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Abstract

Genetic parentage analyses provide a practical means with which to identify
parent-offspring relationships in the wild. In Harrison et al. (2013a), we compare
three methods of parentage analysis and showed that the number and diversity
of microsatellite loci were the most important factors defining the accuracy of
assignments. Our simulations revealed that an exclusion-Bayes theorem method
was more susceptible to false positive and false negative assignments than other
methods tested. Here, we analyse and discuss the trade-off between type I and
type Il errors in parentage analyses. We show that controlling for false positive
assignments, without reporting type Il errors, can be misleading. Our findings
illustrate the need to estimate and report both the rate of false positive and false

negative assignments in parentage analyses.
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The objective of parentage analyses can vary depending on the nature of the
study, though a common goal is to correctly assign each and every offspring from
a population to its true mother and/or father (Jones and Arden 2003; Blouin
2003; Jones et al. 2010). If not all putative parents have been sampled, correct
assignments and correct exclusions must be distinguished from false
assignments (false positive - type I error) and false exclusions (false negative -
type II error). In Harrison et al. (2013a), we carried out simulations to assess
how the number and allelic diversity of microsatellite loci, the proportion of
candidate parents sampled, and genotyping error could affect the susceptibility
of different methods of parentage analysis to type I and type Il errors. We
showed that the number and diversity of loci were the most important factors
defining the accuracy of parentage analyses. We found that full- and pairwise-
likelihood methods were systematically better at minimising type I and type II
errors than an exclusion-Bayes theorem approach, though all methods could
accurately distinguish correct assignments and correct exclusions with 20 highly

diverse loci.

In his comment, Christie (2013) cautions that an error using the
exclusion-Bayes’ theorem approach (Christie et al 2010) led us to wrongly
conclude that this method could not control the rate of false positive
assignments. However, minimising only false positives assignments was not the
objective of our study and to do so neglects other decision types of single parent
assignment tests (Harrison et al. 2013a). We defined accuracy as the ability to
distinguish correct assignments and correct exclusions from type [ and type II

errors; a metric that takes into account all possible decision types in parentage
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analyses (Harrison et al. 2013a) and is the most relevant to comparative studies.
We accept that applying a maximum posterior probability of assignment (alpha)
prior to accepting putative parent-offspring pairs, as Christie (2013) has done,
can control the number of false positive assignments, and that for many
purposes this may be desirable. However, minimising the rate of false
assignments affects the rate of false exclusions, a trade-off that is contingent on
the different objectives of parentage studies. For instance, if the alternative goal
is to maximise the number of true parent-offspring pairs that are assigned,
setting alpha too low may inadvertently reject a large number of correct parent-

offspring relationships.

To fully evaluate the effects of fixing alpha at different arbitrary levels, we
reran all 60 simulated scenarios (Harrison et al. 2013b) accepting either all
putative parent-offspring pairs (alpha = 1) or only pairs with a probability of
being false below 0.01 and 0.05, and analysed the effects of such measures on the
accuracy of assignments. Using the same N1000 high diversity data set with 1%
genotyping error as presented in Harrison et al. (2013a, b), we assessed the
performance of each method depending on three potential objectives of
parentage analysis: 1. Maximise the proportion of assignments that are correct.
2. Maximise the number of true parent-offspring pairs that are identified. 3.
Obtain an accurate estimate of the proportion of true parent-offspring pairs that

are present in the sample.

Fixing alpha at 0.05 or 0.01 did not improve the overall accuracy of the

exclusion-Bayes method in our simulated scenarios unless the proportion of
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candidate parents was low (Fig. 1). Across all simulated scenarios, a cut-off value
of 1, as in Harrison et al. (2013a), resulted in an overall accuracy of 0.653 *
0.283, whereas cut-off values of 0.05 and 0.01 resulted in an overall accuracy of
0.650 + 0.301 and 0.599 * 0.305, respectively. Here, reducing alpha results in an
explicit trade-off where the decrease in type la and type Ib errors (falsely
assigning parentage when the true parent is or isn’t present in the sample of
candidate parents) is outweighed by the increase in type II errors (Fig. S1-S3).
Even when using this trade-off to control the rate of false positive assignments,
the exclusion-Bayes method appears to be comparatively less effective at
distinguishing between true and false parent-offspring pairs than either the
pairwise likelihood approach implemented in FAMOz (Gerber et al. 2003) or the
full-likelihood approach implemented in coLoNY (Wang et al. 2004; Jones & Wang

2010).

In some circumstances, the trade-off between type I and type Il errors can
be adjusted to meet specific objectives of parentage studies. For example, if the
aim is to maximise the proportion of assignments that are correct (Fig. 2;
Objective 1), using the exclusion-Bayes method with an stringent cut-off value
(alpha = 0.01) to minimise type Ia and type Ib errors does appear to perform
well compared to other methods, especially when the proportion of sampled
parents and the number of loci are low. However, even in scenarios where the
proportion of correct assignments equals that of FAMOZ or COLONY, it identifies
comparatively fewer assignments (Fig. 3). Alternatively, if the aim is to maximise
the number of true parent-offspring pairs that are identified (Fig. 2; Objective

2), both type Ia (falsely assigning to a parent when the true parent was in the
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sample) and type Il errors must be minimised. In this situation, the exclusion-
Bayes method improves by allowing all putative parent-offspring pairs to be
assigned (alpha = 1.0; Fig. 2-3). If the aim is to obtain an accurate estimate of the
proportion of true parent-offspring pairs that are present in the sample (Fig. 2;
Objective 3), the primary objective is to balance type Ib errors (falsely assigning
to a parent when the true parent was not in the sample) and type II errors. The
number of true parent-offspring pairs present in the sample is correctly
estimated when the number of type Ib equals the number of type Il error. In this
case, minimising type I errors without controlling type Il errors underestimates
the number of true parent-offspring pairs in the sample by a factor of 2 to 4.
Regardless of the objective, increasing the number or allelic diversity of loci is
the most effective way to reduce both type I and type II errors (Fig 2-3, Harrison
et al. 2013a) and increase the performance of parentage analyses. Simulations,
with known parent-offspring pairs, are integral to estimating errors rates and

therefore optimising the performance of parentage analyses.

The methods described by Christie et al. (2010) and implemented in
SOLOMON (Christie et al. 2013) do appear well suited where marker information is
scarce and where avoiding false assignments is a priority. Rejecting putative
parent-offspring above a certain threshold alpha did not improve the overall
accuracy of the exclusion-Bayes method, though it did improve its performance
when the objective was to maximise the proportion assignments that were
correct. This however, is not a distinct advantage over other methods such as
FAMOZ or CERVUS that employ likelihood estimators (Gerber et al. 2003; Marshall

et al. 1998; Kalinowski et al. 2007). These methods identify a threshold of
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assignment based on the distributions of likelihood scores for simulated true and
false parent-offspring pairs. If the distributions overlap, the threshold value is
usually set at the intersection of the two distributions in order to minimise both
type I and type Il errors, or can be set higher (e.g. a value that is equal or higher
than 95% or 99% of all simulated false pairs LOD scores) or lower in order to

minimise type [ or type Il errors, respectively.

Clearly there can be different objectives of parentage analysis that may
favour minimising false positives, false negatives or maximising overall accuracy.
In some circumstances, where the cost of false positive assignments is too high,
minimising type I errors to ensure that all assignments are correct may be
necessary. In other cases, minimising type Il to ensure that all true parent pairs
are identified may be more important. In our studies, where we have used
parentage analysis to examine patterns of juvenile recruitment and the
reproductive success of adults in fishes (Jones et al. 2005; Planes et al. 2009;
Saenz-Agudelo et al. 2011; Harrison et al. 2012; Berumen et al. 2012; Almany et
al. 2013), we consider that minimising both type I and type Il errors will provide
the best estimate of these parameters. Whatever the goal or the method used,
type I and type II errors should always be estimated and reported. Fixing alpha
at the expense of type Il errors, and then only reporting type I errors can be
misleading and may result in false depiction of accuracy and inaccurate
estimates population parameters that rely on parentage. Lastly, increasing the
quantity and quality of marker information reduces both false positive and false
negative assignments, which can only improve the outcome of parentage studies.

We concur that in the future, with next-generation techniques for sequencing
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large numbers of markers, all methods will be able to be applied with extremely
high accuracy, and arguments about the relative merits of trading false positive

and false negative assignments will be of marginal concern.
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Supporting information

Additional supporting information may be found in the online version of this
article.

Defining and measuring the performance of parentage analyses.

Fig. S1 Susceptibility of three methods of parentage analysis to type la errors
under 60 independent scenarios.

Fig. S2 Susceptibility of three methods of parentage analysis to type Ib errors
under 60 independent scenarios.

Fig. S3 Susceptibility of three methods of parentage analysis to type Il errors

under 60 independent scenarios.
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Simulated data sets and R scripts deposited in the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.2ht96.
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Fig. 1 Proportion of accurate assignments of three approaches to parentage

analysis. Each methods was tested on high- and low-diversity simulated

microsatellite data sets with high (1%) and low (0.1%) levels of genotyping error

for varying levels of number of loci and proportion of candidate parents samples.

Continuous black lines correspond to results from the full-likelihood method

implemented in coLONY, dashed black lines are the results from the pairwise-

likelihood method implemented in FAM0z and dotted black lines from the

exclusion-Bayes method using a cut-off value of 1.0 as presented in Harrison et

al. (2013). Blue and red dot-dash lines correspond to results from the exclusion-

Bayes method using cut-off values of 0.05 and 0.01, respectively. A value of 1.0

represents the optimal performance in each panel.
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Fig. 2 Performance of three methods of parentage analysis under study-specific
objectives. Each method was assessed using the N1000 high-diversity dataset
with 1% genotyping error as described in Harrison et al. (2013). The specific
objectives are 1) Maximising the proportion of assignments that are correct; 2)
Maximising the number of true parent-offspring pairs that are identified; and 3)
Obtaining an accurate estimate of the proportion of true parent-offspring pairs
that are present in the sample (see Supplementary Material for a description of
each performance indicator). Line representations are identical to Fig. 1. A value

of 1.0 represents the optimal performance in each panel.
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Supplementary information

Defining and measuring the performance of parentage analyses

Accuracy: The accuracy of a parentage analysis is define here and in Harrison et
al. (2013a) as the degree to which all relationships can be correctly resolved,
whether it is assigning true parent-offspring pairs or excluding false parent-
offspring pairs. Accuracy is measured as the sum of correct assignments and
correct exclusion over the total number of possible assignments, which is the
total number of offspring in the sample. Maximising accuracy can itself, be a
potential objective of parentage analyses. Given that it takes into account of both
false positive and false negative assignments it is also a valuable metric for

comparisons.

No.of correct assignments + No. correct exclusions

Accuracy =
y No.of of fspring in the sample

Objective 1: Maximising the proportion of assignments that are correct.
Performance increases as the proportion of correct assignments approaches the

number of assigned parent-offspring pairs (range 0-1).

p No.of correct assignments
1 =

No.of assignments

14
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Objective 2: Maximising the number of true parent-offspring pairs that are
assigned. Performance increases as the proportion of correct assignments
approaches the number of true parent-offspring pairs present in the sample
(range 0-1).

No.of correct assignments

P, =
2™ No. of true parent — of fspring pairs in the sample

Objective 3: Obtaining a representative proportion of true parent-offspring

pairs that are present in the sample. Performance increases as the number of

assignments approaches the number of true parent-offspring pairs present in the

sample (range 0-o0). A value <1, overestimates the number of true parent-

offspring pairs in the sample and a value >1, underestimates the number of true

parent-offspring pairs in the sample.

P No.of true parent — of fspring pairs in the sample
3 =

No.of assignments
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Fig. S1 Susceptibility of three methods of parentage analysis to type la errors
under 60 independent scenarios. Each methods was tested on high- and low-
diversity simulated microsatellite data sets with high (1%) and low (0.1%) levels
of genotyping error for varying levels of number of loci and proportion of
candidate parents samples. Continuous black lines correspond to results from
the full-likelihood method implemented in coLONY, dashed black lines are the
results from the pairwise-likelihood method implemented in FAM0Z and dotted
black lines from the exclusion-Bayes method using a cut-off value of 1.0 as
presented in Harrison et al. (2013). Blue and red dot-dash lines correspond to
results from the exclusion-Bayes method using cut-off values of 0.05 and 0.01,

respectively.
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Fig. S2 Susceptibility of three methods of parentage analysis to type Ib errors

under 60 independent scenarios. Data and line representations are identical to

Fig. S1.

N500

1000
750 4
500

N

a

o o
1 1

10| 01

1000 —
750

250

o
1

e
.-

PR ey B R Sy

10| G|

1000 A

Number of type Il errors
(4]
3
1

750 4
500
250

0_

100] 02

20 -

40 -

60 -

80 -

Adults sampled (%)

Methods

— COLONY

- - FaMoz

---- exclusion-Bayes (1.0)

- -+ exclusion-Bayes (0.05)

-—- exclusion-Bayes (0.01)

Fig. S3 Susceptibility of three methods of parentage analysis to type Il errors

under 60 independent scenarios. Data and line representations are identical to

Fig. S1.

17



