot spot tracks runs along the length of the northern trace of
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the Lau and North Fiji Basins. If Samoan-plume mantle material has ponded and spread both laterally and
to the south, its presence would be detected in the basins further to the west.

Here, we use a combination of geochemical data from northern Lau and North Fiji Basin lavas to constrain
the spatial distribution of Samoan mantle source material in the region. Broadening the field area of geo-
chemically characterized lavas to the west helps define the western boundary of Samoan-plume material
influence. We present new Sr, Nd, Pb, Hf, and He-isotopic data, together with major and trace element con-
centrations, on samples from 11 locations along a swath covering the northern region of the Lau and North
Fiji Basins, as well as Wallis Island (see supporting information for analytical methods and discussion). The
new data suggest that the influence of the Samoan plume extends into the North Fiji Basin (at least 1400
km west of the current location of the youngest active Samoan volcano, Vailulu'u; Hart et al. [2000]).

1.1. Geologic Setting

The Samoan archipelago is an age progressive group of volcanic islands constituting a hot spot track [e.g.,
Duncan, 1985; Hart et al., 2004; Koppers et al., 2008; McDougall, 2010; Koppers et al., 2011]. The origin of vol-
canism in Samoa is complicated by its proximity to the northern terminus of the Tonga Trench, located just
over 100 km south of the Samoan island of Savai'i. Lithospheric cracking caused by tectonic stresses related
to the nearby trench was suggested to enhance melting and melt extraction at Samoa, and this model is in
part supported by the observation that Savai'i Island has been completely resurfaced with a veneer of
young (<1 Ma) rejuvenated lavas [e.g., Hawkins and Natland, 1975; Natland and Turner, 1985; Natland,
2003; Konter and Jackson, 2012]. However, geochronological data for lavas recovered from the deep sub-
marine flanks of Savai'i indicate a 5.0 Ma eruption age, at which time the Tonga Trench was positioned
~1400 km to the west of Savai'i and well out-of-range to influence shield-building volcanism at the island
[Koppers et al., 2008]. While this early volcanism at Savai'i was not triggered by tectonic stresses, rejuven-
ated volcanism on Savai'i during the past 1 Ma, as well as on Wallis Island and Lalla Rookh seamount, may
have been enhanced by tectonic stresses from the trench [Price and Kroenke, 1991; Hart et al., 2004; Konter
and Jackson, 2012].

The trace of the Samoan hot spot, which is anchored by Vailulu’u seamount in the east, runs parallel to the
northern border of the Lau and North Fiji Basins, and is separated from these basins by the Vitiaz Linea-
ment (Figures 1 and 2). The Lau and North Fiji Basins are located between the Pacific and Indo-Australian
plates. The region is flanked by two subduction zones that face each other and form the Tonga Trench by
the westward subduction of the Pacific plate, and the Vanuatu Trench by subduction of the Indo-
Australian plate under the North Fiji Basin. Due to trench rollback, the northern terminus of the Tonga
Trench is moving eastward at ~170 mm/yr, while the Pacific plate is moving westward at ~70 mm/yr,
resulting in a total convergence rate that is the fastest on Earth, at ~240 mm/yr [Bevis et al., 1995]. North of
this terminus, the Pacific plate tears [Millen and Hamburger, 1998; Govers and Wortel, 2005] and, instead of
subducting into the trench, the Pacific plate continues to the west. This tearing is thought to generate the
stresses that give rise to abundant rejuvenated volcanism in Samoa [Konter and Jackson, 2012]. To the
south of the terminus, the Pacific plate subducts into the Tonga Trench, resulting in the opening of a “slab
window” which allows Samoan mantle to flow southward into the shallow mantle in the Lau Basin [e.g.,
Turner and Hawkesworth, 1998; Figure 2]. This slab window may have begun opening at 4.5 Ma, when the
terminus was located further to the west, just south of Alexa seamount [Hart et al., 2004]. If so, material
from the Samoan hot spot may have been advected into these basins for the past 4.5 Ma.

The Vitiaz Lineament marks the boundary between the old (~100 Ma) Pacific lithosphere and the young
(<5 Ma) lithosphere of the Lau and North Fiji Basins [Brocher, 1985; Pelletier and Auzende, 1996]. Hart et al.
[2004] suggested that the segment of the Vitiaz Lineament east of 180°W was formed by the propagation
of the tear in the Pacific plate, while the Tonga Trench swept eastward toward the active end of the
Samoan hot spot over the last 4-5 Ma (Figure 2). However, the entire length of the Vitiaz Lineament has
also been suggested to be a pre-Tongan “fossil” subduction zone marking the location of subduction of
the Pacific plate under the Australian plate until ~12 Ma, at which time the Ontong-Java plateau collided
with the trench, halting subduction along the Vitiaz Lineament [e.g., Brocher, 1985; Yan and Kroenke, 1993;
Auzende et al., 1995; Pelletier and Auzende, 1996; Pearce et al., 2007]. If so, the high density of islands and
seamounts to the south of the Vitiaz Lineament may be the product of arc volcanism. Nonetheless, at least
three volcanoes along the southern border of the Vitiaz Lineament—Rotuma Island, Manatu seamount,
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Figure 2. Cartoon schematic showing the tectonic evolution of the Lau and North Fiji Basins over the past 4 million years. The tectonic reconstruction is based on the model proposed
by Hart et al. [2004]. The cartoon is a three-dimensional adaptation of Figure 9 from Hart et al. [2004]. We do not show Futuna and Manatu at the 4 Ma time step owing to complications
with the plate reconstruction as discussed in Hart et al. [2004]. Incorporation of underplated Samoan-plume material during toroidal flow around the Tonga slab is suggested to have
occurred for the past 4 Ma, as the Tonga trench has migrated to the east relative to the Samoan hot spot. It is unknown if “tongues” of Samoan material are currently flowing into the
North Fiji Basin; however, they likely did in the past when the Tonga trench was located further to the west.

and Futuna Island—host lavas with ages that postdate Vitiaz Lineament subduction (all ages are Quater-
nary to 4.9 Ma) [Duncan, 1985; Woodhall, 1987]. Furthermore, Rotuma lacks arc-like geochemical character-
istics [Hart et al., 2004] and we show that Manatu and young Futuna lavas from this study also appear to
lack arc-like affinities (section 3).
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Prior to subduction cessation, the Vitiaz Trench marked a continuous subduction zone from the Solomons
to Tonga, with west to southwest subduction of the Pacific plate under the Indian lithosphere. The Vitiaz
Trench was composed of the older pieces of the Tonga-Fiji-Vanuatu and Solomon arcs [e.g., Gill, 1984; Gill
and Whelan, 1989b; Begg and Gray, 2002; Crawford et al., 2003; Pearce et al., 2007]. When subduction ceased
along the Vitiaz Trench, the boundary is thought to have become a transform [e.g., Pelletier and Auzende,
1996] and the remnant slab detached. However, GPS data from Rotuma and Futuna Islands—both located
just south of the Vitiaz Lineament—show that they are moving with the Pacific plate [Calmant et al., 2003],
indicating that little or no transform motion along the Vitiaz Lineament is occurring at present [Hart et al.,
2004]. The Vitiaz Lineament, therefore, may be a fossil boundary and any transcurrent motion between the
Australian and Pacific plates occurs south of the boundary along transform faults in the Lau Basin [Hart

et al., 2004].

1.2. Previous Geochemical Work in the Northern Lau Basin

Several previous studies have shown that quaternary volcanism with signatures similar to ocean island
basalts (OIB) is pervasive throughout the Lau and North Fiji Basins, but the origins, and possible relation-
ships with Samoa remain unknown. Gill and Whelan [1989a, 1989b] showed that Fijian lavas became OIB-
like by 3 Ma. Poreda and Craig [1992] were the first to show elevated *He/*He isotopes at Rochambeau
Bank, in the northwest Lau Basin. These Samoan-like signatures were used to suggest the mixing of a
Samoan component with ambient depleted mantle. Honda et al. [1993] reported moderately low *He/*He
in the Eastern and Central Lau Spreading Centers as well as the Mangatolu Triple Junction. Using this infor-
mation, Turner and Hawkesworth [1998] refined the hypothesis of Poreda and Craig [1992] and suggested a
model that included a “finger-like” intrusion of Samoan mantle material into the northern Lau Basin. More
recently, Lupton et al. [2009] found that many locations within the northern Lau Basin have high *He/*He,
but that these values do not clearly correlate with ridge configuration or latitude, although the highest
3He/*He values do cluster in the northernmost region of the Lau Basin. Further studies by Lupton et al.
[2012], Hahm et al. [2012], and Peto et al. [2013] show that Ne-isotopes correlate with He isotopes, support-
ing the hypothesis of a Samoan-plume influence in the region. Working on the same samples as Lupton

et al. [2009], Jenner et al. [2012] found enrichment of Cu and Ag in lavas from the Northwest and Central
Lau Spreading Centers and Rochambeau Rifts, and argued that the data may require a different high-Cu
source, as Samoan lavas and MORB do not have high-Cu abundances. Nonetheless, the study argues for
the presence of a Samoan plume component in the region. Isotopic, major element, and volatile data were
added by Lytle et al. [2012], who suggested the possibility of a second unidentified mantle plume to the
west of the Northwest Lau Spreading Center. Tian et al. [2008, 2011] provided new Sr-Nd isotope and trace
element data from Rochambeau Bank, Peggy Ridge, Mangatolu Triple Junction, Niuafou’ou, and both the
Central and Eastern Lau Spreading Centers, while Hahm et al. [2012] analyzed volatiles and noble gases in
these samples. Their data provide evidence of influence for both subduction-related and OIB components.
Despite the number of studies conducted in the Lau Basin, there is little data from the North Fiji Basin.
Here, we provide a full suite of major and trace element and isotopic data for samples recovered from the
northern Lau and North Fiji Basin (Figure 1). We use these data to assess the mantle sources in the region.

2. Sample Locations and Descriptions

The locations for all new samples presented in this study are shown in Figure 1 and presented in Table 1. The
26 basaltic submarine dredge samples recovered from the northwestern Lau and North Fiji Basins and Wallis
Island were obtained from three dredging expeditions: two legs of the R/V Kana Keoki cruise KK820316 in
1982 [Sinton et al., 1985; Johnson et al., 1986; Sinton et al., 1993]; cruise 35/3 of the German research vessel
R/V Sonne in 1985 [Johnson and Sinton, 1990]; the ALIA 2005 cruise aboard the R/V Kilo Moana [Jackson et al.,
2007b; Koppers et al., 2008; Jackson et al., 2010; Koppers et al., 2011]. The dredge sites are divided into three
regions across the Lau and North Fiji Basins and two sample localities at Wallis Island.

2.1. Dredges in the North Fiji Basin

We examine samples from four different dredge sites in the North Fiji Basin. Two different dredges
(dredges 19 and 20) were made on South Pandora Ridge (SPR), and these are shown separately in all fig-
ures. Dredge 19 consisted of fresh glassy pillow lava fragments with slight surface alteration [Sinton et al.,
1993]. Dredge 20 contained extremely fresh glassy pillow fragments with no visible alteration [Sinton et al.,
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1993]. Dredge 21 was recovered ~100 km south of SPR on a west-northwest striking ridge. The single sam-
ple from this dredge is a nearly aphyric pillow fragment with a brown weathered surface and a thin Mn
crust [Sinton et al., 1993]. A fourth dredge (dredge 16) was made further to the south in the North Fiji Basin
on a southeast facing, ~1000 m escarpment, located near the North Fiji Basin triple junction. The two sam-
ples from dredge 16 are olivine-phyric, plagioclase microphyric pillow basalts with thin, 1 mm Mn crusts.

2.2, Dredges North of Fiji

Samples from seven different dredge sites in the region north of the Fijian Islands are divided geographi-
cally into two groups. The first group consists of four different dredges made in a tightly clustered region
(within ~10 km) ~100 km north of Viti Levu, Fiji. These dredges sampled the spreading centers in the area.
All samples are extremely fresh and therefore likely to be quite young in age [Johnson and Sinton, 1990].
The second group consists of two different dredges made in close proximity ~300 km north of Viti Levu,
Fiji (sample 231-1A and dredge 13). Dredge 231 was made on the Southern Central Ridge, North Fiji Basin
[Johnson and Sinton, 1990]. Dredge 13 was made about 15-20 km inside a pseudofault in what may be a
now-defunct part of a propagating rift system [Brocher, 1985]. Dredge 13 was composed of pillow frag-
ments with 2 mm Mn crusts [Sinton et al., 1993].

2.3. Dredges in the Northern Lau Basin

We analyzed samples from three different dredge sites in the northern Lau Basin: Manatu Seamount
(dredge 126), Futuna Island (dredge 6), and the region just to the northeast of Peggy Ridge (dredge 5).
Two different samples from different dredge sites at Manatu have been dated at 1.8 Ma [Duncan, 1985;
Sinton et al., 1985] and 4.36 Ma [Koppers et al., 20111, while the single sample from Futuna has an age of 4.9
Ma [Duncan, 1985]. The samples dredged northeast of Peggy Ridge are relatively old (1.4 Ma) [Duncan,
1985] and therefore were collected outside the region of active extrusion [Sinton et al., 1985].

2.4, Wallis Island

We analyzed samples from two different dredge sites (dredges 127 and 4). All of the Wallis dredge samples
are extremely fresh and likely as young as subaerial lavas from Wallis Island (0.08-0.8 Ma) [Duncan, 1985;
Price and Kroenke, 1991].

3. Results

3.1. Major Element Geochemistry
The samples examined in this study range from basaltic to basaltic andesite in composition (Figure 3). The
alkali-tholeiite division [Macdonald and Katsura, 1964] shows that only the Wallis Island samples are alkalic.
This is expected if Wallis Island and Samoa share a genetic relationship (see section 4.4), as almost all lavas
associated with the Samoan hot spot are alkali basalts [Natland and Turner, 1985; Workman et al., 2004;
Jackson et al., 2010]. Both dredges of SPR yielded glasses that are near the alkali tholeiite division. Because
SPR is anchored on the northeast by Rotuma Island, which is host to alkali volcanics [Woodhall, 1987], it is
not surprising that SPR basalts
e - are transitional in composition.
All other lavas examined in this
Tephrite @ L study plot within the tholeiitic
basanite ® @ e field in Figure 3.
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have the highest overall concentrations of the most incompatible trace elements. The shape of the spider-
grams for the three Wallis Island samples are broadly similar, but sample 4-1 from the KK820316 cruise has
higher concentrations of incompatible elements than samples 127-05 and 127-11 from the ALIA 2005
cruise (Table 2 and Figure 4). Sample 4-1 has lower whole rock MgO (5.95 wt. %) than samples 127-05 and
127-11 (whole rock MgO is 13.01 and 11.43 wt. %, respectively). Additionally, trace element measurements
of both glass and whole rock powder from sample 127-05 show a whole rock pattern which is shifted to
lower normalized concentrations than the glass for all elements, except for U, K, and Pb. The slight enrich-
ment of these elements in the whole rock may be explained by the fact that they are mobile and become
enriched in altered portions of the whole rock, but not in fresh glass.

Wallis Island lies downstream of the Samoan hot spot, but a genetic relationship between the two remains
uncertain [Price et al., 1991; Jackson et al., 2010] as Wallis Island lavas are 0.08-0.8 Ma (Table 1), too young
to fit the Samoan hot spot age progression [Koppers et al., 2011]. If Wallis Island lavas are Samoan, they
must belong to a late rejuvenated stage. Samoan rejuvenated lavas are enriched in Ba relative to other ele-
ments of similar compatibility, and thus exhibit higher Ba/Sm and Ba/Th ratios relative to Samoan shield-
stage lavas [Jackson et al., 2010]. In a plot of Ba/Sm versus Ba/Th, Wallis Island lavas fall within the Samoan
rejuvenated field, which is defined by subaerial rejuvenated lavas in the eastern Samoan volcanic province
(ESAM) (Figure 5). Trace element spidergrams of Wallis Island plot together with patterns for Samoan
rejuvenated lavas from Savai'i and Upolu Islands (Figure 4).

SPR samples are also incompatible element enriched, and they are geochemically similar to Samoan Upolu
shield lavas. However, SPR lavas have lower trace element abundances for elements more incompatible
than Tb. The slope of trace elements less incompatible than Tb in the spidergrams (Figure 4) is shallower
for SPR lavas than Upolu lavas, suggesting that the SPR lavas have a weaker garnet signature than Upolu
lavas. Nonetheless, the SPR patterns are similar to the Upolu patterns, especially for the most incompatible
elements (Rb through Nd) (Figure 4).

Two nonridge volcanoes located south of the Vitiaz Lineament—Manatu seamount and Futuna Island—were
previously suggested to exhibit possible arc-like signatures owing to the “jagged” nature of trace element pat-
tern observed in some of the whole rock measurements [Jackson et al., 2010]. However, the elements that
exhibit the largest spikes, or anomalies, on the Manatu and Futuna patterns are K, U, and Rb (Figure 4), which
are all fluid mobile and susceptible to modification during submarine alteration. The trace element data on fresh
glasses from these two volcanoes exhibit relatively smooth patterns, with none of the anomalous enrichments
or depletions in K, U, and Rb visible in the whole rock analyses. Rather than showing evidence of arc influence,
the patterns for the Manatu and some of the Futuna glass samples from this study are similar to average MORB
tholeiites. Finally, we note that a subset of Futuna lavas are strongly depleted in both the heavy rare earth ele-
ments (HREE) and the most incompatible elements, giving a distinct “hump” shape to the spiderdiagram.

The four dredges taken in close proximity ~100 km north of Viti Levu, Fiji, have a surprising diversity of trace
element abundances and spidergram shapes. Sample 142-1 has a slight garnet signature (Lay/Luy = 1.8),
while its spidergram shows positive Nb and Ta anomalies and a negative U anomaly. Sample 164-1 also has a
slight garnet signature (Lan/Luy = 1.8), but it lacks the positive Nb and Ta anomalies and the negative U
anomaly that characterize 142-1. However, sample 164-1 does have moderate positive Zr and Hf anomalies.
Sample 140-1A has a relatively flat spidergram pattern (Lan/Luy = 1.2), with no evidence for a garnet signa-
ture; it exhibits dramatic positive Zr and Hf anomalies and positive U and Th anomalies. Finally, sample 162-1
is one of the most incompatible element-depleted samples in this study (Lay/Luy = 0.40), with Rb, Ba, and Th
concentrations that are only 1.3-1.5 times the primitive mantle values. This sample also has the most geo-
chemically depleted Sr, Nd, and Hf-isotopic signatures in this study (see section 3.3).

The sample taken from ~100 km south of SPR (21-1; Lay/Luy = 0.60) and the two samples from north of
the North Fiji Basin triple junction (16-12 and 16-14; Lay/Luy = 0.66 and 0.56, respectively) are similarly
incompatible element depleted and have patterns that are generally similar to sample 162-1. Samples from
~300 km north of Viti Levu, Fiji, 231-1A (Lay/Luy = 0.71) and 13-4 and 13-2 (Lay/Luy = 0.77 and 0.76,
respectively) also have incompatible element-depleted spidergrams, but have higher overall trace element
abundances than other lavas with incompatible element-depleted patterns from the region. Sample 231-
1A has Lu concentrations nearly 20 times the primitive mantle values, while Lu in sample 162-1 is only
about five times higher than primitive mantle.
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Figure 4. Primitive mantle-normalized trace element patterns for the lavas examined in this study. Abbreviations: Peggy R, Peggy Ridge; SPR, South Pandora Ridge; FTJ, Fiji Triple Junc-
tion. Previously published data on whole rock powders from Manatu, Futuna, and Wallis Island [Jackson et al., 2010] are compared with 24 glasses and one whole rock powder from
this study. The “spiky” patterns in the whole rock data of Manatu and Futuna [Jackson et al., 2010], caused by enrichments in K, U, and Rb, contrast with the smooth patterns observed
in the fresh glasses for these locations (this study), suggesting alteration of the whole rocks published by Jackson et al. [2010]. The three samples from northeast of Peggy Ridge have
similar trace element abundances and are nearly indistinguishable from each other in this plot. Average Upolu, which was calculated from Upolu shield data with MgO > 6.5 wt. %, is
shown on all plots as a black line. The span of Upolu shield lavas with MgO > 6.5 wt. % is shown with the red field in all plots. (c) also shows the span of Upolu and Savai'i rejuvenated
lavas with MgO > 6.5 wt. % [Hauri and Hart, 1993; Workman et al., 2004]. Average MORB is from Gale et al. [2013] and is plotted as a gray line in all plots. The primitive mantle composi-
tion is from McDonough and Sun [1995]. All trace element data used in this plot, including data used to construct the data fields, were measured by ICP-MS.
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90 3.3. Hf, Pb, Sr, and Nd Isotopes
80 I SPR (dredges 19 and 20) has ele-
L vated &Sr/%Sr (up to 0.7037) and
70r low "**Nd/"**Nd (down to
60 - 0.51283) and '"®Hf/'"’Hf (down to
e I 0.28303) relative to MORB, which
%’U %0 I suggest the incorporation of a
@ 40} geochemically enriched compo-
30 N\ nent (Figure 6 and Table 2). In
- ESAM Shield, plots of various trace element
20 - ratios (Ba/Sm, Nb/Zr, Lan/Smy,
10 Lan/Luy) as a function of
ol . . . "3Nd/"**Nd, SPR lavas consis-
0 50 100 150 200 tently plot near or within the field
Ba/Th for Samoan Upolu shield lavas
(Figure 7). Similarly, the SPR sam-
Figure 5. Plot showing Ba/Th versus Ba/Sm for Wallis Island lavas (red symbols) from ples plot between MORB and

this study. A similar figure was used by Jackson et al. [2010] to resolve shield stage from Upolu shield in all isotope spaces
rejuvenated stage lavas from the Eastern Samoan (ESAM) volcanic province. All trace ele- p . p . p ;
ment data used in this plot, including data used to construct the data fields, were meas- that include Nd, Hf, or Pb-isotopic

ured by ICP-MS. compositions. In each case SPR is

shifted slightly away from the
Upolu shield field toward depleted mantle along a straight line between the two components. However, in
plots that include &”Sr/2%sr, the SPR samples are shifted closer to MORB and to lower 87Sr/2%Sr, and plot
slightly off a simple linear trend connecting Upolu shield and MORB.

The sample taken ~100 km south of SPR (21-1) plots very close to SPR samples in isotopic space, but has
slightly higher 8Sr/2°Sr (0.7038) and lower Pb-isotopic ratios (Figure 6 and Table 2). Moving further to the
east, samples 13-2 and 13-4 also plot close to the SPR lavas in isotopic space, but these two samples have
even higher &Sr/%%Sr (up to 0.7041), but the **Nd/'**Nd (as low as 0.51290) and '"®Hf/'””Hf (as low as
0.28315) are shifted to geochemically more depleted compositions.

Futuna Island and Manatu seamount each exhibit a variety of isotopic compositions that range from the
compositions found in the SPR region to more depleted compositions that trend toward a MORB-like com-
ponent. The 8Sr/8%Sr ratios measured in Futuna Island vary up to 0.7040 [Jackson et al., 2010], while
3Nd/"*Nd and "7Hf/"77Hf are as low as 0.51297 and 0.28322, respectively (Table 2). Similarly, samples
from Manatu seamount show 7Sr/2°Sr up to 0.7043, and "**Nd/'**Nd and '7Hf/"”’Hf of 0.51297 and
0.28322, respectively. Additional lavas from both Manatu seamount and Futuna Island extend to more
depleted compositions, with 87Sr/%Sr down to 0.7036 and 0.7031, respectively.

Three locations in this study have extremely depleted lavas. All samples from near the Fiji Triple Junction
and northeast of Peggy Ridge have '**Nd/"**Nd (0.51305 and 0.51306) similar to average MORB, but show
87Sr/%85r (0.7033 and 0.7034) that is higher than average MORB. Samples from ~100 km North of Viti Levu,
Fiji, likewise are depleted, but show a comparatively wider range in 8Sr/2®Sr (0.7029-0.7037), "**Nd/"**Nd
(0.51307-0.51322), and "7®Hf/"”7Hf (0.28332-0.28351).

Wallis Island lavas sample a mantle source that is broadly similar to that seen in Samoan rejuvenated lavas.
The Wallis Island samples plot close to the range of Samoan rejuvenated lavas in all isotope spaces, but are
shifted slightly toward MORB (Figure 6). Similarly, various trace element ratios (Ba/Sm, Nb/Zr, Lan/Smy, Lan/
Luy) plotted against "**Nd/'**Nd show that Wallis Island lavas consistently plot near or within the field of
Samoan rejuvenated lavas (Figure 7).

3.4. He Isotope Data

In Figure 8, we present plots of >He/*He versus *He, &Sr/%Sr, "3Nd/"**Nd, and 2°°Pb/*°*Pb for samples
from this study. The highest *He/*He values are from Wallis Island and are up to 15 Ra. A relatively high-*
He/*He ratio of 10.45 Ra is recorded in sample 13-4 taken ~300 km north of Viti Levu, and sample 16-12
taken near the North Fiji Basin triple junction has a >He/*He value of 9.7 Ra. All other samples with relatively
high helium concentrations exhibit mantle-derived *He/*He between 6.0 and 9.2 Ra.
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Figure 6. Relationships between Sr, Nd, Hf, and Pb-isotopes in lavas from the northern Lau and North Fiji Basins, Wallis Island and the Samoan hot spot. In addition to new data from this study,
previously published values from Wallis, Futuna and Manatu are also shown [Jackson et al,, 2010]. Symbols are the same as in Figure 1. Abbreviations: MORB, mid-ocean ridge basalt; NWLSC,
Northwest Lau Spreading Center; NELSC, Northeast Lau Spreading Center; FRSC, Fonulai Spreading Center; ELSC, Eastern Lau Spreading Center; MTJ, Mangatolu Triple Junction. The field for
Rochambeau includes data from Rochambeau Rift. Lead-isotopic data from Rochambeau Bank are not available. Values for Samoan data fields are from Wright and White [1987], Poreda and Craig
[1992], Workman et al. [2004], Workman and Hart [2005], Jackson et al. [2007a, 2007b, 2010], and Salters et al. [2011]. Rochambeau data are from Lytle et al. [2012]. Uo Mamae data are from Pearce
et al. [2007] and Regelous et al. [2008]. NELSC data are from Falloon et al. [2007] and Regelous et al. [2008]. NWLSC data are from Lytle et al. [2012]. ELSC data are from Tian et al. [2008] and Escrig
et al. [2009]. FRSC data are from Escrig et al. [2012]. Niuafo'ou data are from Regelous et al. [2008] and Tian et al. [2011]. Mangatolu Triple Junction data are from Regelous et al. [2008] and Tian
et al. [2011]. Tonga arc data are from Hergt and Woodhead [2007], Escrig et al. [2012], Turner et al. [2012], and Caulfield et al.[2012]. MORB is from Su and Langmuir [2003].
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Figure 7. "Nd/"*'Nd compared to trace element ratios for northern Lau and North Fiji Basins and Samoa. All symbols in this figure are the same as in Figure 1. Average mid-ocean
ridge basalt (MORB) is shown as a gray box [Gale et al., 2013]. South Pandora Ridge lavas trend toward the field of Samoan Upolu shield lavas. Wallis Island lavas trend toward the
fringes of the Samoan rejuvenated field defined by Savai'i and Upolu rejuvenated lavas. All new trace element data were measured on glasses with the exception of sample 4-1. All
trace element data used in this plot, including data used to construct the data fields, were measured by ICP-MS. Rochambeau Rift and Rochambeau Bank are plotted as a single field.
Rochambeau data are from Tian et al. [2011] and Lytle et al. [2012]. Note that Tian et al. [2011] has replicate runs of samples from Volpe et al. [1988] and Poreda and Craig [1992]. Samoan
data are from Hauri and Hart [1993], Workman et al. [2004], and Jackson et al. [2007b].

Four samples have *He/*He values of <2 Ra. We consider these and other samples with relatively low

helium concentrations (<1 X 10~ *He cc STP/g) [Georgen et al., 2003] to have experienced incorporation
of atmospheric helium or severe posteruptive radiogenic ingrowth. These samples are not plotted in Fig-
ures 8b-8d as the measured 3He/*He does not reflect the mantle composition.

Several salient features are observed in Figure 8. First, Wallis Island has moderately high *He/*He with Sr,
Nd, and Pb-isotopic compositions that plot near existing data for Samoan rejuvenated lavas on some plots
and near Upolu shield lavas on others. Samples taken from ~300 km north of Viti Levu, which exhibit
3He/*He up to 10.45 Ra, plot between MORB and Wallis lavas in all plots of Figure 8. This suggests the pos-
sible involvement of a Samoan component as far as the North Fiji Basin. SPR have lower *He/*He (7.5-8.2
Ra) than Samoan Upolu shield lavas, reflecting a shift to a possible MORB-like component with lower

3He/*He. At 6.0 Ra, the sample from south of the SPR (sample 21-1) has the lowest *He/*He in the subset of
samples with relatively high helium concentrations (>1 X 10~ *He cc STP/g). Manatu and Futuna Islands
also plot between a MORB-like and a Samoan component, but have MORB-like *He/*He of ~8 Ra. In gen-
eral, all other samples have *He/*He ratios and heavy radiogenic isotopic compositions similar to MORB.

In Figure 9, we present a map showing the locations and values of new and previously published *He/*He
data from Samoa as well as the Lau and North Fiji Basins. The Samoan hot spot has a diversity of isotopic
components, and we note that high—3He/4He (>20 Ra) lavas are rare in the Samoan hot spot. Nonetheless,
3He/*He ratios in excess of 20 Ra are identified in the northern Lau Basin.
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Figure 8. Helium-isotopic data for samples from the northern Lau and North Fiji Basins plotted against their respective gas concentrations, 8’Sr/26Sr, "**Nd/"*Nd, and 2°°Pb/>**Pb. All
new *He/*He measurements were made on glasses. Samples with “He concentrations <10~ cc STP/g (see vertical dashed line in plot a) are not shown in plots (b) through (d), as many
of these samples exhibit evidence for diminished *He/*He due to possible post-eruptive radiogenic ingrowth of “He or incorporation of atmospheric helium. Symbols in this figure are
the same as in Figure 1 with the addition of open circles for previously published Rochambeau Bank and Rift data. Abbreviations: NWLSC, Northwest Lau Spreading Center and MTJ,
Mangatolu Triple Junction. The mixing models are described in section 4.2 of the main text and values used in the mixing models are provided in Table 4. In the mixing models, a varia-
bly degassed D-MORB (depleted MORB) melt is mixed with a variably degassed high->He/*He melt. The different mixing lines represent variable degassing of the two end-members
prior to mixing: the solid orange line assumes that both end-members degassed by the same amount before mixing; the dark blue dashed line assumes that the high-*He/*He melt
degassed 50% more than the D-MORB melt; the solid light blue line assumes that the high->He/*He melt degassed 90% more than the D-MORB melt; and the small black dashed line
assumes that the high-*He/*He melt degassed 99% more than the D-MORB melt. Samoan data are from Workman et al. [2004] and Jackson et al. [2007b, 2010]. Rochambeau Bank and
Rift data are from Volpe et al. [1988], Poreda and Craig [1992], Lupton et al. [2009], Tian et al. [2011], Lytle et al. [2012], and Hahm et al. [2012]. Mangatolu Triple Junction data are from Hil-
ton et al. [1993], Tian et al. [2011], and Hahm et al. [2012]. NWLSC data are from Lupton et al. [2009] and Lytle et al. [2012]. Peggy Ridge data are from Volpe et al. [1988], Tian et al. [2011],
and Hahm et al. [2012].

4, Discussion

Systematic spatial variations in geochemical indices (e.g., Sr, Nd, Hf, and Pb-isotope ratios) can be used to
assess whether or not a geochemically enriched plume component, such as one associated with Samoa,
has intruded into the northern Lau and North Fiji Basins [e.g., Volpe et al., 1988; Gill and Whelan, 1989b; Por-
eda and Craig, 1992; Ewart et al., 1998; Turner and Hawkesworth, 1998; Pearce et al., 2007]. Geochemical
enrichment (e.g., high Sr/%6Sr) is clear in lavas from the northern Lau and North Fiji Basins, but diminishes
toward the south [e.g., Pearce et al., 2007; Escrig et al., 2009]. The new data offer some important insights
into the long-term geochemical connections between Samoa and the Lau and North Fiji Basins.

4.1. How Many High->He/*He Plumes Exist in the Northwest Lau Basin?

Poreda and Craig [1992] found that high->He/*He lavas at Rochambeau Bank in the northwest Lau Basin
exhibit increasing 3He/*He as Sr, Nd, and Pb-isotopic compositions trend from depleted compositions, typi-
cal of Lau back arc basins lavas, to more enriched values, typical of the Samoan hot spot. This relationship

PRICE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1000
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Figure 9. Map of new and previously published *He/*He data from the Lau and North Fiji Basins and Samoa. For Samoan localities, only
the highest *He/*He found on each island is shown. Glass samples with “He concentrations <107 cc STP/g are not shown. All published
data from the Lau and North Fiji Basins are shown, together with Samoan data from Workman et al. [2004] and Jackson et al. [2007b]. All
other data are from this study, Poreda and Craig [1992], Hilton et al. [1993], Honda et al. [1993], Nishio et al., [1998], Lupton et al. [2009],
Hahm et al. [2012], and Lupton et al. [2012]. Base map was created using GeoMapApp (http://www.geomapapp.org) with topographic
and bathymetric data from SRTM_PLUS (Becker et al., 2009, v. 5.0)

between *He/*He and the heavy radiogenic isotopes led Poreda and Craig [1992] to suggest that a
Samoan-plume component has infiltrated the Lau Basin. Subsequent studies have verified the Samoan
affinity in lavas from this region [e.g., Lupton et al., 2009; Tian et al., 2011; Lupton et al., 2012; Hahm et al.,
2012; Peto et al., 2013].

However, Lytle et al. [2012] found that the lava with the highest *He/*He ratio identified in the Lau Basin—
28 Ra [Lupton et al., 2009, 2012]—is associated with distinctly non-Samoan Sr, Nd, and Pb-isotopic composi-
tions, and they suggest that such decoupling of *He/*He from the other isotopic systems presents difficul-
ties for the Poreda and Craig [1992] model. Lytle et al. [2012] showed that the Rochambeau Rift sample with
3He/*He of 28 Ra [Lupton et al., 2009] has Sr and Nd-isotopic compositions between MORB and Samoan
lavas, with 87Sr/%Sr of 0.70328 and "**Nd/"**Nd of 0.51306. By contrast, the Samoan lava with the highest
*He/*He has more geochemically enriched &Sr/%%Sr (0.70458) and '**Nd/"**Nd (0.51282) ratios. The geo-
chemical depletion of Rochambeau Rift lavas relative to Samoan lavas with similarly high *He/*He led Lytle
et al. [2012] to suggest that a Samoan-plume component in the northern Lau Basin may not explain the
geochemical composition of high-*He/*He Rochambeau Rift lavas.

We argue that the original single plume model of Poreda and Craig [1992] is fully consistent with He-Sr-Nd-
Pb-isotopic data from Rochambeau Bank if Samoan-plume melts are variably mixed with ambient depleted
mantle melts beneath Rochambeau Bank (Figure 10). To demonstrate the feasibility of this mixing model,
we mix two end-member melt compositions, a depleted MORB melt with a high->He/*He Samoan melt
(compositions given in Table 4). The first end-member composition is a depleted MORB (D-MORB) melt
with isotopic compositions from Workman and Hart [2005] and a trace element composition from Gale

et al. [2013]. Lavas with geochemically depleted Sr and Nd-isotopic compositions from the northern Lau
and North Fiji Basins have been identified in this study (e.g., sample 162-1), implying that the D-MORB end-
member is not unrealistic. The helium isotopic composition of the MORB melt is assumed to be 8 Ra [Gra-
ham et al., 1988], and we adopt the *He concentration (8.9 X 10~ ° cc *He STP/g) of undegassed MORB pri-
mary melt from Gonnermann and Mukhopadhyay [2007]. The other end-member melt, derived from the
high->He/*He Samoan-plume component, is assigned the Sr, Nd, and Pb-isotopic compositions of the high-
est *He/*He Samoan lava (sample Ofu-04-06, with 33.8 Ra, from Jackson et al. [2007b]); the corresponding
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Table 4. Parameters Used in Mixing Model®
MORB End-Member

Volcanoes in northern-
most Lau & N. Fiji Basins

S

ZEIA

Samoan hotspot
N volcano

Figure 10. Cartoon of a north-south cross section from the 100 Ma Pacific lithosphere to the 5 Ma lithosphere in the northern Lau and
North Fiji Basins. The figure shows the “step” in lithospheric thickness going to the south. Samoan mantle transiting from under the thick
Pacific lithosphere to the thin lithosphere of the northern Lau and North Fiji Basins undergoes adiabatic decompression melting as it
upwells. Together with the southward flowing plume material, a component of ambient depleted mantle likely melts during this process,
thereby contributing a component of depleted mantle (MORB) melt to the final erupted lavas. This may explain the isotopic shift of the
lavas in northern Lau Basin lavas (e.g., Rochambeau Bank) away from Samoa and toward a depleted mantle component.

Sr, Nd, and Pb concentrations are inferred from liquid lines of descent for lavas from the Samoan high->
He/*He island of Ofu, where the primary melt is assumed to have 15 wt. % MgO. The *He/*He ratio of the
Samoan-plume melt is assumed to be 50 Ra, the highest mantle *He/*He ratio measured in a terrestrial,
mantle-derived lava [Stuart et al., 2003]. This is higher than observed for Samoan lavas, but a higher
3He/*He (50 Ra) in the Samoan mantle cannot be excluded and is not an unreasonable value for the pur-
poses of this model. The “He concentration of the Samoan-plume melt (2.4 X 10> cc *He STP/g) is the
same as the OIB end-member from Gonnermann and Mukhopadhyay [2007]. When the two undegassed
end-member melts are mixed, the mixing line passes through the highest *He/*He lava from Rochambeau
Rift (28 Ra) at Sr, Nd, and Pb-isotopic compositions intermediate between MORB and the highest *He/*He
Samoan lavas (Figure 8). This mixing model also works if the MORB and Samoan high-*He/*He melts are
degassed by the same percentage prior to mixing. Alternative mixing models are also shown which assume
that the plume melts degas more than the MORB melts, an assumption supported by recent modeling
[Gonnermann and Mukhopadhyay, 2007]. These additional mixing models span much of the range in iso-
topic compositions identified in the northern Lau Basin lavas (Figure 8). In summary, variably degassed mix-
tures of MORB and high-*He/*He Samoan-plume melts can generate the high->He/*He signatures and the
non-Samoan Sr, Nd, and Pb isotopic compositions observed in Lau Basin lavas.

4.2. Long-Term Influence of Samoan-Plume Material on the Northwest Lau and North Fiji Basins:
Evidence From South Pandora Ridge

The influx of the Samoan-plume material may be a long-term process that has operated for the past 4-5
Ma in the northern Lau and North Fiji Basins. Hart et al. [2004] suggested that the portion of the Vitiaz Line-
ament east of 180° resulted from the Pacific plate tearing as the northern terminus of the Tonga Trench
migrated west (Figure 1). Hart et al. [2004] place the northern terminus of the trench just to the south of

Source High-He/*He End-Member Source

He (cm? STP/g)

Sr (ppm) 129 ppm
Nd (ppm) 12.0 ppm
Pb (ppm) 0.57 ppm
3He/*He (Ra) 8
875r/%6sr 0.702190
T43Nd/**Nd 0.513260
206p/204ppy 17.537

8.90 X 10~ ° cm? STP/g

Gonnermann and Mukhopadhyay [2007] 240 X 10> cm?® STP/g Gonnermann and Mukhopadhyay [2007]

Gale et al. [2013] 320 ppm Jackson et al. [2007b]
Gale et al. [2013] 29 ppm Jackson et al. [2007b]
Gale et al. [2013] 1.8 ppm Jackson et al. [2007b]

Graham et al. [1988] 50 Stuart et al. [2003]

D-MORB [Workman and Hart 2005] 0.704584 Jackson et al. [2007b]
D-MORB[Workman and Hart 2005] 0.512827 Jackson et al. [2007b]
D-MORB[Workman and Hart 2005] 19.189 Jackson et al. [2007b]

2Sr, Nd, and Pb concentrations for the high->He/*He end-member are inferred from liquid lines of descent for lavas from the Samoan high-*He/*He island of Ofu, where the pri-

mary melt is assumed to have 15 wt. %.
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Rotuma Island at 4 Ma. Dredges 19 and 20 along SPR are no further west of Rotuma than Rochambeau is
west of the northern terminus of the Tonga Trench. Thus, we suggest that, at 4 Ma, Samoan mantle mate-
rial was advected around the paleo-Tonga slab to the west of Rotuma (under the present-day location of
SPR) in the same way toroidal flow around the present-day Tonga slab advects material beneath Rocham-
beau (Figures 2 and 10). We argue that the moderate isotopic enrichment in SPR lavas owes its existence
to the incorporation of a Samoan mantle component into the mantle beneath SPR. Because the trace of
the known Samoan hot spot extends as far west as Alexa Bank (Hart et al., 2004)—just to the north of the
North Fiji Basin—it is possible that Samoan mantle material has been available (perhaps as a “keel”
attached to the base of the Pacific lithosphere beneath the trace of the Samoan hot spot) for southward
advection into the region now occupied by SPR. However, we cannot exclude the possibility that Samoan
mantle material was advected to the south of the Vitiaz Lineament more recently due to broad southward
mantle flow in the region [Pearce et al., 2007] over time, perhaps owing to flattening and lateral spreading
of the Samoan underplated keel that would push it south of the Vitiaz Lineament and into the North Fiji
Basin.

One further possibility for the presence of a Samoan-plume component in the northern Lau Basin is that the
Lau and North Fiji Basins may have been impregnated with small amounts of Samoan-plume melt over a lon-
ger period of geologic time. Modeling in N. J. Katsiaficas, P. S. Hall, and M. G. Jackson, Modeling flow of
Samoan-plume mantle into the northern Lau Basin, submitted to Physics of the Earth Planetary Interiors (2013)
has shown that decompression melting at the boundary between thick and thin lithosphere, in the vicinity of
the Vitiaz Lineament, is dynamically feasible (Figures 1, 2, and 10). Southward flowing Samoan mantle would
pass from beneath older, thicker (100 Ma) Pacific lithosphere and upwell beneath younger, thinner (<5 Ma)
lithosphere in the northern Lau and North Fiji Basins, generating decompression melts [Pearce et al., 2007;
Regelous et al., 2008; Katsiaficas et al., submitted manuscript, 2013]. During a later event of tectonic extension,
such as that which may be occurring at SPR [Sinton et al., 1993], the depleted mantle enriched with Samoan-
plume melt could be melted to generate the compositions that we observe. Such a scenario may also explain
why some of the young lavas in the northern Lau and North Fiji Basins geochemically resemble mixtures
between depleted mantle and OIB mantle [e.g., Johnson and Sinton, 1990; Poreda and Craig, 1992; Sinton

et al., 1993; Jackson et al., 2010]: adiabatic upwelling of plume material in a back-arc basin dominated by
depleted mantle would result in melting of depleted mantle together with Samoan-plume material. Melts
resulting from both Upolu-like mantle and depleted mantle may mix to form SPR lavas, and explain the
slightly depleted trace elements (Figure 4) and isotopic compositions (Figures 6 and 8), of SPR lavas relative
to Upolu lavas. Such a model may also explain the slightly less enriched lava dredged ~100 km south of SPR
(sample 21-1). This sample is more MORB-like than SPR lavas, but the enrichment in &Sr/26Sr (up to 0.7038)
requires an enriched component similar to the Upolu-like component inferred for SPR lavas (Figure 6).

4.3. Are Manatu and Futuna Volcanoes the Result of Melted Mixtures of Samoan Plume and
Ambient Depleted Mantle?

Futuna Island and Manatu Seamount are located approximately midway between the present-day northern
terminus of the Tonga trench and SPR. Like Rochambeau lavas, Manatu and Futuna lavas have isotopic
compositions that plot between MORB and the field of Samoan lavas in multiisotope space (Figure 6).
Therefore, Jackson et al. [2010] suggested that, like SPR in this study, Futuna and Manatu were fed by mix-
tures of adiabatic melts of upwelling Samoan mantle material and ambient depleted mantle that transited
southward beneath the Vitiaz Lineament into the northwest Lau Basin. However, the Futuna samples have
low *He/*He (8-9 Ra) (the Manatu sample was compromised by posteruptive radiogenic “He ingrowth).
However, low->He/*He ratios of 8 Ra are not uncommon in the Samoan hot spot [Workman et al., 2004;
Jackson et al., 2010]. Therefore, like at SPR, we favor the incorporation of a low->He/*He Samoan compo-
nent into the mantle beneath Manatu and Futuna that, together with ambient depleted mantle, was
melted to generate lavas for these two volcanoes.

The new trace element data on fresh glasses from Manatu and Futuna reveal relatively smooth patterns
that do not suggest an arc-related signature, and the “jagged” nature of the spidergrams of the whole rock
samples from Jackson et al. [2010] are likely compromised by submarine weathering, particularly for K, U,
and Rb. The lack of any clear arc signature in Manatu and Futuna lavas from this study is consistent with
the younger eruption ages (<5 Ma) [Duncan, 1985; Koppers et al., 2011] that greatly postdate the end of

PRICE ET AL.

©2014. American Geophysical Union. All Rights Reserved. 1003



@AG U Geochemistry, Geophysics, Geosystems

10.1002/2013GC005061

subduction along the Vitiaz Lineament at 12 Ma. Previous work identified possible arc-related volcanism in
the early history of Futuna, but Futuna transitions to OIB-type volcanism later in its history [Grzesczyk et al.,
1991]. However, we find that a plot of Ba/Nb versus 8 Sr/2%Sr (Figure 11) shows no arc influence in the suite
of Manatu and Futuna lavas presented here, and the Futuna lavas in our sample suite must sample the
later OIB state of volcanism on Futuna. Therefore, we prefer to explain the origin of these near-Vitiaz Linea-
ment volcanoes by adiabatic upwelling of Samoan mantle material flowing southward into the northwest
Lau Basin. Such a model can be extended to explain the origin of other geochemically enriched localities in
the region that have isotopic compositions between depleted mantle and Samoan-plume mantle, such as
samples 13-2 and 13-4 from ~300 km north of Viti Levu, Fiji (¢7Sr/%°Sr = 0.7041; Figure 6).

4.4. Moderately High *He/He at Wallis: Further Evidence for a Samoan Heritage

Located immediately to the north of the Vitiaz Lineament and ~400 km to the West of Savai'i, Wallis Island
shows evidence for volcanism that may be linked to the tectonic processes operating in the region. To
understand the possible origin of recent volcanism on Wallis Island, we draw on knowledge of the Samoan
Island of Savai'i, which has been completely resurfaced by large volumes of rejuvenated volcanism. The
location of Savai'i near the northern terminus of the Tonga Trench led previous authors to suggest a link
between the stresses associated with tearing the Pacific plate at the northern terminus and the large vol-
umes of rejuvenated volcanism [Hawkins and Natland, 1975; Natland, 1980; Natland and Turner, 1985; Hart
et al., 2004; Konter and Jackson, 2012]. Like Savai'i, Wallis Island is located at the northern terminus of the
Tonga Trench, and a tectonic origin for the recent volcanism on Wallis has been proposed [Price and
Kroenke, 1991; Hart et al., 2004; Jackson et al., 2010].

Like Savai'i rejuvenated lavas [Konter and Jackson, 2012], the lavas on Wallis are quite young (0.8-0.08 Ma)
[Duncan, 1985; Price and Kroenke, 1991]. The geochemistry of Wallis Island lavas shows similarities with
Samoan rejuvenated lavas. In multiisotope space (Figures 6 and 8), Wallis Island lavas trend into, or plot
very close to, the field of Samoan rejuvenated lavas. Additionally, the elevated *He/*He ratios (up to 15 Ra)
observed for Wallis Island are similar to slightly elevated *He/*He of Samoan rejuvenated lavas from Work-
man et al. [2004]. Finally, trace element ratios (Figure 5) show that Wallis lavas are enriched in Ba relative to
other trace elements, a signature that is shared with Samoan rejuvenated lavas and spidergrams of Wallis
Island lavas (Figure 4) show broad similarities with Samoan rejuvenated lavas.

0.707 The new geochemical data sug-
SAMOA i?:}:/oa gest a common tectonic link for
0.706 v magma generation at both
Savai'i and Wallis islands, and
_~Upolu ]
shield that the lavas on both islands
P share a common genetic ances-
Ofu” %0 .
o try with the Samoan hot spot. If
*ao® C\/V\ the volcanic evolution of Wallis is
BABB "o o RSO»I0Nga Arc™—| similar to Savai'i [Jackson et al.,
o % —ARC 2007a; Koppers et al., 2008], an
MORHE older shield stage may exist in
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Figure 11. Plot showing Ba/Nb versus ®’Sr/*°Sr for new data and previously published
data from Rochambeau Bank and Rift, Samoa (Samoa rejuvenated, Upolu Shield, and
Ofu), Fonulai Rift and Spreading Center, the Tonga Arc, as well as average MORB. Sym-
bols are the same as in Figure 1 with the addition of open circles for previously pub-
lished Rochambeau Bank and Rift data. New samples from this study appear to be
uninfluenced by the arc, though three or four of the Rochambeau samples have slightly
high Ba/Nb and may host an arc component. Values for MORB are taken from Gale et al.
[2013]. Rochambeau Bank and Rift data are from Poreda and Craig [1992], Lytle et al.

[2012], and Tian et al. [2012]. Fonulai Rift and Spreading center data are from Escrig et al.

[2012]. Tonga Arc data are from Ewart et al. [1998], Hergt and Woodhead [2007], Pearce
et al. [2007], Escrig et al. [2012], Turner et al. [2012] and Caulfield et al. [2012]. Samoan
data are from Wright and White [1987], Poreda and Craig [1992], Workman et al. [2004],
Workman and Hart [2005], and Jackson et al. [2007a, 2007b, 2010].

sampled. While two deep
dredges (KK820316 dredge 4 and
ALIA 2005 dredge 127) on the
western flanks of Wallis Island
failed to reveal a deeper shield
stage this could be due to sam-
pling: deep dredges of Savai'i
have yielded both rejuvenated
(ALIA 2005 dredge 116 in Jackson
et al. [2010]) and shield-stage
lavas (ALIA 2005 dredges 114
and 115. Therefore, if the young
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volcanism on Wallis relates to a rejuvenated stage, additional sampling on Wallis Island could reveal an
older shield stage.

5. Conclusions

Based on our new isotopic data from the northern Lau and North Fiji Basins, we conclude that high->
He/*He lavas (up to 28 Ra) [Lupton et al., 2009] along Rochambeau Rift can be explained by mixing melts of
a high—3He/4He Samoan-plume component (with an assumed value of 50 Ra) with MORB melts. This model
explains why the high->He/*He lavas in the Rochambeau region also have Sr, Nd, and Pb-isotopic composi-
tions displaced toward MORB values. We argue that southward flow of Samoan-plume mantle into the
northern Lau Basin explains the presence of a Samoan-plume signature in volcanoes (e.g., Rochambeau) in
the region, and the flow is likely toroidal, driven by roll-back of the Tongan slab. Mantle undergoes decom-
pression melting as it flows south from underneath the thick, old Pacific lithosphere, across the Vitiaz Linea-
ment, and rises adiabatically to the base of the thin, young lithosphere in the Lau Basin. During adiabatic
upwelling, ambient depleted upper mantle is likely to melt along with Samoan-plume mantle. This mecha-
nism can explain why volcanic samples from the northern Lau Basin are shifted in isotopic space away
from Samoan lava compositions and toward depleted mantle compositions.

We also find that the isotopic compositions of SPR lavas in the North Fiji Basin are consistent with the incor-
poration of a Samoan-plume component like that found at Upolu Island. At 4 Ma, plate reconstruction pla-
ces the Tonga Trench near the present-day location of Rotuma, which anchors the northeastern terminus
of the SPR. We therefore suggest that, at 4 Ma, Samoan mantle material was advected around the paleo-
Tonga slab to the west of the present-day location of Rotuma (and under the present-day location of SPR)
in the same way that toroidal flow around the present-day Tonga slab advects Samoan material in the
northern Lau Basin beneath Rochambeau. During this southward flow, Samoan mantle material and ambi-
ent depleted mantle underwent adiabatic decompression during southward transit beneath the Vitiaz Line-
ament and into the North Fiji Basin. As well as explaining enrichment in the Rochambeau region (*”Sr/2®Sr
up to 0.7047) and SPR (¥7Sr/%°Sr up to 0.7037), this simple model explains the geochemical enrichment
throughout the northern region of the northern Lau and North Fiji Basins, including Manatu seamount
(®7Sr/3Sr up to 0.7043), Futuna Island (37Sr/%°Sr up to 0.7038), samples dredged ~300 km north of Viti
Levu, Fiji (Sr/%°Sr up to 0.7041), and a dredge ~100 km south of SPR (¢”Sr/2°Sr = 0.7038).

Finally we show that recent rejuvenated volcanism on Wallis Island may be associated with stresses caused
by tearing the Pacific plate at the northern terminus of the Tonga Trench. Trace elements and isotopic
compositions in Wallis Island lavas exhibit strong affinities to the rejuvenated lavas of several Samoan
islands. The new geochemical data, including moderately high *He/*He (up to 15 Ra), supports the hypoth-
esis that Wallis Island has a Samoan pedigree.
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