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[1] Floods are risky events ranging from small to catastrophic. Although expected flood
damages are frequently used for economic policy analysis, alternative measures such as
option price (OP) and cumulative prospect value exist. The empirical magnitude of these
measures whose theoretical preference is ambiguous is investigated using case study data
from Baltimore City. The outcome for the base case OP measure increases mean
willingness to pay over the expected damage value by about 3%, a value which is increased
with greater risk aversion, reduced by increased wealth, and only slightly altered by higher
limits of integration. The base measure based on cumulative prospect theory is about 46%
less than expected damages with estimates declining when alternative parameters are used.
The method of aggregation is shown to be important in the cumulative prospect case which
can lead to an estimate up to 41% larger than expected damages. Expected damages remain
a plausible and the most easily computed measure for analysts.
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1. Introduction

[2] Theoretical guidance for projects affecting risky out-
comes such as flooding is complex and ambiguous. Multi-
ple monetary measures exist based on expected utility
theory as well as competing measures from other frame-
works. But does the range of theoretical concerns yield an
equivalently wide range of empirical measures? Or are
competing theoretical measures empirically close such that
other characteristics such as ease of data collection, compu-
tation and transparency become more important in the
choice of a measure? A better understanding of empirical
differences among measures could inform benefit-cost
analyses of structural and nonstructural improvements and
for insurance programs, such as the National Flood Insur-
ance Program (NFIP).

[3] Theoretical guidance to value risks is often based on
expected utility theory. Expected utility posits multiple val-
ues including willingness to pay based on expected surplus
(which can be linked to expected damages), option price
(OP), and considerations such as whether complete and fair
insurance markets exist [e.g., Just et al., 2005; Graham,
1981; Freeman, 1991, 1989]. A willingness to pay function
linking these points generates additional possibilities
depending on state (outcome) contingent payment alterna-

tives. The OP measure is frequently deemed preferable as
in some cases it meets a financing constraint and has a fea-
sible payment mechanism, but the choice of measure
remains complex within an expected utility framework
[Graham, 1981; Just et al., 2005; Boardman et al., 2011;
Cameron, 2005]. Compounding this ambiguity, increasing
concern with expected utility theory has led to theories
which are not based on expected utility. Cumulative pros-
pect theory (CPT) is a leading alternative in which people
weight the probability of events and assess gains or losses
relative to a reference point [e.g., Tversky and Khaneman,
1992; Harless and Camerer, 1994; Wakker, 2010].

[4] This paper estimates and compares alternative
measures of willingness to pay to avoid flood damages by
linking conceptual models and their parameterization with
the HAZUS [FEMA, 2009] empirical model of flood dam-
ages. Data for the city of Baltimore are used for the com-
parisons. While many analyses focus solely on floods with
an expected return period of 100 years (the 100 year
flood) due to its importance in the NFIP, this analysis
models a continuous set of flood return periods. While the
theoretical debate is wide-ranging, policy analysis of haz-
ards typically focus on damages conditional on the event
occurring and sometimes on expected damages [e.g.,
FEMA, 2009; Rose et al., 2007; Farrow and Shapiro,
2009]. The default, foundation model is based on the
mathematical expectation of flood damages as that mea-
sure is frequently used in applications for its ease of com-
putation and transparency. The two classes of alternative
measures are based on an expected utility model with
equal payments and risk aversion—the OP; and a nonex-
pected utility model based on the CPT, of Tversky and
Kahneman [1992]. The analysis of flooding may also
inform risk based analyses in other areas such as health,
the environment, and terrorism.
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[5] The paper proceeds in section 2 by developing the the-
oretical differences among expected damages, OP, and CPT
values. Typical specifications and parameter values are also
reviewed. Estimation of damages and the probability distri-
butions for flooding based on the flood return period, R, are
developed in section 3. Section 4 presents the empirical
results and sensitivity tests while section 5 concludes.

2. Alternative Value Measures

[6] Expected utility models are the mainstay of the eco-
nomic modeling of risk [Eeckhoudt et al., 2005; Wakker,
2010]. They represent an important advance by generalizing
the mathematical expectation of dollar outcomes to models
of expected utility, and then assessing the monetary implica-
tions of different representations of utility. Evolution and
testing of expected utility theory over decades has revealed
both insights and anomalies [Starmer, 2000]. Both expected
OP and surplus have an expected utility interpretation which
is developed below while the latter can be estimated based
on expected damages. A nonexpected utility measure is
developed as an alternative which addresses some of the be-
havioral anomalies observed with expected utility.

2.1. Expected Utility Measures

[7] Current theory tends to favor OP, a state-independent
payment, as the generally preferred willingness to pay mea-
sure for policy analysis [Boardman, et al., 2011; Cameron,
2005]. While typically defined in a two-state setting where
an event occurs or it does not [e.g., Freeman 1989, 1991;
Graham, 1981], OP can be defined analogously for a multi-
state setting [Cameron, 2005]. Define:

[8] A� : a continuous outcome, such as floods of varying
magnitudes

[9] A : the base or reference level of flooding
[10] Vk(W,(A,A�)) : an indirect utility function depending

on wealth, W, flood size; and whether a payment is made,
k equal 1; or not, k equal 0

[11] f(A�) : the probability density of flood size.
[12] In the absence of any payment, the no-policy

expected utility is

ZA� max

A� min

V 0 W ;A�ð Þ f A�ð ÞdA�: (1)

[13] OP is that state-independent payment for a policy
which achieves the A or no flood level, and which has equal
expected utility to the no-policy alternative:

ZA� max

A� min

V 1 W � OP;Að Þ f A�ð ÞdA�

¼

ZA� max

A� min

V 0 W ;A�ð Þ f A�ð ÞdA�: (2)

[14] OP is often presented in the literature as an ‘‘ex-
ante’’ value as it is based on the equilibration of expected

utilities without being conditional on specific outcomes. Its
calculation depends on the specification of the indirect util-
ity function.

[15] To develop the surplus concept, consider the amount
a person would be willing to pay to avoid a particular level
of A�, for instance the exact level of a 100 year flood. For
that specific (conditional) event, a person would be willing
to pay up to S(A�¼100) to avoid the adverse event and
achieve the same utility as the policy of doing nothing. The
amount S(A�¼100) is independent of the probability of the
event occurring.

V 1 W � S A� ¼ 100ð Þ;Að Þ ¼ V 0 W ;A� ¼ 100ð Þ: (3)

[16] S(A�) represents a state contingent payment or will-
ingness to pay and can be defined for all outcomes A�. Due
to point by point equivalency, the expected value of equa-
tion (3) over all outcomes is equal to the expected value of
utility at the original level as in equation (4). Hence, the
surplus measure has an ex-ante interpretation as being
equal to a base level of expected utility just as does OP
[Freeman, 1991].

ZA� max

A� min

V 1 W � S A�ð Þ;Að Þ f A�ð ÞdA�

¼

ZA� max

A� min

V 0 W ;A�ð Þ f A�ð ÞdA�: (4)

[17] Although S(A�) is probability independent, the
expected monetary value of that willingness to pay has been
termed expected surplus and used as a welfare measure
[Freeman, 1989; Boardman, et al., 2011]. The expected sur-
plus has often been termed ‘‘ex-post’’ based on the probabil-
ity independent equivalency in equation (3) although it has
an ex-ante interpretation as discussed above.

[18] Historically, analysts have preferred to work with
expected damages as a more directly calculable economic
measure, originally assuming a person was risk neutral
(indifferent between two bets of equal expected value).
However, the theory of expected surplus provides an alterna-
tive interpretation for economic damages. Expected damages
represent a state-independent approach which, given risk
aversion, represents a higher degree of utility than the state
dependency associated with surplus. However, when dam-
ages are measured in a way to restore a person to an original
state of utility, the expected (monetary) value of damages is
equal to the expected (monetary) surplus [Freeman, 1989;
Boardman et al., 2011]. Equation (5) thus defines alternative
monetary metrics for use in policy analysis in which
expected damages are a monetary measure of expected sur-
plus. Empirically, damage estimates from different flood lev-
els will be used in this paper as the estimates of S(A�).

ZA� max

A� min

S A�ð Þ f A�ð ÞdA� � Expected surplus

¼ Expected damages : (5)
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[19] There are other payment approaches that can yield
expected utility equal to the no-policy alternative [Graham,
1981]. For this paper, computations will be implemented
by noting the common expected utility of OP, expected sur-
plus, and no-policy approaches as in Equation 6:

ZA� max

A� min

V 1 W � OP;Að Þ f A�ð ÞdA� ¼

ZA� max

A� min

V 0 W ;A�ð Þ f A�ð ÞdA�

¼

ZA� max

A� min

V 1 W � S A�ð Þ;Að Þ f A�ð ÞdA�:

(6)

[20] The computation of OP will result from specifying
a functional form and parameters for the indirect utility
function and solving the equality of the first and last
integrals. The density function requires further elaboration
in section 3.

[21] The difference between the two measures, OP and
expected damages, has been shown elsewhere to depend on
the difference in the marginal utility of wealth in different
states of the world [Freeman, 1989]. For instance, if there
is no insurance it may be that a dollar in a damaged state of
the world is worth more than the dollar in the undamaged
state. The converse is also possible. For simplification, con-
sider two states of the world. In what may be a common
assumption, the marginal utility of wealth in the ‘‘no
event’’ state of the world, VW

0 is assumed smaller than the
marginal utility when an event occurs. In that case OP will
be larger than surplus measure. Other considerations, such
as whether the amount collected by a stream of payments
would be sufficient to finance a project or policy tend to
favor the use of OP [Graham, 1981]. Existing textbook
advice is that ‘‘If complete and actuarially fair insurance is
unavailable against the relevant risks, then OP is the
conceptually correct measure’’ [Boardman et al., 2011,
p. 211]. Consequently, the paper focuses on specifications
of the utility function where OP exceeds expected surplus.

[22] Aggregation of utility plays an important part in
benefit-cost analysis whether or not risk is involved. For
instance, in deterministic benefit-cost analysis, the standard
aggregation assumption is that marginal utilities of income
and social utility are constant across individuals [Jones,
2005]. Although this assumption is frequently criticized, no
agreed upon alternative exists. In a similar manner, the lit-
erature on utility aggregation under risk typically uses
functional forms for a representative agent and homogene-
ous measures of risk aversion across individual even
though theory demonstrates the sensitivity of a representa-
tive utility function to the distribution of wealth [Gollier,

2001; Eeckhoudt et al., 2005]. That standard practice is fol-
lowed here by assuming functional forms for expected util-
ity consistent with a representative aggregate agent and
which are invariant with respect to the distribution of
wealth [Gollier, 2001]. However, the CPT measure is not
invariant in the same way and will provide an additional
test of aggregation.

[23] The most commonly used functional forms for util-
ity under risk are power and certain exponential functions,
each of which models consumer behavior differently.
Power functions model consumer behavior for technical
characteristics of risk as having constant relative risk aver-
sion (CRRA) and declining absolute risk aversion with
respect to wealth [Gollier, 2001; Wakker, 2010]. Certain
exponential functions model behavior as reflecting constant
absolute risk aversion (CARA) and relative risk aversion
which increases in wealth. Consequently, the key parame-
ter, defined below, of the standard exponential form
depends on the level of wealth for a given level of relative
risk aversion.

[24] Freeman [1989] defined three utility functions
including a concave power function and two specifications
of an exponential function. It is useful to replicate his spec-
ifications as there remains a lack of consensus around
parameterization of expected utility models [Gollier, 2001;
Meyer and Meyer, 2006] and because Freeman’s context
free analysis was based on a two-state world which will be
useful for comparison. Freeman chose parameters for the
utility function as informed by the empirical literature on
relative risk aversion.

[25] A more recent survey on measuring risk aversion by
Meyer and Meyer [2006] investigates how the definition of
the outcome measure, whether wealth narrowly or broadly
defined or other measures such as consumption can system-
atically alter empirical parameters measuring relative risk
aversion. The most narrowly defined measure of wealth is
based only on those assets which can be freely adjusted, as
in a financial portfolio. Meyer and Meyer [2006, pp. 43]
indicate that measured relative risk aversion in this case is
generally less than 1. Assets such as housing expand the
definition of wealth but may be less freely adjusted with an
implication that measured relative risk is larger, perhaps in
the range of 2–3 [Meyer and Meyer, 2006, p. 53]. Given the
uncertainty about the role of housing in the utility of wealth,
the relative risk values assumed by Freeman; 0.5, 2, and 10
will continue to be used in this analysis. Given these fixed
relative risk aversion values, the exponential utility parame-
ter, b, is computed based on wealth in the case to be studied.
These specifications are summarized in Table 1.

[26] On the basis of these empirically informed specifi-
cations, Freeman concluded that it was precisely where
probabilities were low but potential losses were high that
the difference between OP and expected damage is large.

Table 1. Specifications for the Indirect Utility Function (X is either S(A�) or OP)

Alternative Specification Implications Utility Class

Power function V¼ (W�X).5 Relative risk aversion¼ 0.5 CRRA: Constant relative risk aversion and
declining absolute risk aversion

Exponential function V¼ (1�e–b(W�X))/b Relative risk aversion (rr)¼ b�W ;
investigated for rr ¼2, 10

CARA: Constant Absolute Risk Aversion and
increasing relative risk aversion
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For instance, an event leading to a loss of 50% of wealth
with relatively small probability of 0.001 yielded a percent-
age difference between the surplus and OP values that was
10 times higher than the same loss with the much higher
probability of 0.9. Figure 1 based on data from Freeman
[1989] illustrates that the difference in the value measures
in the two-state case is of greater concern for events caus-
ing high damages compared to wealth and which occur
very infrequently. These ‘‘tail events’’ are of major concern
in risk management. Whether or not this large difference
carries over to a multistate case is unclear and is a further
motivation for this paper. Given the potential for natural
hazards to be low probability and high-consequence events,
it is possible that potentially large adjustments between OP
and expected surplus values could significantly alter the
results of standard benefit-cost analysis.

2.2. A Nonexpected Value Measure

[27] A large and growing body of literature seeks to
identify the behavioral determinants of willingness to pay
after research identified numerous inconsistencies between
behavior and the implications of expected utility theory
[Wakker, 2010; Starmer, 2000]. Much of this research is
based on the prospect theory model of Kahneman and Tver-
sky [1979]. A key feature of this theory is that individual
choices are made based on perceived probability and valua-
tion. Prospect theory evolved further with probability
weighting depending on a transformation of the cumulative
distribution and hence termed CPT [Tversky and Kahne-
man, 1992; Wakker, 2010]. One way to view this theory
is as a generalization to expected utility theory where
additional parameters shape the consumer response to prob-
ability and outcomes [Machina, 2000].

[28] Prospect theory, and ultimately, CPT, built on utility
theory behavior by using a probability weighting function
for losses, � (F(A�)) where F(A�) is the cumulative distri-
bution function. Individuals are further modeled to value
outcomes depending on context, c, particularly if the out-
comes are favorable or unfavorable to create a value func-
tion Ṽ(W,c) that is a transformation of measured values
such as damages. Such functions are generally estimated by
finding points of certainty equivalence where individuals
are indifferent between a risky outcome and a sure
outcome, much as in equation (4). Although originally

developed for a limited number of outcomes, recent exten-
sions develop CPT for continuous outcomes [Davies and
Satchell, 2004; Wakker, 2010, p. 272; Kothiyal et al.,
2011]. Focusing only on negative outcomes for this study,
a continuous representation of CPT then multiplies
weighted marginal probabilities (the derivative of the prob-
ability weighting function) and the context value over all
states of the world [Davies and Satchell, 2004; Wakker,
2010, p. 272]:

Z A� max

A� min

~V W ; cð Þ �0A� F A�ð Þð Þ
� �

dA�

¼
Z A� max

A� min

~V W ; cð Þ �0F A�ð Þ F A�ð Þð Þ f A�ð ÞdA� :
�

(7)

[29] The right-hand side of equation (7) provides the
more intuitive explanation. The CPT value function is
weighted by the derivative (slope) of the value function
with respect to its location in the cumulative density func-
tion. The expected value results when multiplied by the
probability density of the event occurring, f(A�), the deriva-
tive of the cumulative distribution function. Consequently,
all of the measures; expected damages, OP, and CPT
have interpretations as different forms of mathematical
expectation.

[30] Probability weights have been found to be affected
by factors relevant to the context of flooding. For instance,
perceived probabilities may depend on experience such as
the ‘‘near miss’’ of a flood; on incorrect beliefs about the
causes of an event (for instance, that levees provide perfect
protection), or there may be neglect of small probabilities
among other possible perceptions [Wakker, 2010;
Hallstrom and Smith, 2005; Rabin and Thaler, 2001;
Botzen, 2009; Bell, 2007, Kahneman and Tversky, 1979;
Tversky and Kahneman, 1992]. Similarly, the reference
point for the outcome has been shown to be central to
behavioral modeling with people valuing losses differently
than gains. Flooding represents losses and so may be val-
ued differently than an equivalent amount of gains. While
the issues raised in CPT are apparently relevant to flooding,
estimation of the parameters of CPT are typically derived
in lab settings with people making choices in the context of
a financial decision. Consequently, parameters from these
other contexts are used here, while noting the potential for
further research for parameter estimation based specifically
on the context of flooding.

[31] Much of the CPT research uses functional forms
similar to those in expected utility theory [Wakker, 2010].
The most frequently used is based on Tversky and Kahne-
man [1992] who applied a modified power function to
model value with additional parameters to capture refer-
ence dependence for losses, � ; and to weight outcomes, �.
Probability weighting functions add a new modeling
dimension designed to allow over or under-weighting com-
pared to the ‘‘true’’ probability. Tversky and Kahneman
defined a transformation of cumulative probability based
on a power parameter, e. Thus a specific continuous power
function representation of equation (7) in the loss domain,
premultiplied by the weighting function, is defined as in
equation (8) where F is the cumulative distribution function
and D(A�) is the nominally measured damage outcome:

Figure 1. Ratio of option price to damages.
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Z A� max

A� min
�� �D A�ð Þ�
� �

�0 F A�ð Þð Þf A�ð ÞdA�
�

(8)

where �0 F A�ð Þð Þ ¼ d

dF A�ð Þ
F A�ð Þe

F A�ð Þe þ 1� F A�ð Þð Þeð Þ
1
e

 !
:

[32] The storm return period, R, associated with flood
modeling provides a natural ranking structure in the loss do-
main for A� where higher values of R rank worse. Conse-
quently, the approach taken here for the CPT measure first
investigates the combined probability and utility function for
monetary losses using parameter values estimated by
Tversky and Kahneman [1992; p. 311–312; Wakker, 2010, p.
254–256] and then conducts sensitivity analysis. The base-
case parameter values were developed from experiments in
which respondents chose the monetary boundary (certainty
equivalent) between a certain payoff and an uncertain out-
come, including uncertain losses [Tversky and Kahneman,
1992]. It can be shown that the loss aversion parameter, �, is
altered by the units of measurement [Wakker, 2010] and is
adjusted for purchasing power using the consumer price
index compared to the time of the experiments.

[33] Sensitivity tests are based on research to refine prob-
ability weighting and value functions although no specific
studies related to flooding have been found. Abdellaoui et
al. [2007] review a number of weighting studies with par-
ticular attention to the value function and find, in general,
that the estimates are similar to those of Tversky and Kah-
neman although not all report a standard error. They carry
out their own experiment to focus on the value function.
Etchart-Vincent [2004] also reviews the literature while fo-
cusing on the probability weighting function and finds
some differences in probability weighting when small and
large losses are considered. Consequently, the Tversky and
Kahneman parameters will be used as the base case with
sensitivity based on a power parameter estimate, � equal to
0.798, from Abdellaoui et al. and a weighting function pa-
rameter, e equal to 0.908, for large losses reported by Etch-
art-Vincent for a weighting function.

[34] Ultimately, the valuations for OP and CPT depend
on utility functions whose exact form in general and for
flooding in particular are unknown. However, investigating
whether significant differences from expected utility using
a canonical CPT function in the literature provides infor-
mation about the importance of expected utility compared
to a common nonexpected utility model.

3. Quantitative Implementation

[35] There are challenges in adapting the alternative val-
uation approaches to an applied setting. Implementation of
equations (5), (6), and (8) require additional data for the
probability of the event, the damages, and the initial
wealth. Each of these is discussed.

3.1. Probability of Flood Events

[36] The probability of a flood event is critical to esti-
mate each of the values of interest. If the probability of a
specific event exists, then the expected value calculation is
straightforward. With a continuous estimate of damages,
the density function of those damages is required. How-

ever, as in the case of flooding and some catastrophic anal-
ysis, the underlying analysis is based on the exceedance
probability. The exceedance probability of an event such as
stream flow, x, is the probability of being equal to or
greater than some specific flood value, P(x�xo). This prob-
ability is a statement about the inverse or complementary
cumulative distribution function, CCDF equal to 1�F(x)
where F(x) is the usual cumulative distribution function
[Scawthorn et al., 2006a, 2006b; Grossi and Kunreuther,
2005; Chin, 2000].

[37] Hydrologists analyze estimated exceedance proba-
bilities but typically describe results using the return period
defined as the inverse of the exceedance probability,
1/CCDF. A statistical interpretation of this measure is the
expected number of time periods, R, until a certain flood
size, x0, is exceeded [Chin, 2000; Prakash, 2004]. R is
commonly called the return period. As Chin states, ‘‘it is
more common to describe an event by its return period than
its exceedance probability’’ [Chin, 2000, p. 257].

[38] This common practice defines a transformation of
the underlying flood random variable, x, into another ran-
dom variable, R(x). The HAZUS program, to be described
in the next section, uses the return period in this latter way
to define a given flood event, x0. When used in this way,
the probability density function of R(x) can be derived
from that of x. An informal derivation is provided here. Ap-
pendix A contains a more detailed derivation using integra-
tion by substitution.

[39] The informal derivation asserts that the probability
of exceedance in natural units, 1�F(x), should equal the
same probability of exceedance when measured in terms of
the return period, R(x), such that 1�F(x) is equal to
1�F(R(x)). In words, if there is a 5% chance of a flood
exceeding a size x0, then there should also be a 5% chance
of a flood exceeding the transformed variable R(x0). In that
case the density function of R, f(R), can be immediately
derived by substitution and the first fundamental theorem
of calculus as follows:

[40] 1�F(x)¼R(x)�1 by definition
[41] 1�F(R)¼R�1 by assumption as above and substitu-

tion, then:

d 1� F Rð Þð Þ
dR

¼ dR�1

dR
¼>

f Rð Þ ¼ R�2 :

(9)

[42] The return period R is used as the empirical measure
of A� in this paper. Consequently, the density function,
f(R), is used in the calculation of expected damages for
each of the damage, option, and CPT measures. Further the
cumulative distribution function, F(R) is used in the CPT
probability weighting function as in equation (8).

3.2. Estimation of Flood Damages

[43] Forecast estimates of flooding damage are an ele-
ment of each of the three measures. Floods can cause dam-
ages to structures, belongings and business inventory,
affect business and personal activities and so on. Empirical
estimates of such damages typically attempt to measure the
cost of restoration to a predamaged state. Such estimates
are conceptually similar to the deterministic compensating

FARROW AND SCOTT: FLOODING AND WILLINGNESS TO PAY

2642



variation, the amount a person would have to be compen-
sated in a new state of the world to be utility indifferent to
the original state of the world.

[44] The Federal Emergency Management Agency has
developed a national level flood and other natural hazards
damage model, HAZUS-MH [HAZUS; FEMA, 2009]. The
HAZUS software used for this research was HAZUS-MH
MR4 running with ArcGIS v. 9.3.1. HAZUS is designed to
model outcomes at the census block level in its Level 1
analysis, although analysts with even more detailed infor-
mation can modify the model for a higher level analysis.
The model is relatively well documented and in use
throughout the country [FEMA, 2009; Scawthorn et al.
2006a, 2006b]. The damage factors included in HAZUS
are dependent on the degree of flooding are building dam-
age, contents and inventory loss, relocation, wage, and
rental income loss. The largest individual components are
the building and content damage [Joyce and Scott, 2005].
These measures do not include potential psychic effects,
secondary (indirect or multiplier) effects or nonuse values
(for instance, if people who are never to visit New York are
nonetheless harmed by learning of flood damage in New
York). HAZUS computes point estimates and does not con-
tain information about the variance of the estimate.

[45] In somewhat more detail, the HAZUS flood model
uses census block-level data containing information on the
type and value of the building stock, employment profiles,
population counts, stream gauge locations and flow vol-
umes. Damages are estimated by linking the spatial extent
and depth of a flood to the location of structures of various
types and then applying historically estimated depth-dam-
age relationships. Damage information generated by
HAZUS includes counts and characteristics of buildings
damaged along with monetary estimates of damages
[FEMA, 2009; Joyce and Scott, 2005]. Monetary damages
are based on case studies of flood events and engineering
damage functions. The monetary measures of loss are: the
cost of repair and replacement of buildings damaged and
destroyed, the cost of damage to building contents, losses
of building inventory involving contents related to business
activities, relocation expense for businesses and institu-
tions, the loss of services or sales, wage loss linked to busi-
ness income loss, and rental income loss to building
owners.

[46] The exact locations of damaged buildings within a
census block are not known in a Level 1 analysis. HAZUS
therefore assumes buildings and associated damages are
uniformly distributed throughout the census block. This
assumption may be relatively reasonable in a dense urban
area but less accurate in rural areas with larger census
blocks. Other uncertainties arise with a Level 1 analysis.
The characteristics of the building stock, such as basement
occurrence or foundation height, are inferred from general-
ized economic census data, regional US Department of
Energy data, and previous loss statistics from the NFIP.
The digital elevation model used to compute stream loca-
tions, components, and drainage basins is coarser than what
is potentially available. The relationship between depth of
water above the first finished floor and damage to the prop-
erty (the depth-damage function) is interpolated from NFIP
data for several ‘‘record’’ floods in different regions of the
country. While this level of analysis is likely appropriate

for a city-wide application as in this research, researchers
can improve precision through a Level 2 analysis especially
if a smaller area was the focus. HAZUS provides users
with the ability to import detailed flood depth studies, indi-
vidual structure locations, specific foundation heights,
value, mitigation factors and customized depth-damage for-
mulas. This use of improved place-specific data can consid-
erably reduce uncertainty and error [FEMA, 2009;
Scawthorn, et al., 2006a, 2006b].

[47] Damages are driven by the depth of flooding, which
can occur due to both riverine and coastal flooding. A par-
ticular HAZUS model run is scaled by choosing a flood
level defined by the return period, R. Damages are then
associated with structures within and up to the boundary of
a flood that is exactly that of the R year flood. The calcula-
tion of the riverine and coastal flood hazards associated
with the flood size associated with any given return period
are accomplished in separate processes in HAZUS. For the
riverine hazard, a hydrological and hydraulics analysis is
completed [FEMA, 2009; Scawthorn et al., 2006a, 2006b].
The hydrologic analysis involves computing the expected
flow volume for a return period using regional regression
equations to predict stream discharge amounts and drainage
basin size. The hydraulic analysis then interpolates the
flood elevations and the floodway based on the expected
flow volume and the stream channel characteristics. The
user selects the spatial level of detail which determines
how many stream reaches or tributaries will be included in
the hydrological analysis with correspondingly increased
computational requirements for additional reaches. For
coastal flooding, the shoreline must be characterized by
both the degree of wave exposure (from sheltered to full
exposure) and the shoreline morphology (such as rocky or
large dunes). When both coastal and riverine flooding
occurs in the same area, the model picks the ‘‘predomi-
nant’’ flooding mechanism and its associated flood depth.

[48] The HAZUS model output data were used to esti-
mate a function, D(R), linking the flood return period to the
level of damages for the City of Baltimore, a defined region
within the HAZUS model. This is the empirical basis for
damages in the several valuation measures. Baltimore City
is subject to both riverine and coastal flooding. For the
HAZUS runs, the computable number of riverine reaches
was between 60 and 80 implying a modeled drainage area
for each reach of about 1 mi2. This computable number of
reaches depends on both the HAZUS version and the com-
puting resources available. One full run of the model
required about a day of computer run time. Figure 2 dis-
plays the estimated damages for a return period equal to
100, the size flood with a 1% annual chance of occurring or
being exceeded. The total estimated damage from a 100
year flood in Baltimore City is $837 million in 2008 dol-
lars. Structural damages are $272 million of that total. The
value of total building exposure in Baltimore City within
the 100 year floodplain is approximately $1 billion [Joyce
and Scott, 2005].

[49] In order to estimate damages as a function of the
return period, the HAZUS model was run for nine different
return periods; 10, 30, 50, 75, 100, 150, 200, 350, and 500
years. Regression analysis was used to generate a line of
best fit to the data. The results for a logarithmic regression
of damages on the flood period are presented in Table 2.
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The return period is highly significant and the measure of
fit is high. Diminishing marginal damages exist as the elas-
ticity of damages with respect to return period is 0.25; a
1% increase in the return period lead to a 0.25% increase in
damages.

[50] Estimated losses from a 1 year storm, R equal to 1,
are constrained to be zero for each of the three value meas-
ures. Hence, the 1 year return period is the reference point
for the CPT measure and damages are estimated as those
losses that exceed those for the base flood, a flood that is
expected to be exceeded every year.

[51] The 100 year flood, R equal to 100, is an important
policy benchmark due to the NFIP. That program requires
insurance for owners within the 100 year flood plain who
have a federally backed mortgage or who obtained a mort-
gage from a regulated lender [Kousky et al., 2006]. The in-
surance contains standard provisions such as a deductible, a
cap, and limitations on the type of damages covered. Total
damages estimated by HAZUS are not the same as poten-
tial insured losses under the NFIP due to partial take-up
rate on NFIP insurance and the limiting provisions. In the
period from 1978 to 2010, the highest NFIP claims paid
were in 2003 in the amount of $6.8 million. In ten of the 33
years, no claims were paid (J. Howard, FEMA data

obtained for Ph.D. dissertation, personal communication,
UMBC, 2012). However, broader programmatic analyses
and reviews of the NFIP are likely to be concerned about
damages from the entire distribution of potential floods,
damages not covered by insurance; and uncertainty about
valuation measures such as the OP, expected damages, and
CPT measures as developed above.

[52] It is also useful to note the case specific role of the
damage function. Here the estimate is of increasing but
diminishing marginal damages. In other contexts such as
homeland security or perhaps for the largest floods, the
damage function may increase at an increasing rate up to
some point as systematic linkages among damaged parts of
the area could change the shape of the damage function.

3.3. Wealth

[53] The definition of the wealth or income over which
the individual is averse can significantly affect results
[Meyer and Meyer, 2006]. For instance, Freeman [1989]
developed his approach using income although wealth
seems the more appropriate asset in this case. Freeman’s
maximum damage as a share of income was 50%. For
major events such as floods or terrorism, some individuals
may well suffer losses significantly exceeding 50% of
wealth although some specific forms of utility functions
become undefined if the loss exceeds total wealth. The
measure of wealth used here is based on the value of
improvements in the 100 year flood plain, $1 billion, as
approximately adjusted for the extent of larger floods and
other elements of total damages included in HAZUS such
as contents and inventory loss. The resulting value used for
the base case for Baltimore City is $5 billion dollars and
$97 billion as a sensitivity analysis for the total city expo-
sure [FEMA, 2009; Joyce and Scott, 2005].

3.4. Estimation

[54] Two key steps are common for each of the three
measures: expected damage, OP, and CPT value. Those
steps are the estimation of individual components at each
(continuous) flood level and the computation of expected
value via numerical integration. In addition, the computa-
tion of OP requires solving two integral equations for a
value that makes them equal, OP. The final computation of
each measure is summarized.

[55] The expected damage estimate of equation (5) is
computed using the density function of R, f(R) for f(A�)
from equation (8) and the damage function D(R) for S(A�)
from Table 2 measured as a difference from the one year
flood estimate. While the expected value integral admits of
a closed form solution, the results are obtained numerically
using Mathematica8 [Wolfram Research, 2011] as later
measures require numerical computation. The limits of
integration are taken to be 1 and 500 where the lower
bound is the level of flood that is expected to be exceeded
every year and the upper bound is a flood which is expected
to be exceeded every 500 years (although each annual out-
come is independent). The impact of the upper limit is
investigated through sensitivity analysis.

[56] Three different measures of OP are computed based
on the differing utility specifications in Table 1. For each
specification, the OP is calculated from equation (2) noting
the utility equivalency in equation (6) to the utility of

Table 2. Estimated Equation for Damages: Baltimore Citya

Dependent Var. Ln Total
Damage in 000 dollars Coefficient

Standard
Error t Value

Constant 12.3899 0.0672 184.48
Ln flood return period (R) 0.2537 0.014 17.72

aObservations¼ 9, Adjusted R2¼ 0.97, Root MSE¼ 0.04976.

Figure 2. Damages from the 100 year flood: Baltimore
City (darker area higher damages).
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expected surplus. The density and damage functions f(R)
and D(R) are used as above along with wealth from section
3.4. Integration and the solution to equation (2) is found
using Mathematica8 [Wolfram Research, 2011]. The solu-
tions were checked by determining that equation (2) holds.
As suggested by Wakker [2010], the exponential form of
the utility function in Table 2 is preferred to the economi-
cally equivalent form presented in Freeman [1989].

[57] The estimation of the CPT value is computationally
similar to that of expected damages although the cumula-
tive probability, F(R), and damage, D(R), functions are
shifted by three parameters. Those parameters are �, �, and
e as defined in equation (8) with values described in section
2.2. The expected CPT value of equation (8) is obtained
numerically using Mathematica8 [Wolfram Research,
2011].

4. Results

[58] The quantitative results of the two expected utility
measures, expected damage and OP measures, and the CPT
value are reported in Table 3. Parametric sensitivity results
are also reported in Table 3 and others are discussed in the
text.

[59] Total expected annual damages for riverine and
coastal flooding in Baltimore City is $79 million as
reported in row 1. Recall that the damage estimate includes
damage to buildings as well as other elements of business
damage. Building damage is about one third of the total.
Although computed as expected damages, the measure also
has an interpretation as equal to the monetary value of
expected surplus when damages are comprehensively
measured. This measure represents the base case against
which other measures will be compared.

[60] Rows 2 through 5 are all OP measures. Each num-
bered row has results for the three different utility specifi-

cations which are identified by the parameter for relative
risk aversion in column 2.

[61] The basic OP results are presented in row 2. For
measures of relative risk aversion most representative of
the literature, 0.5 for the power function and 2 for the expo-
nential form, OP result is quite close to expected damages,
$80 and $81 million respectively. The basic OP adjustment
to expected damages leads to increases of only a few per-
cent as reported in the last column. If the utility function
exhibited high-risk aversion with relative risk aversion
equal to 10, then OP is estimated as $92 million; 16%
higher than expected damages.

[62] One might have anticipated from Figure 2 that the
use of OP would lead to a large increase over expected
damages as, for instance, the 500 year flood damage repre-
sents almost a 20% loss of wealth. However, the probabil-
ity of such a large flood is small so that the (expected) OP
represents only a modest increase over expected damages
given the conditions of this case.

[63] Sensitivity tests of OP model are presented in rows
3 through 5. Row 3 doubles the upper limit of integration
to 1000; twice the base upper limit and well beyond the
data on which the damage equation is estimated. The
increase in the upper limit increases OP to $81 million,
about a 1% increase over OP estimate based a 500 year
limit of integration and 3% larger than expected damages.
This sensitivity test reinforces the hypothesis that the
expected value calculation is reducing the effect of very
low probability but high damage events. A second sensitiv-
ity test in row 4 increases the exposed wealth to the
improved value of all of Baltimore City. The larger wealth
reduces the premium that people would be willing to pay
such that the option value is equivalent to expected dam-
ages for two of the specifications and only slightly
increases OP to $80 million in the highly risk averse speci-
fication. Additionally, in the case of relative risk equal to
0.5, where the expected utility specifications can be

Table 3. Expected Value Results and Sensitivity Testinga

Scenario
Relative Risk

Aversion Wealth
Upper/Lower

Limit
WTP Total
Mil. 2008 $

% Change
From E(D)

EU measures
1. Expected damage E(D) (surplus) 5 B 500/1 $79 0%

100/1 $74 0%
2. Option price 0.5 5 B 500/1 $80 1%

2 $81 3%
10 $92 16%

3.Option price––Upper limit
of integration

0.5 5 B 1000/1 $81 3%
2 $82 4%
10 $94 19%

4. Option price––High wealth 0.5 97 B 500/1 $79 0%
2 $79 0%
10 $80 1%

Non-EU measures Power Value(s) Probability
Weight

Upper /lower
limit

WTP Total Mil. $2008,
Rep. (Avg.)

% Change from E(D)
Rep. (Avg.)

6. Base CPT 0.88 (� ¼2.25) 0.69 500/1 $43 ($111) �46% (41%)
0.88 (� ¼2.25) 0.69 100/1 $35 ($90) �53% (022%)

7. Base CPT lower limit ¼2 0.88 (� ¼2.25) 0.69 500/2 $40 ($102) �49% (29%)
8. CPT estimate prob 0.88 (� ¼2.25) None 500/1 $31 ($80) �61% (1%)
9. CPT w/Alt prob weight 0.88 (� ¼2.25) 0.908 500/1 $33 ($85) �58% (8%)
10. CPT w/alt value coefficient 0.798 0.69 500/1 $8 ($40) �90% (�49%)

(�¼2.04)

aSource: Author’s calculations.
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compared without violating parameter conditions. The dif-
ference in the results was minimal, less than $1 million
(results not in table).

[64] Consequently the first conclusion is that the OP
measure of willingness to pay is only a small adjustment to
expected damages unless there is a very high level of risk
aversion in which case there is less than a 20% difference
between the expected utility measures.

[65] Estimates based on CPT begin in row 6 (expressed
as positive willingness to pay). The base CPT estimate
using parameter values from Tversky and Kahneman
[1992] is $43 million, about 46% less than the expected
damage estimate. The CPT value function plays an impor-
tant role in understanding why the CPT estimate is less
than the expected damage and OP measures. Given the pa-
rameter values, the damage measure exceeds the CPT value
for most of the range of integration.

[66] An intended aspect of CPT is that the weighting
function overweights events with both small and large out-
comes, and under-weights in between. This effect can be
seen in several ways. Plots of the data, not shown here,
indicate the base weighting function overweights flooding
compared to the unweighted probability between return
periods of 1 and about 1.1 and slightly overweights floods
with return periods greater than 6. The monetized effect
can be seen in several sensitivity tests. In row 8, there is no
weighting of the value measure, only the density function
of the return period is used to construct the expected value.
This decreases the expected value to $31 million indicating
that overall the weighting function serves to increase the
CPT measure compared to an unweighted value function.
Additionally, in row 7, the limit of integration ends at a
return period of 2. The resulting expected value is $40 mil-
lion, a 7% decline from the larger range of integration indi-
cating a moderate amount of the CPT value lies in very
small floods below a return period of 2. Second, if the limit
of integration is increased to infinity (far beyond any esti-
mation of the damage function), the value increases to $52
million, a 21% increase over the base rate (not reported in
Table 3). As 99.8% of the probability of flooding is
between return periods of 1 and 500, the remaining 0.2% of
possible outcomes does have a discernible but not dramatic
effect on the outcome.

[67] Variations of the CPT parameters only serve to
reduce the estimate for willingness to pay. An alternative
probability weighting function from Etchart-Vincent
[2004] in row 9 leads to a 23% reduction from the base
CPT case to $ 33 million (a 58% decrease from expected
damages). The alternative value function parameters from
Abdellaoui et al. [2007] are used in row 10 but the base
model probability weighting function is maintained. These
parameters yield a significantly lower value than the base
case, $8 million, indicating that alternative parameteriza-
tion of the value function can also have a significant
impact.

[68] Consequently, the second conclusion is that the CPT
measure applied to the aggregate is uniformly less than the
expected damage and OP values. Sensitivity tests of the pa-
rameters tended to reinforce the lower estimate of willing-
ness to pay.

[69] However, the loss aversion incorporated into the
CPT measure such that smaller losses have larger relative

weight than larger losses can be shown to have a signifi-
cant effect. This returns to the issue of the representative
agent in aggregating values. In the case of the CPT mea-
sure, computing an average value of damages, and then
aggregating it across those damaged, can lead to a signif-
icant increase over and above the expected damage or
OP measures. Results for the CPT measure based on
computing the average value per building damaged in a
100 year flood, and then aggregating by the number of
owners are presented next to the representative agent
results for the CPT value. The average CPT value using
the base Tversky and Kahneman parameters are 41% and
29% above the expected damage estimate as reported in
rows 6 and 7. The parametric sensitivity tests in rows 9
and 10 reduce the estimate first to a level more represen-
tative of the expected damage and OP values, $80 mil-
lion; and then to a value smaller than those estimates,
$40 million.

[70] Consequently, disaggregation is important in the
CPT measure in a way that is not apparent with specific but
standard forms of the expected utility function.

[71] The NFIP is focused on providing insurance to
those within the 100 year flood plain. In order to assess
the overlap between the focus of the NFIP and total dam-
ages, the expected damage and CPT value were recom-
puted based only on return periods between 1 and 100.
The result, in rows 1 and 6, demonstrates that most of the
willingness to pay exists within the 100 year return period.
The expected damage measure falls from $79 to $74 mil-
lion when all the floods in excess of the 100 year flood are
ignored. Similarly, the CPT value measure declines from
$43 million to $35 million when the same larger floods
are ignored. This is further indication that the expected
value measures change relatively little from the larger and
more damaging but less frequent floods beyond the 100
year flood.

5. Discussion and Conclusion

[72] The empirical results reported here differ from the
casual implications of Figure 1 and some ad hoc expecta-
tions with respect to a behavioral model. The results of the
three measures; expected damages, OP, and CPT value and
their sensitivities indicate for flooding in Baltimore City
that :

[73] 1. There is minimal difference between the expected
damage and the option value measures of willingness to
pay when standard levels of risk aversion are used.

[74] 2. The difference between expected damages and
OP can become larger if a sufficiently large degree of risk
aversion exists but the difference is less than 20%.

[75] 3. The results for OP are little changed when either
the upper limit of integration is increased or the magnitude
of wealth is increased.

[76] 4. The representative agent CPT estimates, a nonex-
pected utility framing, are significantly less than either of
the expected utility models.

[77] 5. Variations on the representative agent CPT pa-
rameters further reduce the CPT measure.

[78] 6. Disaggregating the CPT measure can but need
not reverse the conclusion. The average CPT value with the
base parameters is larger than expected damages or OP
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although alternative parameterizations can reduce the aver-
age CPT measure below expected damages.

[79] 7. Expected damages and the base CPT values are
only moderately changed when the limits of integration
focus on the limits of concern to the NFIP, the damages
due to a 100 year flood or less.

[80] The case study here has important assumptions
which are worth reviewing and which indicate directions
for further research. The case study is built on a multistate,
continuous outcome setting which may correspond to many
natural and man-made hazards. The case-specific damage
function is increasing at a decreasing rate which may not
be representative of all cases and also affect convergence
and solutions. Statistical uncertainty is not yet a component
of the damage estimates from HAZUS. This absence of sta-
tistical uncertainty about the expected values would likely
reinforce the closeness of the measures as reported above.
The specification and parameters of the functions, while
informed by the literature, are not specific to the case of
flooding and have the strengths and weaknesses of labora-
tory based estimates. Concerns about systematic risk in a
region if wide-spread damage occurs is not included which
may lead to larger than estimated damages for very large
events.

[81] With the above cautions however, it appears that
this case identifies two important modeling choices for ana-
lysts. The first choice is the use of an expected utility or a
nonexpected utility analysis. Expected damages and OP
appear to provide similar results for the parameters and
case studied while the CPT value is significantly less. Sec-
ond, aggregation is demonstrated to have an important
effect for the CPT value and may have important effects if
more flexible forms are used for the expected utility analy-
sis. The encouraging result for analysts faced with multiple,
complex measures for computation is that expected damage
does not appear to be an outlier and could remain the stand-
ard default measure unless further investigation reveals
otherwise.

[82] Finally, extremely large floods have relatively lit-
tle effect on expected value measures. This is demon-
strated both by small changes, for expected utility
measures, and moderate changes for the CPT value
when the upper limit of integration is increased. Further,
when the limits of integration reflects the focus of the
NFIP program being less than or equal to the 100 year
flood, then a large part of the expected value measures
is captured within that limit. While not inconsistent with
current policy, the result also suggests the usefulness of
research on different objective functions than expected
value.

Appendix A: Alternative Derivation of the Density
Function for R(x)

[83] Define
[84] x : flood measure (height or flow, a nonnegative

value);
[85] F(x) cumulative distribution function of x with

density function f(x)
[86] R(x) � 1/(1�F(x)) which is a monotonic transfor-

mation of x given the properties of

[87] F(x). Since F(x) is increasing in x, R(x) is increasing
in x.

[88] Apply integration by substitution to R(x). Then

Zxmax

xmin

f Rð Þ dR

dx
dx ¼

ZR xmaxð Þ

R xminð Þ

f Rð Þ dR :

[89] Substituting dR/dx equal to R2 f(x) from above, then

Zxmax

xmin

f Rð ÞR2f xð Þdx ¼

ZRmax

Rmin

f Rð ÞdR:

[90] Consequently,

f Rð ÞR2F xð Þ ¼ F Rð Þ

f Rð Þ ¼ F Rð Þ
F xð Þ R�2:

[91] The density function of R is then seen to be equal to
R�2 if the cumulative distribution function F(R) equals
F(x) which is asserted to be the intent of the transformation.
This derivation provides a further clarification of the role
of equivalent cumulative distribution functions which was
used in the more intuitive derivation in the text.
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